5.1: Steps for Reimann Approximation

Given a function, $y=f(x)$, we approximate the area 'under' the graph from $x=a$ to $x=b$ as follows:

1. Pick some positive integer n.
$n=$ 'number of approximating rectangles'.
Compute $\Delta x=\frac{b-a}{n}=$ 'the width'.
Label the tick-marks:
$x_{0}=a, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x, \ldots, x_{n}=b$.
Note the pattern: $x_{i}=a+i \Delta x$.
2. Choose the point x_{i}^{*} to determine the height of each rectangle.
Right-endpoint method: $x_{i}^{*}=x_{i}$.
Left-endpoint method: $x_{i}^{*}=x_{i-1}$.
Midpoint method: $x_{i}^{*}=\bar{x}_{i}=\frac{x_{i}+x_{i-1}}{2}$.
In all cases, we compute the area of each rectangle by: 'Area of one rectangle' $=f\left(x_{i}^{*}\right) \Delta x$
3. Add up all the areas $(i=1$ to $i=n$, where i represents the i 'th rectangle).
In general, this looks like $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$.
Here is what it looks like with each method:

$$
\begin{aligned}
& R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x . \\
& L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x=f\left(x_{0}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x . \\
& M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x=f\left(\bar{x}_{1}\right) \Delta x+\cdots+f\left(\bar{x}_{n}\right) \Delta x .
\end{aligned}
$$

4. We then define the exact 'area' of the region to be the limit as $n \rightarrow \infty$ (if the area is defined, it doesn't matter which method you are using, they all approach the same value).
'Exact Area Definition' $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
