Fundamental Theorem of Algebra

Here we will use induction in the proof of the fundamental theorem of algebra to illustrate how induction is sometimes used in larger problems.

Definitions: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial if it can be written in the form

$$
f(x)=\sum_{i=0}^{d} c_{i} x^{i}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{d} x^{d}
$$

where $c_{i} \in \mathbb{R}$ for $i=0,1,2, \ldots, d$ are called the coefficients. If d is the exponent of the largest term that has a nonzero coefficients, we say the polynomial has degree d. A zero, or root, of the polynomial f is a number, a, such that $f(a)=0$.

Examples:

- $f(x)=5$ is a polynomial of degree 0 and it has zero real roots. (Note that the constant polynomial $f(x)=0$ has degree undefined, not degree zero).
- $f(x)=x-2$ is a polynomial of degree 1 and it has one real root $a=2$.
- $f(x)=x^{2}-6 x+9=(x-3)^{2}$ is a polynomial of degree 2 and it has one real root, $a=3$.
- $f(x)=x^{3}-x=x\left(x^{2}-1\right)$ is a polynomial of degree 3 and it has three real roots, $a=0,-1,+1$.

Theorem: (The Fundamental Theorem of Algebra)
 A polynomial of degree d has at most d real roots.

The proof below is based on two lemmas that are proved on the next page.
Proof: We use induction on d.

BASE STEP: If $d=0$, then $f(x)=c_{0}$ for some nonzero constant c_{0}. Thus, $f(x)$ is never zero, so it has zero roots. Hence, in the $d=0$ case the number of roots does not exceed d.

INDUCTIVE STEP: Assume every polynomial of degree k has at most k roots for some integer $k \geq 0$.
Let $f(x)$ be a polynomial of degree $k+1$. We will show that $f(x)$ has at most $k+1$ roots.
If $f(x)$ has no roots, then we are done, $0 \leq k+1$.
If $f(x)$ has at least one root a, then, by Lemma 2, we can write $f(x)=(x-a) h(x)$ for some polynomial $h(x)$ with degree k. By the inductive hypothesis, $h(x)$ has at most k roots.
Since $x-a$ has one root and $h(x)$ has at most k roots, $f(x)=(x-a) h(x)$ has at most $k+1$ roots.
Thus, in any case, $f(x)$ has at most $k+1$ roots.
Hence, every polynomial of degree d has at most d roots.

Lemma 1: $\forall x, y \in \mathbb{R}$ and $\forall n \in \mathbb{N}$,

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+x^{n-3} y^{2}+\cdots+x y^{n-2}+y^{n-1}\right) .
$$

Proof: We expand the right hand side using the distributive axiom to get

$$
\begin{aligned}
(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)= & x\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right) \\
& -y\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right) \\
= & x^{n}+x^{n-1} y+x^{n-2} y^{2}+\cdots+x^{2} y^{n-2}+x y^{n-1} \\
& -x^{n-1} y-x^{n-2} y^{2}-\cdots-x^{2} y^{n-2}-x y^{n-1}-y^{n} .
\end{aligned}
$$

Canceling all the middle terms, leaves only $x^{n}-y^{n}$. Thus, factoring in this way is always possible.
Examples:
$x^{2}-y^{2}=(x-y)(x+y), x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right), x^{4}-y^{4}=(x-y)\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)$, etc.

Lemma 2: Suppose $f(x)$ is a polynomial of degree $d>1$.
The number a is a zero of $f(x)$ if and only if $f(x)=(x-a) h(x)$ for some polynomial $h(x)$ of degree $d-1$.
Proof: We must prove both direction.
We prove the converse direction first. Assume $f(x)=(x-a) h(x)$ for some polynomial $h(x)$ of degree $d-1$. By substitution, $f(a)=(a-a) h(a)=0 \cdot h(a)=0$. Thus, $f(a)=0$, so a is a zero of $f(x)$.

Now we prove for forward direction. Assume a is a real root of $f(x)$. Since $f(x)$ is of degree d, by definition, $f(x)=\sum_{i=0}^{d} c_{i} x^{i}$, with real number coefficients such that $c_{d} \neq 0$. Since a is a root of $f(x)$, $f(a)=0$ and by substitution $\sum_{i=0}^{d} c_{i} a^{i}=0$. By subtracting this expression (which is just subtracting zero), we can rewrite $f(x)$ as

$$
f(x)=f(x)-0=f(x)-f(a)=\sum_{i=0}^{d} c_{i} x^{i}-\sum_{i=0}^{d} c_{i} a^{i}=\sum_{i=0}^{d} c_{i}\left(x^{i}-a^{i}\right)
$$

The term corresponding to $i=0$ cancels because $c_{0}\left(x^{0}-a^{0}\right)=c_{0}(1-1)=0$, so we have $f(x)=$ $\sum_{i=1}^{d} c_{i}\left(x^{i}-a^{i}\right)$. By Lemma 1, for each $i>0, x^{i}-a^{i}=(x-a)\left(x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}\right)$. By defining $h_{i}(x)=x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}$, we now have $x^{i}-a^{i}=(x-a) h_{i}(x)$ where $h_{i}(x)$ is a polynomial of degree $i-1$. Hence, we can rewrite $f(x)$ as

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{d} c_{i}\left(x^{i}-a^{i}\right) \\
& =\sum_{i=1}^{d} c_{i}(x-a) h_{i}(x) \\
& =(x-a) \sum_{i=1}^{d} c_{i} h_{i}(x) \\
& =(x-a) h(x)
\end{aligned}
$$

Note that $h(x)=\sum_{i=1}^{d} c_{i} h_{i}(x)=\sum_{i=1}^{d} c_{i}\left(x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}\right)$, so $h(x)$ is a polynomial. And the term x^{d-1} occurs only once, when $i=d$, and it occurs with coefficient c_{d} which is not zero. Hence, $h(x)$ has degree $d-1$.

Lemma 2 theorem effectively shows that we can always "factor out" the expression $(x-a)$ from a polynomial when a is a root.

