1. (15 points) The following is the graph of total cost (in thousands of dollars) for selling q thousand things.

(a) What is the value of fixed cost?

ANSWER: $F C=$ \qquad thousand dollars
(b) What is the value of variable cost at $q=47$ thousand things?

$(165,175)$

ANSWER: $V C(47)=\sim 170$ thousand dollars
(c) At what quantity is average cost $(A C) 13$ dollars per Thing?
[8.5, 10]
ANSWER: $q=\sim \mathbf{9 . 8}$
thousand Things
(d) Things sell for $\$ 9$ each. Sketch the graph of $T R$ on the axes above and answer the following.
i. What is the smallest quantity at which we're not forced to take a loss?

$$
(14,16)
$$

ANSWER: $q=\sim 15.5$ thousand Things
ii. What quantity maximizes profit?

2. (15 points) The graphs below are marginal cost $(M C)$, average cost $(A C)$, and marginal revenue ($M R$) for producing and selling Meekos.

quantity (in hundreds of Meekos)
(a) What is the largest value of marginal revenue?
acceptable range
$[54,56)$
ANSWER: 5 dollars per Meek
(b) What is the change in total cost if quantity increases from 400 to 401 Meekos?

$$
M C(4) \approx 2.5 \$ / \text { Meek o }
$$

ANSWER: ~2.5 dollars
(c) What is the total cost to produce 6 hundred Meekos?

$$
\begin{aligned}
& \operatorname{Ac}(6) \approx 23 \\
& T C(6) \approx 23 \times 6
\end{aligned}
$$

answer: 138
(d) Which can you read from this graph: the breakeven price or the shutdown price? What is its value?

(e) What quantity maximizes profit?
-leach
3. (20 points) You sell Things. The formula for total cost is

$$
T C(q)=0.1 q^{3}-5 q^{2}+90 q+24
$$

where q is in hundreds of Things and $T C$ is in hundreds of dollars.
(a) Compute the average cost to produce 2 hundred Things. Include units with your answer.

ANSWER: \qquad 92.4 UNITS: \qquad \$/Thing
(b) Give formulas for variable cost and average variable cost for selling q hundred Things.

$$
\begin{aligned}
& \text { ANSWER: } V C(q)=0 \cdot 1 q^{3}-5 q^{2}+90 q \\
& A V C(q)=\frac{0.1 q^{2}-5 q+90}{\text { is } 35 \text { dollars per Thing. (Round your final answers to }}
\end{aligned}
$$

(c) Find all values of q at which average variable cost is 35 dollars per Thing. (Round your final answers to two digits after the decimal.)

$$
\begin{gathered}
0.1 q^{2}-5 q+90=35 \\
0.1 q^{2}-5 q+55=0
\end{gathered}
$$

$$
\begin{aligned}
q & =\frac{5 \pm \sqrt{25-4(0.1)(55)}}{0.2} \\
& =\frac{5 \pm \sqrt{3}}{0.2}=16.34,33.66
\end{aligned}
$$

(d) Compute the shutdown price. (Round to the nearest cent.)

$$
\begin{aligned}
& q=\frac{5}{0.2}=25 \\
& \operatorname{AvC}(25)=27.5
\end{aligned}
$$

ANSWER: 27.50 dollars per Thing
(e) The graph of total revenue is a straight line and profit is 0 when $q=20$ hundred Things. Find the formula

$$
\begin{aligned}
& T R(20)=T C(20)=624 \quad m=\frac{624-0}{20-0}=31.2 \\
& (0,0)(20,624)
\end{aligned}
$$

\qquad

Problem 4 Version 1
4. (15 points) Consider the two functions,

$$
f(x)=5 x-x^{2} \quad \text { and } \quad g(x)=3 x^{2}-4 x+5
$$

Round all your final answers to two digits after the decimal.
3 pts
(a) Find the slope of the diagonal line to $g(x)$ at $x=2$.

$$
\frac{g(2)}{2}=\frac{\frac{3(2)^{2}-4(2)+5}{2}}{+1}=\frac{\frac{12-8+5}{2}}{\frac{9}{+1}}=\frac{9}{2}
$$

ANSWER: \qquad
(b) Find and completely simplify $\frac{f(1+h)-f(1)}{h}$.

$$
\left.\frac{\left[5(1+h)-(1+h)^{2}\right]-\left[5(1)-(1)^{2}\right]}{h}\right]
$$

SIGNIFICANT UNDERSTANDING

$$
\text { ERRORS HERE } \Rightarrow-4
$$

$$
=\underbrace{\frac{5+5 h-x-2 h-h^{2}-4}{h}}=\frac{3 h-h^{2}}{h}
$$

SMALL MI COPY Ensor - 1

MAJ On EXPANSLION OR SIPAPLIFIING

$$
\text { E1ZROn - } 2
$$

ANSWER: $\frac{f(1+h)-f(1)}{h}=3-h$

(c) Find largest value of x at which the graphs of $f(x)$ and $g(x)$ intersect.

