Supplement 5 Review

This review is not all inclusive. You are expected to know how to do all the problems in the homework.
Functional Notation/Translation

1. Know how to translate to functional notation:
(a) $f(x)=$ 'the y-coordinate of the f graph at the value x '.
(b) $f(0)=$ 'the y-intercept'
(c) $x+\mathrm{BLAH}={ }^{\prime} \mathrm{BLAH}$ units after $x . '$ $x-\mathrm{BLAH}=$ 'BLAH units before $x . '$
(d) t to $t+3$ gives the interval starting at t and ending 3 units later.
(e) 5 to $5+h$ give the interval starting at 5 and ending h units later.
(f) $f(b)-f(a)=$ 'change in height of the f graph from $x=a$ to $x=b$.'
(g) $\frac{f(x)}{x}=$ 'slope of the diagonal line to the f graph at x.'
(h) $\frac{f(b)-f(a)}{b-a}=$ 'slope of the secant line to the f graph from $x=a$ to $x=b$.'
(i) $\frac{f(b)-f(0)}{b-0}=$ 'slope of the secant line to the f graph from $x=0$ to $x=b$ ' (slope since the beginning).
2. Here are some standard situations/examples you often encounter:
(a) Find a 5-minute interval when the rate of change of $D(t)$ is 30 .

TRANSLATION: Find t and $t+5$ such that $\frac{D(t+5)-D(t)}{5}=30$.
(b) Find a time when the overall rate of change of $P(t)$ is 44 . TRANSLATION: Find t such that $\frac{P(t)-P(0)}{t}=44$.
(c) How long after $t=8$ do you have to go before $f(x)$ goes up by 100 ? TRANSLATION: Find h such that $f(8+h)-f(8)=100$.
(d) Find two times, 7 minutes apart, such that the value of $g(t)$ at the second time is double the value of $g(t)$ at the first.
TRANSLATION: Find t and $t+7$ such that $g(t+7)=2 g(t)$.
3. In class we did many more examples. And you can find a full table of examples posted online. You need to get comfortable with functional notation, it's an essential tool for the rest of this course and beyond.

