1. (a) (12 pts) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions, where $A, B, C \subseteq \mathbb{R}$. For the definitions below, identify the definition (tell me the name of what is being defined) and give the negation of the statement
i. $\forall x_{1}, x_{2} \in A$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$. NAME OF DEF'N: f decreasing

NEGATION: $\exists x_{1}, x_{2}<A$ sid. $x_{1}<x_{2}$ AND $f\left(x_{1}\right) \leqslant f\left(x_{2}\right)$
ii. $\exists M \in \mathbb{R}$ such that $\forall x \in \mathbb{R},|f(x)| \leq M$. NAME OF DEF'N: f bounded
negation: $\forall m \in \mathbb{R}, \quad \exists \times<\mathbb{R} s, \quad|f(x)| \rho m$
(b) (4 pts) Give a specific counterexample to the statement: Every injective function from \mathbb{R} to \mathbb{R} is not bounded.

$$
f(x)=\arctan (x)
$$

(c) Consider the statement:

For all $n, a, b \in \mathbb{N}$, if $a b \equiv 0(\bmod n)$, then $a \equiv 0(\bmod n)$ or $b \equiv 0(\bmod n)$.
i. (4 pts) Give a specific counterexample to the statement.

$$
\begin{array}{ll}
a=2 & n=6 \\
b=3 &
\end{array}
$$

$2 \cdot 3 \equiv 0(\operatorname{mad} 6)$
$2 \neq 0(\operatorname{mal} \omega)$

$$
3 \neq 0(\operatorname{mid} 6)
$$

ii. (3 pts) Give a condition on n that makes the statement true.

$$
n \text { is a prime }
$$

(d) (8 pts) Use congruence arithmetic to simplify and solve for an integer x such that $0 \leq x<7$ and $6^{411} x+8^{911}+2 \equiv 23^{6}(\bmod 7)$. (You must show your work to get credit).
Replacement $\rightarrow(-1)^{411} x+1^{911}+2 \equiv 2^{6}($ mad 7$)$
Simplify $\rightarrow-x+1+2 \equiv 2^{6}$ (mod 7$)$
$\begin{gathered}\text { Fermat's } \\ \text { Liflitinm }\end{gathered} \rightarrow-x+3=1(\operatorname{mad} 7)$
Simplif $\rightarrow-x=-2(\sim, \lambda 7)$
Cancellation ged $(-1, z)=1 \rightarrow x=2($ rad 7
2. (a) (12 pts) Let A, B, and C be sets.

Using a formal, and properly structure, subset proof with proper reference to definitions, logic and de'Morgan's law, prove $A \cap(B-(A \cap C)) \subseteq B \cap(A-C)$.
Let $x \in A \wedge(B-(A \cap C)$. By de f' \quad, $x \in A$ An $x \in B-(A \cap)$.
So $x \in A$ Ane $x \in B$ and $x \in(A \cap C)^{c}$. Hence, $x \in A \rightarrow \infty x \in B$
AMP $\left(x \in A^{2} \cup C^{c}\right)$, by de Morgans law, Sire $x \in A, x \in A^{2}$ is fave it must be the care that $x \in C^{c}$ to malm $x \in A^{c}$ on $x \in C^{c}$ true. Thus, $x \in A$ an $x \in B$ Ane $x \in C^{C}$.
Since $x \in A$ and $x \in C^{c}$, b, detin,$x \in A-C$.
Hence, $x \in B \quad x \in A-C$, so $x \in B \cap(A-C)$.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

Define $h: A \rightarrow C$ by $h(x)=g(f(x))$ for all $x \in A$.
i. (6 pts) Give a specific counterexample (give me your functions and sets) to the statement: If h is surjective, then f is surjective.

$$
\begin{aligned}
& A=\{1\} \quad B=\{2,3\} \quad C=\{4\} \\
& \begin{array}{ll}
\underbrace{f(1)=2}_{\begin{array}{c}
\text { NOT SUCTIVEV } \\
\text { SURE }
\end{array}} & g(3)=4
\end{array} \quad \underbrace{g(2)=4}_{\text {subjective }} \begin{array}{ll}
h(1)=g(f(1))=g(2)=4
\end{array}
\end{aligned}
$$

ii. (5 pts) Consider the following theorem. Theorem: If h is injective, then f is injective. Now is your chance to be a proof grader. Of the three "proofs" below, only ONE is correct. Which is the correct proof? And why?
('Proof' 1) Assume $h\left(x_{1}\right)=h\left(x_{2}\right)$. By definition of $h, g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since h is injective, $x_{1}=x_{2}$, so $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since we have $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}=x_{2}, f$ is injective.
('Proof' 2) Assume $x_{1}=x_{2}$ for $x_{1}, x_{2} \in A$. Since f and g are well-defined, $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Thus, $h\left(x_{1}\right)=h\left(x_{2}\right)$. Since h is injective, we have $x_{1}=x_{2}$, so f is injective.
('Proof' 3) Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since g is well-defined, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
Thus, $h\left(x_{1}\right)=h\left(x_{2}\right)$. Since h is injective, $x_{1}=x_{2}$. Hence, f is injective.
ANSWER AND EXPLANATION:
Proof 3 is correct to show f is injectim we must stat with $f\left(x_{1}\right)=f\left(x_{2}\right)$ and prove $x_{1}=x_{2}$.
3. (a) (12 pts) By using a precisely worded induction proof, prove $3^{n}>2^{n+1}$ for all integers $n \geq 2$.

