Math 300 Chapter 7 Review

Congruences

1. Please review the solutions to HW 5a. They should really help you understand what is allowed when working with congruences.
2. Let $n \in \mathbb{N}$. We say that a is congruence to b modulo n if $n \mid(b-a)$. That is, a and b have the same remainder when divided by n. And we write

$$
a \equiv b(\bmod n) .
$$

3. We can add, subtract or multiply congruences. That is, if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

$$
a+c \equiv b+d(\bmod n) \quad \text { and } \quad a c \equiv b d(\bmod n) .
$$

4. The set of all elements congruent to x modulo n is called the congruence class containing x and is denoted \bar{x}. The set of all congruences class modulo n is denoted $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$.
5. Since size of the set \mathbb{Z}_{n} is equal to n and every integer must be in one of the n congruences classes.
6. The additive identity, additive inverse, and multiplicative identity always exist. In particular, if we want to solve $x+a \equiv b(\bmod n)$, then we are guaranteed that the additive inverse of a, called $-a($ or $n-a)$, exists and we are allowed to write $x \equiv b-a(\bmod n)$.
7. The multiplicative inverse is NOT always guaranteed to exist. We proved the following result:

If $\operatorname{gcd}(a, n)=1$, then the multiplicative inverse of \bar{a} exists in \mathbb{Z}_{n}.
That is, if $\operatorname{gcd}(a, n)=1$, then $a x \equiv 1(\bmod n)$ has a solution $x \equiv a^{-1}(\bmod n)$. In addition, we can use this to solve, i.e. if $\operatorname{gcd}(a, n)=1$, then $a x \equiv b(\bmod n)$ has a solution $x \equiv a^{-1} b(\bmod n)$.
8. If p is a prime, then every nonzero element in \mathbb{Z}_{p} has an inverse.
9. If p is a prime and a is any integer, then $a^{p} \equiv a(\bmod p) .($ this is Fermat's Little Theorem, which you proved in HW 6.37). If in addition, $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

