5.1: Steps for Reimann Approximation

Given a function, y = f(x), we approximate the area 'under' the graph from x = a to x = b as follows:

1. Pick some positive integer
$$n$$
.
 $n =$ 'number of approximating rectangles'.
Compute $\Delta x = \frac{b-a}{n} =$ 'the width'.
Label the tick-marks:
 $x_0 = a, x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_n = b.$
Note the pattern: $\overline{x_i = a + i\Delta x}$.

2. Choose the point x_i^* to determine the height of each rectangle. Right-endpoint method: $x_i^* = x_i$. Left-endpoint method: $x_i^* = x_{i-1}$. Midpoint method: $x_i^* = \bar{x}_i = \frac{x_i + x_{i-1}}{2}$. In all cases, we compute the area of each rectangle by: 'Area of one rectangle' = $f(x_i^*)\Delta x$ 3. Add up all the areas (i = 1 to i = n, where i rep-resents the i th rectangle).

n

In general, this looks like
$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$
.
Here is what it looks like with each method:
 $R_n = \sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + \dots + f(x_n) \Delta x.$
 $L_n = \sum_{i=1}^{n} f(x_{i-1}) \Delta x = f(x_0) \Delta x + \dots + f(x_{n-1}) \Delta x$
 $M_n = \sum_{i=1}^{n} f(\bar{x}_i) \Delta x = f(\bar{x}_1) \Delta x + \dots + f(\bar{x}_n) \Delta x.$

4. We then define the exact 'area' of the region to be the limit as $n \to \infty$ (if the area is defined, it doesn't matter which method you are using, they all approach the same value).

'Exact Area Definition' =
$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$$