MATH 111 - EXAM II Hints and Answers
Autum 2018
Version 1: In \#, the total cost is $T C(q)=0.1 q^{3}-1.5 q^{2}+8 q+36$.

1. (a) (3 points) ANSWER: 11.28 dollars per Thing
(b) (2 points) ANSWER: $\operatorname{AVC}(q)=0.1 q^{2}-1.5 q+8$
(c) (3 points) ANSWER: $q=1.32,13.68$ hundred Things
(d) (3 points) ANSWER: $\$ 2.38$ per Thing
(e) (3 points) HINT: $T R$ always goes through the origin. Since profit is 0 when $q=24$, $T R(24)=T C(24)$ and you can use the formula for $T C$ to compute $T C(24)=746.4$. Then $T R$ is a line through the points $(0,0)$ and $(24,746.4)$.
ANSWER: $T R(q)=31.1 q$
2. (a) (4 points) HINT: Draw a graph of $B(t)$, a parabola that opens up whose vertex is at $x=0.125$. You can then see that, on the interval from $t=2$ to $t=2.5$, the graph of B is increasing and thus, on this interval, its highest value is at $t=2.5 . B(2.5)=29.5$.
ANSWER: 29.5
(b) (5 points) ANSWER: $\frac{B(t+h)-B(t)}{h}=8 t+4 h-1$
3. HINT: Find the equation of the line through the points $(0,60)$ and $(20,0): y=60-3 x$.

ANSWER: vertices: $(7,6),(18,6),(7,39)$; maximum value of $P(x, y)=618$
4. ANSWER: $(q, p)=(76,36)$
5. HINT: Let x be the number of Sparkle Bars sold and y be the number of Charkle Bars sold. Solve the system: $x+y=500$ and $3.75 x+4.25 y=1969$.
ANSWER: 312 Sparkle Bars and 188 Charkle Bars

