Exam 2
Feb. 28, 2019
Name: \qquad

Section: \qquad
Student ID Number: \qquad

PAGE 1	12	
PAGE 2	12	
PAGE 3	12	
PAGE 4	14	
PAGE 5	10	
Total	60	

- There are 5 pages of questions. Make sure your exam contains all these questions.
- You are allowed to use a Ti-30x IIS Calculator model ONLY (no other calculators allowed). And you are allowed one hand-written 8.5 by 11 inch page of notes (front and back).
- Leave your answer in exact form. Simplify standard trig, inverse trig, natural logarithm, and root values. Here are several examples: you should write $\sqrt{4}=2$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$ and $\frac{7}{2}-\frac{3}{5}=\frac{29}{10}$ and $\ln (1)=0$ and $\tan ^{-1}(1)=\frac{\pi}{4}$. Also an answer containing an inverse trig inside of a trig function (such as $\cos \left(\sin ^{-1}(x)\right)$ or $\left.\sin \left(2 \cos ^{-1}(x)\right)\right)$) is not acceptable, instead simplify using the triangle method from class.
- Show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded.
- If you need more room, use backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There may be multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the student misconduct board.
- You have 80 minutes to complete the exam. Budget your time wisely.

SPEND NO MORE THAN 10 MINUTES PER PAGE!

1. (12 pts) Evaluate
(a) $\int \frac{1}{\sqrt{x^{2}-6 x+13}} d x$
(b) $\int \frac{x^{2}-3 x+8}{x^{2}(x-2)} d x$
2. (12 pts) Evaluate
(a) $\int_{1}^{8} \frac{\ln (x)}{\sqrt[3]{x}} d x$
(b) $\int \frac{\tan ^{3}(x)}{\cos ^{4}(x)} d x$
3. (12 pts) Evaluate
(a) $\int \cos (\sqrt{x}) d x$
(b) $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$
4. (12 pts) Answer the following questions:
(a) Find the average value of $f(x)=\frac{\sin (x) e^{\cos (x)}}{\left(e^{\cos (x)}+1\right)^{2}}$ on the interval $x=0$ to $x=\pi / 2$.
(b) Evaluate the improper integral: $\int_{1}^{2} \frac{x}{\sqrt[4]{x-1}} d x$.
(You must show your work evaluating a limit. If it converges give the value. If it diverges, then say so.).
5. (10 pts) Consider the region R in the first quadrant of the $x y$-plane bounded by $y=\sin ^{-1}(x)$ and the y-axis (the region is shaded in the picture below). A water tank is formed by rotating this region about the y-axis. The tank starts full of water.
All lengths are in meters. Recall the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Set up (DO NOT EVALUATE) an integral for the work required to pump all the water to the top of the tank.

(b) Use Simpson's rule with $n=4$ to approximate your integral from part (a). Show some work in your calculations and give a final answer rounded the nearest Joule.
