Math 310 Chapter 6 Review

Divisibility/GCD/Primality

- divisibility: For $a, b \in \mathbb{Z}$ and $a \neq 0$, if there exists $k \in \mathbb{Z}$ such that $b=k a$, then we say a divides b (or b is divisible by a. We write $a \mid b$.
- prime: If $n \in \mathbb{N}$ with $n>1$ and the only divisors of n are 1 and n, then we say n is a prime.
- greatest common divisor: If $a, b \in \mathbb{Z}$ and $b \neq 0$, then $\operatorname{gcd}(a, b)=$ 'the largest positive integer that divides both a and b^{\prime}. And we define $\operatorname{gcd}(0,0)=0$.
- relatively prime: If $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$, then we say that a and b are relatively prime.

Basic Proof Tips:

1. When proving facts involving divisibility always write out the definition of $a \mid b$.
2. When proving facts about the $\operatorname{gcd}(a, b)$ it is often useful to consider the set $D(a, b)=\{d \in \mathbb{N}: d \mid a$ and $d \mid b\}$. Note that $\operatorname{gcd}(a, b)=$ the largest element of $D(a, b)$. And if $D(a, b)=D(c, d)$ (i.e. if these sets are equal), then $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)$.
3. The fundamental theorem of arithmetic says that for any $n \in \mathbb{N}$ with $n>1$, you are allowed to write: $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$, where p_{i} are all primes and e_{i} are positive exponents and this can be done in a unique way.
(a) Here are a couple examples: $52=2 \cdot 2 \cdot 13=2^{2} \cdot 13$ and $150=2 \cdot 3 \cdot 5^{2}$.
(b) You can use this in proofs as well. If $n \in \mathbb{N}$ and $n>1$, then in a proof you can write: $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$.
4. (Facts about relative primality) If a and b are relatively prime (that is, $\operatorname{gcd}(a, b)=1$, then
(a) there exist integers x and y such that $a x+b y=1$, and
(b) if $a=\prod_{i=1}^{k} p_{i}^{e_{i}}$ and $b=\prod_{j=1}^{k^{\prime}} q_{j}^{f_{j}}$, then every prime p_{i} is different from every prime q_{j} for each i and j.

Important Results:

1. If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$. (Proof given in lecture.)
2. If $\operatorname{gcd}(a, b)=1$ and $a \mid q b$, then $a \mid q$. (Proof given in lecture.)
3. If $p \mid a b$ and p is a prime, then $p \mid a$ or $p \mid b$. (Proof given in lecture.)
4. (Division Algorithm) If $a, b \in \mathbb{N}$ and $a>b$, then there exists $q, r \in \mathbb{N}$ such that $a=q b+r$ where $0 \leq r<b$.
5. (Euclidean Algorithm) Let $a, b \in \mathbb{N}$ and $a>b$ and define $r_{0}=a, r_{1}=b$ and

$$
r_{i}=q_{i+1} r_{i+1}+r_{i+2}, \quad \text { where } 0 \leq r_{i+2}<r_{i+1}
$$

If $r_{n} \neq 0$ and $r_{n+1}=0$, then $\operatorname{gcd}(a, b)=r_{n}$. (That is, $\operatorname{gcd}(a, b)$ is the last nonzero remainder using the given process).
6. (Linear Diophantine Equations) If $a, b \in \mathbb{Z}$, then there exist solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ to the equation $a x+b y=c$ if and only if $\operatorname{gcd}(a, b) \mid c$. NOTE: We can get one solution to $a x+b y=d$ where $d=\operatorname{gcd}(a, b)$ by back substituting in the Euclidean algorithm.
7. (Fundamental Theorem of Arithmetic) If $n \in \mathbb{N}$ and $n>1$, then n can be expressed as the product of primes in a unique way (up to ordering).

