Exam 2
May 18, 2016
Name: \qquad
Section: \qquad

Student ID Number: \qquad

- There are 5 pages of questions. Make sure your exam contains all these questions.
- You are allowed to use a scientific calculator (no graphing calculators and no calculators that have calculus capabilities) and one hand-written 8.5 by 11 inch page of notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded. Give exact answers wherever possible.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There may be multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the student misconduct board. In such an instance, you will meet in front of a board of professors to explain your actions.
DO NOT CHEAT OR DO ANYTHING THAT LOOKS SUSPICIOUS!
WE WILL REPORT YOU AND YOU MAY BE EXPELLED!
- You have 50 minutes to complete the exam. Budget your time wisely.

SPEND NO MORE THAN 10 MINUTES PER PAGE!

PAGE 1	10	
PAGE 2	10	
PAGE 3	10	
PAGE 4	10	
PAGE 5	10	
Total	50	

1. (10 pts) For both parts below, give the general solution:
(a) $y^{\prime \prime}+2 y^{\prime}+y=3 t^{2}-1$
(b) $y^{\prime \prime}-4 y=5+3 e^{2 t}$.
2. (10 pts) For ALL parts, assume the mass-spring system has a mass of $m=2 \mathrm{~kg}$, a spring constant $k=5 \mathrm{~N} / \mathrm{m}$, and NO external forcing. Thus, $2 u^{\prime \prime}+\gamma u^{\prime}+5 u=0$.
Include UNITS in your final answers.
(a) Assume NO damping and the initial conditions $u(0)=0.5 \mathrm{~m}$ and $u^{\prime}(0)=1 \mathrm{~m} / \mathrm{s}$. Find the solution (find all constants).
(b) Assume there is damping with $\gamma=2 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$. The solution exhibits vibrations (with decreasing amplitude). What is the quasi-period?
(c) Give the smallest value of γ for which the solution will NOT exhibit vibrations.
3. (10 pts) For ALL parts, assume the mass-spring system has a mass of $m=2 \mathrm{~kg}$, a spring constant $k=5 \mathrm{~N} / \mathrm{m}$, and an external forcing of the form $F(t)=F_{0} \cos (\omega t)$ Newtons.
Thus, $2 u^{\prime \prime}+\gamma u^{\prime}+5 u=F_{0} \cos (\omega t)$.
(a) Assume there is NO damping. What particular value of ω will lead to vibrations with increasing and unbounded amplitude?
(b) Assume there is damping with $\gamma=2 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$ and $u(0)=0 \mathrm{~m}$ and $u^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$. Also assume $F(t)=39 \cos (t) \mathrm{N}$. You are told the solution takes the form:

$$
u(t)=c_{1} e^{\lambda t} \cos (\mu t)+c_{2} e^{\lambda t} \sin (\mu t)+9 \cos (\omega t)+6 \sin (\omega t) .
$$

- What are the values of $\lambda, \mu, \omega, c_{1}$, and c_{2} ? (You only have to give units for μ and ω).
- The graph of the full solution (solid) and the steady state solution (dotted) are given below. Find the indicated lengths P and Q. (include units!)

4. (10 pts) Consider the model $u^{\prime \prime}+4 u^{\prime}+3 u=0$ with $u(0)=0.3 \mathrm{~m}, u^{\prime}(0)=-1 \mathrm{~m} / \mathrm{s}$.
(a) What can we say about this system? (Circle one):

Critically Damped OR Overdamped OR Exhibits Vibrations.
(b) Solve for $u(t)$. (find all constants)
(c) Find the one, and only, time the mass will be at the equilibrium position (i.e. when $u(t)=0)$.
5. (10 pts) (The two parts below are not related)
(a) A 3 kg object stretches a spring 10 cm beyond its natural length (and is at rest).

The damping force is 5 N when the upward velocity is $6 \mathrm{~m} / \mathrm{s}$. There is no external forcing. Initially, the mass is pushed upward 5 cm and given an initial downward velocity of $20 \mathrm{~cm} / \mathrm{s}$. Set up the differential equation AND initial conditions for the displacement $u(t)$. Watch the units! (DO NOT SOLVE)
(b) The function $y_{1}(t)=t^{2}$ is one solution to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$. Use reduction of order to find the general solution to $t^{2} y^{\prime \prime}-2 y=t^{6}$ with $t>0$.