$$
5 x-x^{2}=3 x^{2}-4 x+5
$$

(d) Find the longest interval of values of x over which $f(x)$ and $g(x)$ are both increasing.

$$
\left.\begin{array}{rl}
f(x) \rightarrow \quad & x=-\frac{5}{2(-1)}=2.5 \\
& \text { increasing before } 2.5
\end{array}\right]+1
$$

$$
\left.g(x) \Rightarrow \quad x=\frac{-(-4)}{2(3)}=\frac{4}{6}=0 . \overline{6}\right]+1
$$

increasing after 0.67

$$
\text { corcluSlur } \quad\left[\text { ANSWER: from } x-\frac{0.67}{} \text { to } x-\frac{2.5}{}\right.
$$

5. (20 points) For all your work below, round your final answer to two digs after the decimal

(a) Grover invests 83,000 in a bank account that pays simple interest. After 5 years, the account has earned $\$ 1,215$ in total interest. What is the annual interest rate on the account?

$$
\begin{aligned}
B & =P(1+r t) \leftarrow t \left\lvert\, r=\frac{0.405}{5}\right. \\
4215 & =3000(1+r .5)]+2=0.081 \\
1.405 & =1+5 r \\
0.405 & =5 r
\end{aligned}
$$

ANSWER: \qquad \%
(b) Abby found an investment that will pay her 5% ammual interest, compounded quarterly. How much must Abby invest in the account now so that she will have $\$ 10,000$ in five years?

$$
\begin{aligned}
t 1[B & =P(1.0125)^{4 t} \quad \frac{n}{m}=\frac{0.05}{4}=0.0125 \\
+2[10000 & =P(1.0125)^{20} \\
+2 \square P & =\frac{10000}{(1.0125)^{20}} \approx 7800.085
\end{aligned}
$$

ANSWER: \qquad dollars $5 p+s$
(c) Elmo deposits $\$ 600$ into an account that pays 4% annually, compounded continuously. How long will it take for the account balance to triple?

$$
\left.\begin{array}{rl}
+1[B & =600 e^{0.04 t} \\
+2\left[\begin{array}{rl}
1800 & =600 e^{0.04 t} \\
3 & =e^{0.04 t} \\
\ln (3) & =0.04 t
\end{array} \quad \therefore t=\frac{\ln (3)}{0.04}=27.465307\right]
\end{array} \quad\right]
$$

ANSWER: \qquad 274 years
(d) Oscar buys a home for $\$ 320,000$. Six years later, he sells the home for $\$ 400,000$. What interest rate, compounded annually, did this investment represent for Oscar?

$$
\begin{aligned}
& t!\left[B=P(1+r)^{t}\right. \\
&+2[400000=320000(1+r)^{6},
\end{aligned} \quad \begin{aligned}
& 1.03789082=1+r \\
& r=0.03789
\end{aligned}
$$

\qquad \%

Problem 6 Version 1
6. (15 points)

(a) Ernie makes regular payments of $\$ 500$ at the beginning of every six-month period into an account that earns 4% annually, compounded semi-annually. After how many semi-annual payments will the balance in the account first exceed $\$ 6,000$? (Round your final answer UP to the nearest whole number of payments).

$$
\begin{aligned}
& \left.t\right|_{F}=R \frac{(1+i)^{n}-1}{i}(1+i) \\
& i=\frac{0.04}{2}=0.02 \\
& t \backslash^{6000}=500 \frac{(1.02)^{n}-1}{0.02}(1.02) \\
& \Rightarrow 0.23529412=(1.02)^{n}-1 \\
& 1.23529412=(1.02)^{n}
\end{aligned}
$$

ANSWER: \qquad payments

(b) Samantha buys a car with the help of a loan. The car costs $\$ 35,000$ and she makes a down payment of $\$ 5,000$. Her loan earns a 9% interest rate, compounded monthly. She will make her first payment at the end of this month and each month afterward for the next 10 years to pay off the entire loan. How big is each payment?

$$
\begin{gathered}
+1 P=R \frac{1-(1.0075)^{n}}{0.0075} \quad i=\frac{0.09}{12}=0.0075 \\
+230,000=12.78 .941692669 \\
+2=12.10=120 \\
+2=380.02732
\end{gathered}
$$

ANSWER: \qquad 380.03 mane
(c) Bert has $\$ 20,000$ saved in an account that earns 6% annually, compounded quarterly. He starts making payments of $\$ 1000$ at the end of each quarter into the same type of account. How much money will he have saved up in total in both accounts after 5 years? AND how much total interest did Bert earn in both accounts? (Round your final answers to the nearest cent.)

$$
\begin{aligned}
& \left.\left.+1 B=20000(1.015)^{20}=26937.10\right]^{20} \quad \begin{array}{l}
\text { t }
\end{array}\right] \\
& \text { t1F }=1000 \frac{(1.015)^{20}-1}{0.015}=23,123.67 \\
& \text { ConTnl BVTINJ }=20,000+1000 \cdot 20=40,000
\end{aligned}
$$

