3.1, 3.3, 3.4: Homogeneous Constant Coefficient 2nd Order

Given $a y^{\prime \prime}+b y^{\prime}+c y=0, y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.
Step 1: Write the characteristic equation $a r^{2}+b r+c=0$ and find the roots $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Step 2: Write your answer in the appropriate form:

1. If $b^{2}-4 a c>0$, then there are two real roots r_{1} and r_{2} and the general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

2. If $b^{2}-4 a c=0$, then there is one real root r and the general solution is

$$
y(t)=c_{1} e^{r t}+c_{2} t e^{r t} .
$$

3. If $b^{2}-4 a c<0$, then there are two complex roots $r=\lambda \pm \omega i$ and the general solution is

$$
y(t)=e^{\lambda t}\left(c_{1} \cos (\omega t)+c_{2} \sin (\omega t)\right) .
$$

Step 3: Use initial conditions

1. Find $y^{\prime}(t)$.
2. Plug in $y\left(t_{0}\right)=y_{0}$.
3. Plug in $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.
4. Combine and solve for c_{1} and c_{2}.

Several quick examples (answers on back):

1. Solve $y^{\prime \prime}+2 y^{\prime}+y=0$.
2. Solve $y^{\prime \prime}-10 y^{\prime}+24 y=0$.
3. Solve $y^{\prime \prime}+5 y=0$.
4. Solve $y^{\prime \prime}-3 y^{\prime}=0$.
5. Solve $y^{\prime \prime}+12 y^{\prime}+36 y=0$.
6. Solve $y^{\prime \prime}+y^{\prime}+y=0$.

Several quick examples (answers on back):

1. $r^{2}+2 r+1=(r+1)^{2}=0$: $y(t)=c_{1} e^{-t}+c_{2} t e^{-t}$.
2. $r^{2}-10 r+24=(r-6)(r-4)=0$: $y(t)=c_{1} e^{6 t}+c_{2} e^{4 t}$.
3. $r^{2}+5=0, r= \pm \sqrt{5} i$: $y(t)=c_{1} \cos (\sqrt{5} t)+c_{2} \sin (\sqrt{5} t)$.
4. $r^{2}-3 r=r(r-3)=0$: $y(t)=c_{1}+c_{2} e^{3 t}$
5. $r^{2}+12 r+36=(r+6)^{2}=0$: $y(t)=c_{1} e^{-6 t}+c_{2} t e^{-6 t}$
6. $r^{2}+r+1=0, r=\frac{-1}{2} \pm \frac{\sqrt{3}}{2} i$: $y(t)=e^{-t / 2}\left(c_{1} \cos (\sqrt{3} t / 2)+c_{2} \sin (\sqrt{3} t / 2)\right)$
