
3.3: Homogeneous Constant Coefficient 2nd Order (Complex Roots)

Before I discuss the motivation of this method, let me give away the ‘punchline’. In other words, let
me show how easy it is to solve these problems once you know the general result, then we’ll discuss the
theoretical underpinnings:

Solutions for the Complex Root Case:
If ar2 + br+ c = 0 has complex roots r = λ±ωi, then the general solution to ay′′+ by′+ cy = 0 is given
by

y(t) = eλt (c1 cos(ωt) + c2 sin(ωt)) .

Examples:

1. Give the general solution to y′′ + 3y′ + 10
4
y = 0.

Solution: The equation r2 + 3r + 10
4

= 0 has roots r = −3±
√
9−10

2
= −3

2
± 1

2
i = λ± ωi.

The general solution is y = e−
3
2
t
(
c1 cos

(
1
2
t
)

+ c2 sin
(
1
2
t
))

.

2. Give the general solution to y′′ − 4y′ + 6y = 0.

Solution: The equation r2 − 4r + 6 = 0 has roots r = 4±
√
−8

2
= 2±

√
2i = λ± ωi.

The general solution is y = e2t
(
c1 cos

(√
2t
)

+ c2 sin
(√

2t
))

.

Examples with initial conditions:

1. Solve y′′ + 25y = 0 with y(0) = 2 and y′(0) = 3.

Solution: The equation r2 + 25 = 0 has roots r1 = 0± 5i = λ± ωi.
The general solution is y = c1 cos(5t) + c2 sin(5t).
Note that y′ = −5c1 sin(5t) + 5c2 cos(5t).

y(0) = 2 ⇒ c1 + 0 = 2⇒ c1 = 2
y′(0) = 3 ⇒ 0 + 5c2 = 3⇒ c2 = 3

5

Thus, the solution is y(t) = 2 cos(5t) + 3
5

sin(5t).

2. Solve y′′ − 4y′ + 25
4
y = 0 with y(0) = −1 and y′(0) = 4.

Solution: The equation r2 − 4r + 25
4

= 0 has roots r = 4±
√
−9

2
= 2± 3

2
i.

The general solution is y = e2t
(
c1 cos

(
3
2
t
)

+ c2 sin
(
3
2
t
))

Note that y′ = 2e2t
(
c1 cos

(
3
2
t
)

+ c2 sin
(
3
2
t
))

+ e2t
(
−3

2
c1 sin

(
3
2
t
)

+ 3
2
c2 cos

(
3
2
t
))

.
Substituting in the initial conditions gives

y(0) = −1 ⇒ c1 + 0 = −1⇒ c1 = −1
y′(0) = 4 ⇒ 2(c1 + 0) +

(
0 + 3

2
c2
)

= 4⇒ 3
2
c2 = 6⇒ c2 = 4

Thus, the solution is y(t) = e2t
(
− cos

(
3

2
t

)
+ 4 sin

(
3

2
t

))
.



Some Observations and Experiments :

1. Consider y′′+y = 0. By guess and check, we can see that y1(t) = cos(t) and y2(t) = sin(t) are two
solutions. You can verify this by taking derivatives. From what we discussed in section 3.2, we
know that y(t) = c1 cos(t) + c2 sin(t) is the general solution (notice that the Wronskian is never
zero).
Now compare this to the characteristic equation: r2 + 1 = 0 has roots r1 = −i and r2 = i. In this
case, λ = 0 and ω = 1. So we see in this example that there seems to be some connection between
complex roots and solutions that involve Sine and Cosine.

2. Let’s explore more: Consider y′′ + 9y = 0. Again by guess and check, notice that y1(t) = cos(3t)
and y2(t) = sin(3t) are solutions. Thus, the general solution is y(t) = c1 cos(3t) + c2 sin(3t).
Comparing the characteristic equation: r2 + 9 = 0 has roots r = ±3i. In this case, λ = 0 and
ω = 3. Notice the connection between the number 3 and the coefficients inside the trig functions.

3. Now consider y′′ + 2y′ + 17y = 0. Guess and check is harder here, so let’s go straight to the
characteristic equation: r2 + 2r + 17 = 0 has roots r = −2±

√
4−68

2
= −1 ± 4i. Based on what we

saw in the last two examples, we might guess that our solutions will involve cos(4t) and sin(4t).
If we treat the real part of the root the same way we treat real roots, then we also might guess
that our solutions will involve e−t. You can check that y1(t) = e−t cos(4t) and y2(t) = e−t sin(4t)
are indeed solutions (compute y′ and y′′) and you can check that the Wronskian is not zero.

4. See the next page for a derivation that isn’t guess and check.



Euler’s Formula and Derivation of the Solution

1. In section 3.1 (for real roots), we wrote all our solutions as combinations of er1t and er2t. From our
observations on the previous page, it would be nice to define eωi so that it somehow gave answers
involving Cosines and Sines. In addition, using Taylor series, in my review of complex numbers
(read that review sheet for more details), we saw that the following expressions are the same

eωi = cos(ωt) + i sin(ωt).

This is all coming together nicely. We will use this definition and it will give answers in the form
we are seeing in our examples!

2. If you start with ay′′ + by′ + cy = 0 and get a characteristic equation ar2 + br + c = 0 that has
the complex roots r1 = λ+ ωi and r2 = λ− ωi, then, using the same method from 3.1 along with
Euler’s formula, you get the following:

y(t)= a1e
r1t + a2e

r2t = a1e
λt+ωti + a2e

λt−ωti (1)

= a1e
λteωti + a2e

λte−ωti = eλt
(
a1e

ωti + a2e
−ωti) (2)

= eλt (a1 cos(ωt) + a1i sin(ωt) + a2 cos(−ωt) + a2i sin(−ωt)) (3)

= eλt (a1 cos(ωt) + a1i sin(ωt) + a2 cos(ωt)− a2i sin(ωt)) (4)

= eλt ((a1 + a2) cos(ωt) + (a1i− a2i) sin(ωt)) (5)

= eλt (c1 cos(ωt) + c2 sin(ωt)) (6)

Note: In going from lines (3) to (4), we use the fact that cos(−x) = cos(x) and sin(−x) = − sin(x)
which are well known facts that always hold for these functions. These identities say that cos(x) is
symmetric about the y-axis (i.e. it is an ‘even’ function) and that sin(x) gives the same graph if you
reflect across the y-axis, then reflect across the x-axis (i.e. it is an ‘odd’ function).

Also note that in line (6), we are writing c1 = a1 + a2 and c2 = a1i − a2i. In this course, we will only
give initial conditions that involve real numbers, so c1 and c2 will always be real numbers, even if you
left the i in the general answer (which is fine if you do that), when you plug in the initial conditions
and solve you would also find that the numbers in front of cos(ωt) and sin(ωt) are always real numbers
in this class. (Ask me about this in office hours and I can show you what I mean).