BASE STEP For $n=2, \quad 3^{n}=9 \quad$ a.d $\quad 2^{n+1}=2^{3}=8$
and $3^{2}=9>8=2^{2+1}$.
EnosFa0 Assurance $3^{k}>2^{k+1}$ for sore integer $k \geq 2$.
Thus, $\quad 3^{k+1}=3 \cdot 3^{k}>3 \cdot 2^{k+1} \quad$ (mantiolysy ind hyp $-\frac{1}{y} 3$)
Since, $3>2, \quad 3 \cdot 2^{k+1}>2 \cdot 2^{k+1}=2^{n+2}$.
Hence, by transitivity, $3^{k+1}>2^{k+2}$.
By the promeiple of mathematical induction, $3^{n} \geq 2^{n+1}$ $\forall n \in 2, m \geq 2$
(b) $(9 \mathrm{pts}) \forall a, b, c, d \in \mathbb{N}$, prove if $\operatorname{gcd}(a+b, c)=2 d, \operatorname{gcd}(a, b)=28$, and $14 \mid c$, then $7 \mid d$.

Since $14 \mathrm{lc}, \exists k \in z$ sit. $c=14 k$.
Since $\operatorname{gcd}(a, b)=28,281 a$ and $281 b$, so $\exists_{m, n} \in \mathbb{Z}$. sat. $a=28 \mathrm{~m}$ and $b=28 \mathrm{n}$.
By the LDE Theorem, $\exists x, y \in z$ sit- $(a+b) x+c y=2 d$.
By substitution, $(28 m+28 n) x+14 k y=2 d$

$$
\text { Assn, } \begin{aligned}
&(28 m+28 n) x+14 k_{y}=2 d \\
& \Rightarrow 14[(2 m+2 n) x+k y]=2 d \\
& \Rightarrow 7[(2 m+2 n) x+k y]=d .
\end{aligned}
$$

Thus,

$$
71 d
$$

4. (a) Let a, b and c be integers.
i. (6 pts) Using the definition of even and odd, prove if c^{3} is even, then c is even. (Hint: Prove the contrapositive.)
If $c i s o d d$ them $\exists k \in \mathbb{C} \quad c=2 k+1$.
Hence, $\quad c^{3}=(2 k+1)^{3}=8 k^{3}+3 \cdot 4 k^{2}+3 \cdot 2 k+1$

$$
=2\left(4 k^{2}+6 k^{2}+3 k\right)+1
$$

So c^{3} is odd//
ii. (10 pts) Using a proof by contradiction, prove if $(2 a-1)^{2}+(2 b-1)^{2}=c^{3}$, then a is odd or b is odd.
Assume $(2 a-1)^{2}+(2 b-1)^{2}=c^{7}$ ARD ais even and b is even.
Then $\exists k, l \in$ 桨. $5 . t . \quad a=2 k \operatorname{and} b=2 l$, So

$$
\begin{aligned}
& (4 k-1)^{2}+(4 l-1)^{2}=c^{2} \\
& 16 k^{2}-8 k+1+16 l^{2}-8 l+1=c^{3} \\
& 8\left(2 k^{2}-k+2 l^{2}-2\right)+2=c
\end{aligned}
$$

So c^{3} is even $\Rightarrow c$ iseven $\Rightarrow c=2 m$ for son m tace Hence, $\quad\left(2 k^{2}-k+2 k-0\right)+2=8 m^{3} \rightarrow \leftarrow$.
(b) $(9 \mathrm{pts})$ Prove if p is a prime number and $p>4$, then $p^{2}-1 \equiv 0(\bmod 12)$.

Sinus p is a prime and $p>4,2 x p$ and $3 x p$.
Thus, $p=12 q+r$ is not possible with $r=0,3,3,4,6,3,9,10010$ because then p would be divisitety zoo 3 .
Hence, $P \equiv 1,5,7$, or 11 (mad |2). Now we check these case:
(1) If $p E 1(\operatorname{aros} / 2)$, then $p^{2}-1 \equiv 1^{2}-1 \equiv 0$ (rod 12)
(2) If $p \equiv 5(\operatorname{mad} 10)$, the $p^{2}-1=25-1 \equiv 0(n+12)$.
(3) If $p \equiv 7(n 112)$, the $p^{2}-1 \equiv 49-1 \equiv 0(\operatorname{an+12)}$
(4) If $p=1($ mils $)$, then $p^{2}-1=121-1=0$ (midi).

Honer, $p^{2-1}=0$ (rill ${ }^{2}$)

