Basic Integration Examples for Review

The following pages contain a few standard/routine examples of substitution, by parts, and partial fractions.

Basic Substitution Examples

1.
$$\int x \cos(x^2) \, dx$$

Solution: Let $u = x^2$, so du = 2xdx (and $\frac{1}{2x}du = dx$). The integral becomes $\int \frac{1}{2}\cos(u) \, du = \frac{1}{2}\sin(u) + C = \frac{1}{2}\sin(x^2) + C$.

2. $\int \cos(x) e^{\sin(x)} \, dx.$

Solution: Let $u = \sin(x)$, so $du = \cos(x)dx$ (and $\frac{1}{\cos(x)}du = dx$). The integral becomes $\int e^u du = e^u + C = e^{\sin(x)} + C$.

$$3. \quad \int x^2 \sqrt{x^3 + 2} \, dx.$$

Solution: Let $u = x^3 + 2$, so $du = 3x^2 dx$ (and $\frac{1}{3x^2} du = dx$). The integral becomes $\int \frac{1}{3}\sqrt{u} \, du = \int \frac{1}{3}u^{1/2} \, du = \frac{2}{9}u^{3/2} + C = \frac{2}{9}(x^3 + 2)^{3/2} + C$.

$$4. \quad \int \frac{(\ln(x))^3}{x} \, dx.$$

Solution: Let $u = \ln(x)$, so $du = \frac{1}{x}dx$ (and xdu = dx). The integral becomes $\int u^3 du = \frac{1}{4}u^4 + C = \frac{1}{4}(\ln(x))^4 + C$.

5.
$$\int \frac{x}{x^2 + 1} \, dx.$$

Solution: Let $u = x^2 + 1$, so du = 2xdx (and $\frac{1}{2x}du = dx$). The integral becomes $\int \frac{1}{2} \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln(x^2 + 1) + C$.

Integration by Parts

1. $\int x \cos(2x) \, dx$

Solution: Let u = x and $dv = \cos(2x)dx$. Then du = dx and $v = \frac{1}{2}\sin(2x)$. The by parts formula gives $\frac{1}{2}x\sin(2x) - \int \frac{1}{2}\sin(2x) dx = \frac{1}{2}x\sin(2x) + \frac{1}{4}\cos(2x) + C$.

2.
$$\int x^2 \ln(x) \, dx$$

Solution: Let $u = \ln(x)$ and $dv = x^2 dx$. Then $du = \frac{1}{x} dx$ and $v = \frac{1}{3} x^3$. The by parts formula gives $\frac{1}{3} x^3 \ln(x) - \int \frac{1}{3} x^2 dx = \frac{1}{3} x^3 \ln(x) - \frac{1}{9} x^3 + C$.

3.
$$\int x^2 e^{-x} \, dx$$

Solution: Let $u = x^2$ and $dv = e^{-x}dx$. Then du = 2xdx and $v = -e^{-x}$. The by parts formula gives $-x^2e^{-x} - \int -2xe^{-x}dx = -x^2e^{-x} + \int 2xe^{-x}dx$. Now we do by parts again with u = 2x and $dv = e^{-x}dx$. Then du = 2dx and $v = -e^{-x}$. The by parts formula gives $-x^2e^{-x} - 2xe^{-x} - \int -2e^{-x}dx = -x^2e^{-x} - 2xe^{-x} - 2e^{-x} + C$.

4.
$$\int e^x \sin(x) \, dx$$

Solution: Let $u = e^x$ and $dv = \sin(x)dx$. Then $du = e^x dx$ and $v = -\cos(x)$. The by parts formula gives $-e^x \cos(x) - \int -e^x \cos(x) dx = -e^x \cos(x) + \int e^x \cos(x) dx$. Now we do by parts again with $u = e^x$ and $dv = \cos(x)dx$. Then $du = e^x dx$ and $v = \sin(x)$. The by parts formula gives $-e^x \cos(x) + e^x \sin(x) - \int e^x \sin(x) dx$. Thus, we have shown $\int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x) - \int e^x \sin(x) dx$, from which we can conclude that $2 \int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x) + C_0$. Therefore, $\int e^x \sin(x) dx = -\frac{1}{2}e^x \cos(x) + \frac{1}{2}e^x \sin(x) + C$.

Partial Fractions

$$1. \quad \int \frac{x-2}{(x+1)(x-4)} \, dx$$

Solution: Distinct linear terms decompose into the form $\frac{x-2}{(x+1)(x-4)} = \frac{A}{x+1} + \frac{B}{x-4}$, which can be expanded to get x - 2 = A(x - 4) + B(x + 1) = (A + B)x + (-4A + B). Thus, A + B = 1 and -4A + B = -2 which we can solve to get $A = \frac{3}{5}$ and $B = \frac{2}{5}$.

(You can use the "cover-up" method to do this faster, ask me about this if you haven't seen it). Thus, we get $\int \frac{x-2}{(x+1)(x-4)} dx = \int \frac{3/5}{x+1} + \frac{2/5}{x-4} dx = \frac{3}{5} \ln|x+1| + \frac{2}{5} \ln|x-4| + C.$

2.
$$\int \frac{3}{(x+1)^2(x-2)} dx$$

Solution: We have a distinct and a repeated linear term which decompose into the form $\frac{3}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}$, which can be expanded to get $3 = A(x+1)(x-2) + B(x-2) + C(x+1)^2 = (A+C)x^2 + (-A+B+2C)x + (-2A-2B+C)$. Thus, A+C=0, -A+B+2C=0 and -2A-2B+C=3 which we can solve to get $A=-\frac{1}{3}$, $B=-1, C=\frac{1}{3}$. (Again, there are many short-cuts you can use here, ask me if you don't know them). $\int \frac{3}{(x+1)^2(x-2)^2} dx = \int \frac{-1/3}{x+1} + \frac{-1}{x+1} + \frac{1/3}{x+1} dx = -\frac{1}{2} \ln |x+1| + \frac{1}{x+1} + \frac{1}{2} \ln |x-2| + C$.

$$\int \frac{3}{(x+1)^2(x-2)} dx = \int \frac{-1/3}{x+1} + \frac{-1}{(x+1)^2} + \frac{1/3}{x-2} dx = -\frac{1}{3} \ln|x+1| + \frac{1}{x+1} + \frac{1}{3} \ln|x-2| + C.$$

3.
$$\int \frac{2x+1}{x(x^2+1)} dx$$

Solution: We have a distinct linear and an irreducible quadratic term which decompose into the form $\frac{2x+1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$, which can be expanded to get $2x + 1 = A(x^2 + 1) + (Bx + C)x = (A+B)x^2 + (C)x + (A)$. Thus, A + B = 0, C = 2 and A = 1 which we can solve to get A = 1, B = -1, C = 2. $\int \frac{1}{x} + \frac{-x+2}{x^2+1} dx = \ln|x| - \int \frac{x}{x^2+1} dx + \int \frac{2}{x^2+1} dx = \ln|x| - \frac{1}{2}\ln|x^2+1| + 2\tan^{-1}(x) + C$.