Laplace Transform Examples

Here are two examples that are nearly identical to homework $6.2 / 16$ and $6.2 / 18$ (only one number is changed).

1. $6.2 / 16$ (with ' 5 ' replaced by ' 6 '):

Solve $y^{\prime \prime}+2 y^{\prime}+6 y=0$ with $y(0)=2$ and $y^{\prime}(0)=-1$, using the Laplace transform.
(a) Laplace Transform:
$\mathcal{L}\left\{y^{\prime \prime}\right\}+2 \mathcal{L}\left\{y^{\prime}\right\}+6 \mathcal{L}\{y\}=\mathcal{L}\{0\}$.
(b) Use Rules and Solve:

Using the derivative rules gives: $s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+2 s \mathcal{L}\{y\}-2 y(0)+6 \mathcal{L}\{y\}=0$, which becomes: $\left(s^{2}+2 s+6\right) \mathcal{L}\{y\}-s(2)-(-1)-2(2)=0$.
Solving for $\mathcal{L}\{y\}$ gives: $\mathcal{L}\{y\}=\frac{2 s+3}{s^{2}+2 s+6}$.
(c) Partial Fractions:

Since $s^{2}+2 s+6$ does not factor, we will write it as an irreducible quadratic (i.e. we will complete the square): $s^{2}+2 s+6=s^{2}+2 s+1-1+6=(s+1)^{2}+5$.
Partial fractions decomposition gives

$$
\frac{2 s+3}{s^{2}+2 s+6}=\frac{2 s+3}{(s+1)^{2}+5}=\frac{A(s+1)+B}{(s+1)^{2}+5} .
$$

And you find $2 s+3=A s+A+B$, so $A=2$ and $B=1$.
Thus, $\frac{2 s+3}{s^{2}+2 s+6}=\frac{2(s+1)+1}{(s+1)^{2}+5}=\frac{2(s+1)}{(s+1)^{2}+5}+\frac{1}{(s+1)^{2}+5}$.
(d) Inverse Laplace transform:

The solution is: (see the inverse Laplace tranform table)
$y(t)=2 \mathcal{L}^{-1}\left\{\frac{(s+1)}{(s+1)^{2}+5}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+5}\right\}=2 e^{-t} \cos (\sqrt{5} t)+\frac{1}{\sqrt{5}} e^{-t} \sin (\sqrt{5} t)$.
2. $6.2 / 18$ (with ' $y(0)=1$ ' replaced by ' $y(0)=2$ '):

Solve $y^{(4)}-y=0$ with $y(0)=2, y^{\prime}(0)=0, y^{\prime \prime}(0)=1, y^{\prime \prime \prime}(0)=0$.
(a) Laplace Transform:
$\mathcal{L}\left\{y^{(4)}\right\}-\mathcal{L}\{y\}=\mathcal{L}\{0\}$.
(b) Use Rules and Solve:

Using the derivative rules gives: $s^{4} \mathcal{L}\{y\}-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)-\mathcal{L}\{y\}=0$,
which becomes: $\left(s^{4}-1\right) \mathcal{L}\{y\}-2 s^{3}-s=0$.
Solving for $\mathcal{L}\{y\}$ gives: $\mathcal{L}\{y\}=\frac{2 s^{3}+s}{s^{4}-1}$.
(c) Partial Fractions:

Factoring gives: $s^{4}-1=\left(s^{2}-1\right)\left(s^{2}+1\right)=(s-1)(s+1)\left(s^{2}+1\right)$.
Partial fractions decomposition gives
$\frac{2 s^{3}+s}{(s-1)(s+1)\left(s^{2}+1\right)}=\frac{A}{s-1}+\frac{B}{s+1}+\frac{C s+D}{s^{2}+1}$.
The cover up method gives $A=\frac{2(1)^{3}+1}{(1+1)\left(1^{1}+1\right)}=\frac{3}{4}$ and $B=\frac{2(-1)^{3}-1}{((-1)-1)\left((-1)^{2}+1\right)}=\frac{3}{4}$.
Then expanding gives
$2 s^{3}+s=\frac{3}{4}(s+1)\left(s^{2}+1\right)+\frac{3}{4}(s-1)\left(s^{2}+1\right)+(C s+D)\left(s^{2}-1\right)$, so
$2 s^{3}+s=\frac{3}{4}\left(s^{3}+s^{2}+s+1\right)+\frac{3}{4}\left(s^{3}-s^{2}+s-1\right)+C s^{3}+D s^{2}-C s-D$, which we can regroup to get
$2 s^{3}+s=\left(\frac{3}{4}+\frac{3}{4}+C\right) s^{3}+D s^{2}+\left(\frac{3}{4}+\frac{3}{4}-C\right) s-D$.
Thus, $2=\frac{3}{4}+\frac{3}{4}+C$, so $C=1 / 2$,
Also $D=0$.
Thus, $\frac{2 s^{3}+1}{s^{4}-1}=\frac{3 / 4}{s-1}+\frac{3 / 4}{s+1}+\frac{1 / 2 s}{s^{2}+1}$.
(d) Inverse Laplace transform:

The solution is: $y(t)=\frac{3}{4} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+\frac{3}{4} \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}+\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}$.
Thus, $y(t)=\frac{3}{4} e^{t}+\frac{3}{4} e^{-t}+\frac{1}{2} \cos (t)$.

