
2.7: Euler’s Method

Given dy
dt

= f(t, y) with y(t0) = y0. The methods for finding explicit (or implicit) solutions are limited.
We can solve only a small collection of special types of differential equations. In many applied prob-
lems numerical methods are essential. One of the most fundamental approximation methods is Euler’s
method which we describe here.

IDEA: Note that dy
dt

is the slope of the tangent line to y(t). If we are given a point (t0, y0), we can

directly evaluate dy
dt

= f(t0, y0) to get the slope of the tangent line at that point. In fact, we can get
the equation for the tangent line y = y0 + f(t0, y0)(t− t0) at that point. If we change t slightly (a small
step of h, so that t1 = t0 + h) and compute the new y value from the tangent line, then we will get
something very close to the actual value of the solution at that step. In terms of the formula, we get a
new points t1 = t0 + h and y1 = y0 + f(t0, y0)h. The idea is to repeat this process over and over again
in order to find the path of the solution.

EULER’S METHOD: More formally, given dy
dt

= f(t, y) with y(t0) = y0 we approximate the path of the
solution by:

1. STEP SIZE: First, we choose the step size, h, which is the size of the increments along the t-axis
that we will use in approximation. Smaller increments tend to give more accurate answers, but
then there are more steps to compute. We often use some value around h = 0.1 in our examples
in this class (but in applications h = 0.001 is probably a better choice).

2. COMPUTE SLOPE: Compute the slope dy
dt

= f(t0, y0).

3. GET NEXT POINT: The next point is t1 = t0 + h and y1 = y0 + f(t0, y0)h.

4. REPEAT: Repeat the last two steps with (t1, y1). Then repeat again with (t2, y2) and repeat again
and again, until you get to the desired value of t.

It might help to make a table:
t t0 t1 = t0 + h t2 = t1 + h t3 = t2 + h · · ·
y y0 y1 = y0 + f(t0, y0)h y2 = y1 + f(t1, y1)h y3 = y2 + f(t2, y2)h · · ·



Here are two quick examples:

1. Let dy
dt

= 2t + y, y(1) = 5. Using Euler’s method with h = 0.2 approximate the value of y(2).

t 1 1.2 1.4 1.6 1.8 2.0
y 5 6.4 8.16 10.352 13.0624 16.39488

Here are the calculations for how I filled in the table above:

(a) f(1, 5) = 2(1) + (5) = 7, so y(1.2) ≈ 5 + 7(0.2) = 6.4.

(b) f(1.2, 6.4) = 2(1.2) + (6.4) = 8.8, so y(1.4) ≈ 6.4 + 8.8(0.2) = 8.16.

(c) f(1.4, 8.16) = 2(1.4) + (8.16) = 10.96, so y(1.6) ≈ 8.16 + 10.96(0.2) = 10.352.

(d) f(1.6, 10.352) = 2(1.4) + (10.352) = 13.552, so y(1.8) ≈ 10.352 + 13.552(0.2) = 13.0624.

(e) f(1.8, 13.0624) = 2(1.4) + (13.0624) = 16.6624, so y(2) ≈ 13.0624 + 16.6624(0.2) = 16.39488.

Aside: In this case, an explicit answer can be found y(t) = 9et−1 − 2(t + 1). And note that the
actual value is y(2) = 9e− 6 ≈ 18.4645.
So the answer we got is within 2 (which is a pretty big error).
If you use h = 0.1, then it takes 10 steps to get to y(2) and you get
an approximation of y(2) ≈ 17.3437.
If you use h = 0.01, then it takes 100 steps to get to y(2) and you get
an approximation of y(2) ≈ 18.3433.

2. Let dy
dt

= 2
ty

+ ln(y), y(1) = 2. Using Euler’s method with h = 0.5 approximate the value of y(3).

t 1 1.5 2 2.5 3
y 2 2.846574 3.603831 4.383571 5.213753

Here are the calculations for how I filled in the table above:

(a) f(1, 2) = 2
(1)(2)

+ ln(2) ≈ 1.6931, so

y(1.5) ≈ 2 + 1.6931(0.5) ≈ 2.846574.

(b) f(1.5, 2.846574) = 2
(1.5)(2.846574)

+ ln(2.846574) ≈ 1.514515, so

y(2) ≈ 2.846574 + 1.514515(0.5) ≈ 3.603831.

(c) f(2, 3.603831) = 2
(2)(3.603831)

+ ln(3.603831) ≈ 1.55948, so

y(2.5) ≈ 3.603831 + 1.55948(0.5) ≈ 4.383571.

(d) f(2.5, 4.383571) = 2
(2.5)(4.383571)

+ ln(4.383571) ≈ 1.660363, so

y(3) ≈ 4.383571 + 1.660363(0.5) ≈ 5.213753.

Aside: There is no nice solution in terms of elementary functions. Using the basic numerical
solver on Mathematica gives an approximation of y(3) ≈ 5.19232 which is very close to our rough
estimate.


