6.2: Solving with the Laplace Transform

Key observation:

Using integration parts (with $u = e^{-st}$ and dv = f'(t)dt) yields: $\int e^{-st} f'(t) dt = f(t)e^{-st} + s \int e^{-st} f(t) dt$. Thus,

$$\mathcal{L}\{f'(t)\} = \int_0^\infty e^{-st} f'(t) dt = -f(0) + s \int_0^\infty e^{-st} f(t) dt = -f(0) + s \mathcal{L}\{f(t)\}\$$

Using the same idea, we can get formula for the higher derivatives. The results are:

- 1. $\mathcal{L}{f'(t)} = s\mathcal{L}{f(t)} f(0)$.
- 2. $\mathcal{L}{f''(t)} = s^2 \mathcal{L}{f(t)} sf(0) f'(0)$.
- 3. $\mathcal{L}{f'''(t)} = s^3 \mathcal{L}{f(t)} s^2 f(0) sf'(0) f''(0)$.
- 4. $\mathcal{L}{f^{(4)}(t)} = s^4 \mathcal{L}{f(t)} s^3 f(0) s^2 f'(0) sf''(0) f'''(0)$.

Using these facts, and the linearity discussed in 6.2, we can now take the Laplace transform of both sides of a differential equation as shown in the following examples:

1. Take the Laplace transform of both sides of y'' + 4y = 0 and simplify.

Solution: Taking the Laplace transform of both sides yields: $\mathcal{L}\{y''\} + 4\mathcal{L}\{y\} = 0$. Using formula the formula from above yields: $s^2\mathcal{L}\{y\} - sy(0) - y'(0) + 4\mathcal{L}\{y\} = 0$. Simplifying gives $(s^2 + 4)\mathcal{L}\{y\} = sy(0) + y'(0)$.

Thus, the Laplace transform of the solution will satisfy: $\mathcal{L}\{y\} = \frac{sy(0) + y'(0)}{s^2 + 4}$.

2. Take the Laplace transform of both sides of y'' + 2y' + y = 4t and simplify.

Solution: Taking the Laplace transform of both sides yields: $\mathcal{L}\{y''\} + 2\mathcal{L}\{y'\} + \mathcal{L}\{y\} = 4\mathcal{L}\{t\}$. Replacing using formulas from above and the formula for $\mathcal{L}\{t\} = \frac{1}{s^2}$ calculated in the previous section, we get $s^2\mathcal{L}\{y\} - sy(0) - y'(0) + 2(s\mathcal{L}\{y\} - y(0)) + \mathcal{L}\{y\} = \frac{4}{s^2}$. Simplifying gives $(s^2 + 2s + 1)\mathcal{L}\{y\} = (s + 2)y(0) + y'(0) + \frac{4}{s^2}$.

Thus the Laplace transform of the solution will satisfy: $\mathcal{L}\{y\} = \frac{(s+2)y(0)+y'(0)}{s^2+2s+1} + \frac{4}{s^2(s^2+2s+1)}$.

Laplace Transform Solving Method

Given a constant coefficient linear differential equation:

- 1. Take the Laplace transform of both sides and solve for $\mathcal{L}\{y\}$. (Like in the examples above).
- 2. Use partial fractions to expand out your expressions.
- 3. Use the inverse Laplace transform table to look up the solution that corresponds to your expanded expressions.