2.1: Integrating Factors

Some Observations and Motivation:

1. The first observation is the product rule: $\frac{d}{d t}(f(t) y)=f(t) \frac{d y}{d t}+f^{\prime}(t) y$.

Here are a couple of quick derivative examples (we are assuming y is a function of t):

$$
\frac{d}{d t}\left(t^{3} y\right)=t^{3} \frac{d y}{d t}+3 t^{2} y \quad \text { and } \quad \frac{d}{d t}\left(e^{4 t} y\right)=e^{4 t} \frac{d y}{d t}+4 e^{4 t} y
$$

Thus, $\quad f(t) \frac{d y}{d t}+f^{\prime}(t) y=g(t) \quad$ can be rewritten as $\quad \frac{d}{d t}(f(t) y)=g(t)$.
2. The second observation (using the chain rule with $\left.e^{F(x)}\right): \frac{d}{d t}\left(e^{F(t)} y\right)=e^{F(t)} \frac{d y}{d t}+F^{\prime}(t) e^{F(t)} y$.

Integrating Factor Method:

If we start with $\frac{d y}{d t}+p(t) y=g(t)$ AND if we can find an antiderivative of $p(t)$, then we can use the following process:

1. First rewrite the differential equation in the form: $\frac{d y}{d t}+p(t) y=g(t)$
2. Find any antiderivative of $p(t)$ and write $\mu(t)=e^{\int p(t) d t}$
3. Multiply the entire equation by $\mu(t)$ and use the facts from above, so

$$
\frac{d y}{d t}+p(t) y=g(t) \text { becomes } \mu(t) \frac{d y}{d t}+p(t) \mu(t) y=g(t) \mu(t) \text { which becomes } \frac{d}{d t}(\mu(t) y)=g(t) \mu(t)
$$

4. Integrate with respect to t and you are done! (Of course, as always, also simplify, use initial conditions and check your work)

NOTES:

1. This is a method for first order linear differential equations. Meaning you can only have y to the first power, and nothing else in terms of y.
2. Using the substitution idea that I introduced in the previous section, you can sometimes turn a nonlinear problem into a linear problem. Here are two examples:

- Using $u=e^{y}$ on the equation $e^{y} \frac{d y}{d x}-x e^{y}=2 x$ yields the linear equation $\frac{d u}{d x}-x u=2 x$.
- Using $u=\ln (y)$ on the equation $\frac{1}{y} \frac{d y}{d x}-\frac{\ln (y)}{x}=x$ yields the linear equation $\frac{d u}{d x}-\frac{u}{x}=x$.

3. A small note about the form of some answers from the textbook:

When we are unable to integrate a function in an elementary way, you will sometimes see an answer written in the following form $\int f(x) d x=\int_{x_{0}}^{x} f(u) d u+C$, where x_{0} is the x-value of some initial condition.
There is nothing scary happening here, let me give you an example to ease your mind.
Consider $\int x^{2} d x$ and $\int_{0}^{x} u^{2} d u+C$. Let me compute both:

$$
\int x^{2} d x=\frac{1}{3} x^{3}+C \quad \text { and } \quad \int_{0}^{x} u^{2} d u+C=\left.\frac{1}{3} u^{3}\right|_{0} ^{x}+C=\frac{1}{3} x^{3}+C .
$$

Notice they are the same. This gives a way to explicitly include your initial condition ' +C ' in writing down your final answer even if you can't integrate.

Integrating Factor Examples:

1. Find the explicit solution to $4 \frac{d y}{d t}-8 y=4 e^{5 t}$ with $y(0)=\frac{2}{3}$.

Solution:
(a) Rewrite: $\frac{d y}{d t}-2 y=e^{5 t}$, so $p(t)=-2, g(t)=e^{5 t}$.
(b) Integrating Factor: $\int p(t) d t=\int-2 d t=-2 t+C$, so $\mu(t)=e^{-2 t}$.
(c) Multiply: $\frac{d y}{d t}-2 y=e^{5 t}$ becomes $e^{-2 t} \frac{d y}{d t}-2 e^{-2 t} y=e^{3 t}$ which becomes $\frac{d}{d t}\left(e^{-2 t} y\right)=e^{3 t}$.
(d) Integrate: $e^{-2 t} y=\int e^{3 t} d t=\frac{1}{3} e^{3 t}+C$, so $y=\frac{1}{3} e^{5 t}+C e^{2 t}$.

Using the initial condition gives, $\frac{2}{3}=\frac{1}{3}+C$, so $C=\frac{1}{3}$.
For a final answer of $y=\frac{1}{3} e^{5 t}+\frac{1}{3} e^{2 t}$.
2. Find the explicit solution to $t \frac{d y}{d t}+2 y=\cos (t)$ with $y(\pi)=1$.

Solution:
(a) Rewrite: $\frac{d y}{d t}+\frac{2}{t} y=\frac{\cos (t)}{t}$, so $p(t)=\frac{2}{t}, g(t)=\frac{\cos (t)}{t}$.
(b) Integrating Factor: $\int p(t) d t=\int \frac{2}{t} d t=2 \ln |t|+C=\ln \left(t^{2}\right)+C$, so $\mu(t)=e^{\ln \left(t^{2}\right)}=t^{2}$.
(c) Multiply: $\frac{d y}{d t}+\frac{2}{t} y=\frac{\cos (t)}{t}$ becomes $t^{2} \frac{d y}{d t}+2 t y=t \cos (t)$ which becomes $\frac{d}{d t}\left(t^{2} y\right)=t \cos (t)$.
(d) Integrate: $t^{2} y=\int t \cos (t) d t=t \sin (t)+\cos (t)+C$ (using by parts), so $y=\frac{\sin (t)}{t}+\frac{\cos (t)}{t^{2}}+\frac{C}{t^{2}}$. Using the initial condition gives, $1=0-\frac{1}{\pi^{2}}+\frac{C}{\pi^{2}}+C$, so $C=\pi^{2}+1$.
For a final answer of $y=\frac{\sin (t)}{t}+\frac{\cos (t)}{t^{2}}+\frac{\left(\frac{\left.\pi^{2}+1\right)}{t^{2}}\right.}{t^{2}}$.
3. Find the explicit solution to $\cos (y) \frac{d y}{d t}-\frac{\sin (y)}{t}=t$ with $y(2)=0$. (Hint: Start with $u=\sin (y)$)

Solution:

Using $u=\sin (y)$ we get $\frac{d u}{d t}=\cos (y) \frac{d y}{d t}$, so the differential equation can be rewritten at $\frac{d u}{d t}-\frac{1}{t} u=t$.
Now we will solve this:
(a) Rewrite: $p(t)=-\frac{1}{t}, g(t)=t$.
(b) Integrating Factor: $\int p(t) d t=\int-\frac{1}{t} d t=-\ln (t)+C=\ln \left(\frac{1}{t}\right)+C$, so $\mu(t)=e^{\ln (1 / t)}=\frac{1}{t}$.
(c) Multiply: $\frac{d u}{d t}-\frac{1}{t} u=t$ becomes $\frac{1}{t} \frac{d u}{d t}-\frac{1}{t^{2}} u=1$ which becomes $\frac{d}{d t}\left(\frac{1}{t} u\right)=1$.
(d) Integrate: $\frac{1}{t} u=\int 1 d t=t+C$, so $u=t^{2}+C t$.

Going back to y gives $\sin (y)=t^{2}+C t$.
Using the initial condition gives, $\sin (0)=2^{2}+2 C$, so $C=-2$.
For an answer of $\sin (y)=t^{2}-2 t$, or $y=\sin ^{-1}\left(t^{2}-2 t\right)$.

