Name: \qquad

Section: \qquad
Student ID Number: \qquad

1	13	
2	11	
3	14	
4	11	
5	12	
6	14	
7	14	
8	11	
Total	100	

- After this cover page, there are 8 problems spanning 8 pages. Please make sure your exam contains all of this material.
- You are allowed to use a Ti-30x IIS Calculator model ONLY (no other calculators allowed). And you are allowed one hand-written 8.5 by 11 inch page of notes (front and back).
- You must show your work on all problems. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check, or calculator, method when an algebraic method is available, you may not receive full credit.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There are multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the academic misconduct board. Sit far away from your study partners and keep your eyes down, don't risk a zero on this exam!
- You have 2 hours and 50 minutes to complete the exam.

1. (13 pts) Box your final answer to each of the following.
(a) Let $g(t)=\sqrt{3+\ln \left(5 t-t^{4}\right)}$, find $g^{\prime}(t)$.
(b) Find $\int \frac{5 t}{3}-\frac{7}{8 t}+\frac{6}{e^{5 t}} d t$.
(c) Evaluate $\int_{1}^{25} \frac{4}{\sqrt{x}} d x$.
(d) Let $z=3 x^{5} e^{2 x}+y \ln (x)+\frac{4}{y^{3}}$, find BOTH the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
2. (11 pts) Let $f(x)=5 x-3 x^{2}+1$.
(a) Write out, expand and completely simplify the formula, in terms of h, for

$$
\frac{f(x+h)-f(x)}{h} .
$$

ANSWER: $\frac{f(x+h)-f(x)}{h}=$ \qquad
(b) Find the slope of the secant line to $f(x)$ from $x=3$ to $x=3.5$.

ANSWER: \qquad
(c) Find the slope of the tangent line to $f(x)$ at $x=3$.
3. (14 pts)
(a) Let $g(x)=2 x^{2}-8 x+12$ and $h(x)=\frac{4}{3} x^{3}-400 x+2$.

Find the longest interval on which $g(x)$ is increasing AND $h(x)$ is decreasing.

ANSWER: $x=$ \qquad to $x=$ \qquad
(b) Consider $f(x)=\frac{2 x}{x^{2}+5}$ (shown below).
i. Find $f^{\prime}(x)$. (Hint: Quotient rule, check your work!).

ii. Find the following:
A. The height of the graph at $x=1$ is equal to \qquad
B. The slope of the graph at $x=1$ is equal to \qquad
C. The equation for the tangent line at $x=1$ is $y=$ \qquad (This tangent line is show in the picture).
iii. You can see in the graph that there are two points (marked with black dots) where $f(x)$ has a horizontal tangent. Find the x-coordinates of both these points. (You can leave in exact form or give a decimal approximations).
4. (11 pts) The two parts below are not related.
(a) The function $h(x)=8 \ln (x)-2 x+5$ has one critical number. Find the critical number of $h(x)$ and indiciate if it gives a local maximum, local minimum, or horizontal point of inflection. Show all your work and reasoning (some justification is required).

$$
x=
$$

CIRCLE ONE: LOCAL MIN or LOCAL MAX or HORIZ. PT. OF INF.
(b) Find the area of the region bounded by $y=\sqrt{x}$ and $y=\frac{1}{2} x$ and to the right of $x=1$ (the region is shaded below). Note: You will need to first find their intersection. (You may give your answer as a decimal to three digits after the decimal).

\qquad
5. (12 pts) Consider the graph of $y=f(x)$ below.

As precisely as possible, estimate your answer to the following questions using the graph.
For all parts, assume $A(m)=\int_{0}^{m} f(x) d x$.
(a) For each part below, circle the correct answer.
i. The value of $A(1.5)$ is:
ii. The value of $f(1.5)$ is:
iii. The value of $f^{\prime}(1.5)$ is:
iv. The value of $f^{\prime \prime}(1.5)$ is:

POSITIVE
POSITIVE
POSITIVE
POSITIVE

NEGATIVE	ZERO.
NEGATIVE	ZERO.
NEGATIVE	ZERO.
NEGATIVE	ZERO.

(b) Find the value(s) of x at which $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)$ is negative. ANSWER: $x=$
(c) Find the value(s) of x at which $A(x)$ has a local maximum.

ANSWER: $x=$ \qquad
(d) As accurately as possible, estimate the values of the following from the graph:
i. $A(1)=$
ii. $A^{\prime}(1)=$
6. (14 pts) For your business you are given the selling price per item and the average cost per item as follows

$$
\begin{array}{lll}
\text { SELLING PRICE : } & p=66-x & \text { dollar/item } \\
\text { AVERAGE COST : } & A C(x)=\frac{20}{x}+81-9 x+\frac{1}{3} x^{2} & \text { dollars/item }
\end{array}
$$

where x is in hundreds of items. Keep enough digits to be accurate to the nearest item.
(a) Find the functions for total revenue, total cost, marginal revenue and marginal cost.

$$
\begin{array}{ll}
T R(x)= & M R(x)= \\
T C(x)=\square & M C(x)= \\
\hline
\end{array}
$$

(b) Find the quantity x at which the second derivative $A C^{\prime \prime}(x)$ is equal to $\frac{5}{3}$. AND tell me if $A C(x)$ is concave up or concave down at this quantity.

$$
x=
$$

\qquad hundred items

CIRCLE ONE: CONCAVE UP or CONCAVE DOWN or NEITHER
(c) Find the selling price that corresponds to when profit is maximized (Hint: First find the quantity that maximized profit).
\qquad dollars/item
7. (14 pts) Let $z=f(x, y)=-x^{2}+6 x-3 y^{2}+2 y+2 x y+12$.
(a) Write out the formulas for $f_{x}(x, y)$ and $f_{y}(x, y)$.

$$
f_{x}(x, y)=
$$

\qquad
(b) Find all critical points of $f(x, y)$.

ANSWERS: $(x, y)=$ \qquad
(c) Use a partial derivative to approximate the value of $\frac{f(7.0001,2)-f(7,2)}{0.0001}$. (i.e. plug an appropriate point in the appropriate partial derivative like you did on the same problem in homework).

ANSWER:

\qquad
(d) Find the global minimum and maximum values of the one variable function $z=f(2, y)$ on the interval $y=0$ to $y=3$.

ANSWER: Global Min Value: $z=$ \qquad

Global Max Value: $z=$
8. (11 pts) A company manufactures two products, A and B. If x is the number of thousands of units of A and y is the number of thousands of units of B, then the total cost and total revenue in thousands of dollars are:

$$
\begin{aligned}
& C(x, y)=10 x+5 y+x^{2}+y^{2}+x y \\
& R(x, y)=80 x+70 y
\end{aligned}
$$

The profit function has one critical point and the maximum profit occurs at this point. Find the maximum profit.
\qquad thousand dollars which occurs when
$x=$ \qquad thousand units of A and $y=$ \qquad thousand units of B

