3.1: Homogeneous Constant Coefficient 2nd Order

Some Observations and Motivations:

1. For equations of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$, we are looking for a function that 'cancels' with itself if you take its first and second derivatives and add up $a y^{\prime \prime}+b y^{\prime}+c y$. This means that the derivatives of y will have to look similar to y in some way. (You should be thinking of functions like $y=k e^{r t}, y=k \cos (r t)$ and $\left.y=k \sin (r t)\right)$.
2. In section 3.1, we are going to try to see if we can find solutions of the form $y=e^{r t}$ for some constant r. If $y=e^{r t}$ is a solution, then that means it works in the differential equation. Taking derivatives (using the chain rule), you get $y=e^{r t}, y^{\prime}=r e^{r t}$, and $y^{\prime \prime}=r^{2} e^{r t}$. And if you substitute these into the differential equation you get

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \quad \text { which becomes } a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=e^{r t}\left(a r^{2}+b r+c\right)=0
$$

3. We are looking for a function $y=e^{r t}$ that makes this true for all values of t. Since $e^{r t}$ is never zero, we are looking for values of r that make $a r^{2}+b r+c=0$.
4. You already do have some experience with second order equations. Consider $\frac{d^{2} y}{d t^{2}}=-9.8$. This is second order but it doesn't involve y^{\prime} or y, so you can integrate twice to get $y=-4.9 t^{2}+c_{1} t+c_{2}$. Notice that you get two constants of integration. We will see in section 3.2 that is true in general for second order equations, we will get two constants in our general solutions.

Definitions and Two Real Roots Method:

1. For the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, we define the characteristic equation to be $a r^{2}+b r+c=0$.
2. The roots of the characteristic equation are the solutions $r_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ and $r_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$. There are three cases:

- if $b^{2}-4 a c>0$, then you get two real roots. (Section 3.1 is about this case)
- if $b^{2}-4 a c=0$, then you get one (repeated) root. (Section 3.4)
- if $b^{2}-4 a c<0$, then you get no real roots, but two complex (imaginary) roots. (Section 3.3)

3. If there are two real roots, r_{1} and r_{2}, then that means $y_{1}(x)=e^{r_{1} x}$ and $y_{2}(x)=e^{r_{2} x}$ are both solutions. All other solutions can be written in the form

$$
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

for some constants c_{1} and c_{2}. We call this the general solution.
We will discuss the 'why' all solutions are in this form in section 3.2.

Examples:

1. Give the general solution to $y^{\prime \prime}-7 y^{\prime}+10 y=0$.

Solution: The equation $r^{2}-7 r+10=(r-5)(r-2)=0$ has roots $r_{1}=2$ and $r_{2}=5$.
The general solution is $y=c_{1} e^{2 t}+c_{2} e^{5 t}$.
2. Give the general solution to $y^{\prime \prime}+4 y^{\prime}=0$.

Solution: The equation $r^{2}+4 r=r(r+4)=0$ has roots $r_{1}=-4$ and $r_{2}=0$.
The general solution is $y=c_{1} e^{-4 t}+c_{2}$.

Examples with initial conditions:

1. Solve $y^{\prime \prime}-9 y=0$ with $y(0)=2$ and $y^{\prime}(0)=-12$.

Solution: The equation $r^{2}-9=(r+3)(r-3)=0$ has roots $r_{1}=-3$ and $r_{2}=3$.
The general solution is $y=c_{1} e^{-3 t}+c_{2} e^{3 t}$. Note that $y^{\prime}=-3 c_{1} e^{-3 t}+3 c_{2} e^{3 t}$.
Substituting in the initial condition gives

$$
\begin{array}{lll}
y(0)=2 & \Rightarrow & c_{1}+c_{2}=2 \\
y^{\prime}(0)=-12 & \Rightarrow & -3 c_{1}+3 c_{2}=-12 \Rightarrow-c_{1}+c_{2}=-4
\end{array}
$$

Note that we divided equation (ii) by 3 . Now we combine and simplify. Adding the equations gives $2 c_{2}=-2$, so $c_{2}=-1$. And using either equation gives $c_{1}=3$.
Thus, the solution is $y(t)=3 e^{-3 t}-e^{3 t}$.
2. Solve $y^{\prime \prime}-4 y^{\prime}-5 y=0$ with $y(0)=7$ and $y^{\prime}(0)=1$.

Solution: The equation $r^{2}-4 r-5=(r+1)(r-5)=0$ has roots $r_{1}=-1$ and $r_{2}=5$.
The general solution is $y=c_{1} e^{-t}+c_{2} e^{5 t}$. Note that $y^{\prime}=-c_{1} e^{-t}+5 c_{2} e^{5 t}$.
Substituting in the initial condition gives

$$
\begin{array}{lll}
y(0)=7 & \Rightarrow & c_{1}+c_{2}=7 \\
y^{\prime}(0)=1 & \Rightarrow & -c_{1}+5 c_{2}=1
\end{array}
$$

Now we combine and simplify. Adding the equations gives $6 c_{2}=8$, so $c_{2}=\frac{4}{3}$. And using either equation gives $c_{1}=7-\frac{4}{3}=\frac{17}{3}$. Thus, the solution is $y(t)=\frac{17}{3} e^{-t}+\frac{4}{3} e^{5 t}$.

