CHAPTER 7: TRIG INTEGRALS

1. SINES AND COSINES

- (a) If $\sin(x)$ or $\cos(x)$ is to an odd power.
 - i. Factor out a term from the odd power.
 - ii. Use the identity $\sin^2(x) + \cos^2(x) = 1$.
 - iii. Do a substitution $(u = \sin(x) \text{ or } u = \cos(x) \text{ as appropriate}).$
- (b) If sin(x) and cos(x) both have even powers.
 - i. Simplify with half-angle identities

2. TANGENTS AND SECANTS

- (a) If $\sec(x)$ has an even power.
 - i. Factor out $\sec^2(x)$.
 - ii. Use the identity $\sec^2(x) = \tan^2(x) + 1$.
 - iii. Do a substitution $(u = \tan(x))$.
- (b) If tan(x) has an odd power.
 - i. Factor out $\sec(x)\tan(x)$.
 - ii. Use the identity $\tan^2(x) = \sec^2(x) 1$.
 - iii. Do a substitution $(u = \sec(x))$.

3. NOTES

- (a) For $\cot(x)/\csc(x)$ the cases would nearly identical to $\tan(x)/\sec(x)$.
- (b) If you are given an integral that contains $\sin(x)/\cos(x)$ along with $\sec(x)/\tan(x)$, it is typically best to first change everything into $\sin(x)/\cos(x)$ (or change everything into $\sec(x)/\tan(x)$).
- (c) Remember that we have added the following to our table of known integrals:

$$\int \tan(x) \, dx = \ln|\sec(x)| + C \text{ (in 5.5)}$$

$$\int \sec(x) \, dx = \ln|\sec(x) + \tan(x)| + C \text{ (in 7.2)}$$

$$\int \sec^3(x) \, dx = \frac{1}{2} (\sec(x) \tan(x) + \ln|\sec(x) + \tan(x)|) + C \text{ (in 7.2)}$$