Math 300 Chapter 5 Review

PERMUTATIONS

$$n! = n(n-1) \cdots 2 \cdot 1 = \prod_{i=1}^{n} i$$

= the number of ways to arrange (in some order) all the elements of $\{1, 2, ..., n\}$ without repeats

= the number of permutations of a set of size n.

Example: The number of ways to permute the set $\{1, 2, 3\}$ is $3! = 3 \cdot 2 \cdot 1 = 6$. In particular, the 6 permutations are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1).

$$\prod_{i=n-k+1}^{n} i = n(n-1)\cdots(n-k+1)$$
= the number of ways to arrange (in some order) k elements of $\{1, 2, ..., n\}$ without repeats.

Example: The number of ways to arrange 2 elements from the set $\{1, 2, 3, 4\}$ is $4 \cdot 3 = 12$. In particular, the 12 arrangements are (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (2,3), (3,2), (2,4), (4,2), (3,4), and (4,3).

COMBINATIONS

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}$$
= the number of ways to select (in no particular order) k elements of $\{1, 2, \dots, n\}$ without repeats.

Example: The number of ways to select 2 elements from the set $\{1, 2, 3, 4\}$ is $\binom{4}{2} = 6$.

In particular, the 6 selections are $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$.

The last two examples illustrate the fact that:

(number of ways to permute each selection) \times (number of k-selections) = (number of k-arrangements).

That is,
$$k! \binom{n}{k} = n(n-1)\cdots(n-k+1)$$
.

FACTS ABOUT $\binom{n}{k}$

1. The Binomial Theorem: For all $x, y \in \mathbb{R}$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

$$= \binom{n}{0} y^n + \binom{n}{1} x y^{n-1} + \binom{n}{2} x^2 y^{n-2} + \dots + \binom{n}{n-1} x^{n-1} y + \binom{n}{n} x^n.$$

2. Pascal's Formula: For $1 \le k \le n$,

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left(\begin{array}{c} n-1 \\ k \end{array}\right) + \left(\begin{array}{c} n-1 \\ k-1 \end{array}\right).$$

3. Symmetry: For $0 \le k \le n$,

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left(\begin{array}{c} n \\ n-k \end{array}\right).$$