Basic Integration Examples for Review

The following pages contain a few standard/routine examples of substitution, by parts, and partial fractions.

Basic Substitution Examples

1. $\int x \cos \left(x^{2}\right) d x$.

Solution: Let $u=x^{2}$, so $d u=2 x d x\left(\right.$ and $\left.\frac{1}{2 x} d u=d x\right)$.
The integral becomes $\int \frac{1}{2} \cos (u) d u=\frac{1}{2} \sin (u)+C=\frac{1}{2} \sin \left(x^{2}\right)+C$.
2. $\int \cos (x) e^{\sin (x)} d x$.

Solution: Let $u=\sin (x)$, so $d u=\cos (x) d x$ (and $\left.\frac{1}{\cos (x)} d u=d x\right)$.
The integral becomes $\int e^{u} d u=e^{u}+C=e^{\sin (x)}+C$.
3. $\int x^{2} \sqrt{x^{3}+2} d x$.

Solution: Let $u=x^{3}+2$, so $d u=3 x^{2} d x$ (and $\frac{1}{3 x^{2}} d u=d x$).
The integral becomes $\int \frac{1}{3} \sqrt{u} d u=\int \frac{1}{3} u^{1 / 2} d u=\frac{2}{9} u^{3 / 2}+C=\frac{2}{9}\left(x^{3}+2\right)^{3 / 2}+C$.
4. $\int \frac{(\ln (x))^{3}}{x} d x$.

Solution: Let $u=\ln (x)$, so $d u=\frac{1}{x} d x($ and $x d u=d x)$.
The integral becomes $\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4}(\ln (x))^{4}+C$.
5. $\int \frac{x}{x^{2}+1} d x$.

Solution: Let $u=x^{2}+1$, so $d u=2 x d x$ (and $\frac{1}{2 x} d u=d x$).
The integral becomes $\int \frac{1}{2} \frac{1}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(x^{2}+1\right)+C$.

Integration by Parts

1. $\int x \cos (2 x) d x$

Solution: Let $u=x$ and $d v=\cos (2 x) d x$. Then $d u=d x$ and $v=\frac{1}{2} \sin (2 x)$.
The by parts formula gives $\frac{1}{2} x \sin (2 x)-\int \frac{1}{2} \sin (2 x) d x=\frac{1}{2} x \sin (2 x)+\frac{1}{4} \cos (2 x)+C$.
2. $\int x^{2} \ln (x) d x$

Solution: Let $u=\ln (x)$ and $d v=x^{2} d x$. Then $d u=\frac{1}{x} d x$ and $v=\frac{1}{3} x^{3}$.
The by parts formula gives $\frac{1}{3} x^{3} \ln (x)-\int \frac{1}{3} x^{2} d x=\frac{1}{3} x^{3} \ln (x)-\frac{1}{9} x^{3}+C$.
3. $\int x^{2} e^{-x} d x$

Solution: Let $u=x^{2}$ and $d v=e^{-x} d x$. Then $d u=2 x d x$ and $v=-e^{-x}$.
The by parts formula gives $-x^{2} e^{-x}-\int-2 x e^{-x} d x=-x^{2} e^{-x}+\int 2 x e^{-x} d x$.
Now we do by parts again with $u=2 x$ and $d v=e^{-x} d x$. Then $d u=2 d x$ and $v=-e^{-x}$.
The by parts formula gives $-x^{2} e^{-x}-2 x e^{-x}-\int-2 e^{-x} d x=-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}+C$.
4. $\int e^{x} \sin (x) d x$

Solution: Let $u=e^{x}$ and $d v=\sin (x) d x$. Then $d u=e^{x} d x$ and $v=-\cos (x)$.
The by parts formula gives $-e^{x} \cos (x)-\int-e^{x} \cos (x) d x=-e^{x} \cos (x)+\int e^{x} \cos (x) d x$.
Now we do by parts again with $u=e^{x}$ and $d v=\cos (x) d x$. Then $d u=e^{x} d x$ and $v=\sin (x)$.
The by parts formula gives $-e^{x} \cos (x)+e^{x} \sin (x)-\int e^{x} \sin (x) d x$.
Thus, we have shown $\int e^{x} \sin (x) d x=-e^{x} \cos (x)+e^{x} \sin (x)-\int e^{x} \sin (x) d x$, from which we can conclude that $2 \int e^{x} \sin (x) d x=-e^{x} \cos (x)+e^{x} \sin (x)+C_{0}$.
Therefore, $\int e^{x} \sin (x) d x=-\frac{1}{2} e^{x} \cos (x)+\frac{1}{2} e^{x} \sin (x)+C$.

Partial Fractions

1. $\int \frac{x-2}{(x+1)(x-4)} d x$

Solution: Distinct linear terms decompose into the form $\frac{x-2}{(x+1)(x-4)}=\frac{A}{x+1}+\frac{B}{x-4}$, which can be expanded to get $x-2=A(x-4)+B(x+1)=(A+B) x+(-4 A+B)$. Thus, $A+B=1$ and $-4 A+B=-2$ which we can solve to get $A=\frac{3}{5}$ and $B=\frac{2}{5}$.
(You can use the "cover-up" method to do this faster, ask me about this if you haven't seen it).
Thus, we get $\int \frac{x-2}{(x+1)(x-4)} d x=\int \frac{3 / 5}{x+1}+\frac{2 / 5}{x-4} d x=\frac{3}{5} \ln |x+1|+\frac{2}{5} \ln |x-4|+C$.
2. $\int \frac{3}{(x+1)^{2}(x-2)} d x$

Solution: We have a distinct and a repeated linear term which decompose into the form $\frac{3}{(x+1)^{2}(x-2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}$, which can be expanded to get $3=A(x+1)(x-2)+B(x-2)+C(x+1)^{2}=(A+C) x^{2}+(-A+B+2 C) x+(-2 A-2 B+C)$. Thus, $A+C=0,-A+B+2 C=0$ and $-2 A-2 B+C=3$ which we can solve to get $A=-\frac{1}{3}$, $B=-1, C=\frac{1}{3}$. (Again, there are many short-cuts you can use here, ask me if you don't know them).
$\int \frac{3}{(x+1)^{2}(x-2)} d x=\int \frac{-1 / 3}{x+1}+\frac{-1}{(x+1)^{2}}+\frac{1 / 3}{x-2} d x=-\frac{1}{3} \ln |x+1|+\frac{1}{x+1}+\frac{1}{3} \ln |x-2|+C$.
3. $\int \frac{2 x+1}{x\left(x^{2}+1\right)} d x$

Solution: We have a distinct linear and an irreducible quadratic term which decompose into the form $\frac{2 x+1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$, which can be expanded to get $2 x+1=A\left(x^{2}+1\right)+(B x+C) x=$ $(A+B) x^{2}+(C) x+(A)$. Thus, $A+B=0, C=2$ and $A=1$ which we can solve to get $A=1$, $B=-1, C=2$. $\int \frac{1}{x}+\frac{-x+2}{x^{2}+1} d x=\ln |x|-\int \frac{x}{x^{2}+1} d x+\int \frac{2}{x^{2}+1} d x=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+2 \tan ^{-1}(x)+C$.

