CHAPTER 7: TRIG INTEGRALS

1. SINES AND COSINES
(a) If $\sin (x)$ or $\cos (x)$ is to an odd power.
i. Factor out a term from the odd power.
ii. Use the identity $\sin ^{2}(x)+\cos ^{2}(x)=1$.
iii. Do a substitution ($u=\sin (x)$ or $u=\cos (x)$ as appropriate $)$.
(b) If $\sin (x)$ and $\cos (x)$ both have even powers.
i. Simplify with half-angle identities

2. TANGENTS AND SECANTS

(a) If $\sec (x)$ has an even power.
i. Factor out $\sec ^{2}(x)$.
ii. Use the identity $\sec ^{2}(x)=\tan ^{2}(x)+1$.
iii. Do a substitution $(u=\tan (x))$.
(b) If $\tan (x)$ has an odd power.
i. Factor out $\sec (x) \tan (x)$.
ii. Use the identity $\tan ^{2}(x)=\sec ^{2}(x)-1$.
iii. Do a substitution $(u=\sec (x))$.

3. NOTES

(a) For $\cot (x) / \csc (x)$ the cases would nearly identical to $\tan (x) / \sec (x)$.
(b) If you are given an integral that contains $\sin (x) / \cos (x)$ along with $\sec (x) / \tan (x)$, it is typically best to first change everything into $\sin (x) / \cos (x)$ (or change everything into $\sec (x) / \tan (x)$).
(c) Remember that we have added the following to our table of known integrals:
$\int \tan (x) d x=\ln |\sec (x)|+C$ (in 5.5)
$\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C$ (in 7.2)
$\int \sec ^{3}(x) d x=\frac{1}{2}(\sec (x) \tan (x)+\ln |\sec (x)+\tan (x)|)+C$ (in 7.2)

