3.5: Non-homogeneous Constant Coefficient Second Order (Undetermined Coefficients)

Given ay'' + by' + cy = g(t), $y(t_0) = y_0$ and $y'(t_0) = y'_0$.

Step 1: Find the general solution of the homogeneous equation ay'' + by' + cy = 0. (Write and solve the characteristic equation, then use methods from 3.1, 3.3, and 3.4). At this point, you'll have two independent solutions to the homogeneous equation: $y_1(t)$ and $y_2(t)$.

Step 2: From the table below, identify the likely form of the answer of a **particular solution**, Y(t), to ay'' + by' + cy = g(t). Table of Particular Solution Forms

g(t)	e^{rt}	$\sin(\omega t)$ or $\cos(\omega t)$	C	t	t^2	t^3
Y(t)	Ae^{rt}	$A\cos(\omega t) + B\sin(\omega t)$	A	At + B	$At^2 + Bt + C$	$At^3 + Bt^2 + Ct + D$

First some notes on the use of this table:

- If g(t) is a sum/difference of these types, then so is Y(t). For example, if $g(t) = e^{4t} + \sin(5t)$, then try $Y(t) = Ae^{4t} + B\cos(5t) + C\sin(5t)$.
- If g(t) is a product of these types, then so is Y(t), but you don't need to have an extra coefficient factored throughout.

For example, if $g(t) = t^2 e^{5t}$, then try $Y(t) = (At^2 + Bt + C)e^{5t}$. You don't need to write $(At^2 + Bt + C)De^{5t}$ because the D could be multiplied through to give $(ADt^2 + BDt + CD)e^{5t}$ which is of the first form already and the D is not needed. Here are tables of the typical products:

g(t)	te^{rt}	t^2e^{rt}		$t\sin(\omega t) \text{ or } t\cos(\omega t)$		
Y(t)	$(At + B)e^{rt}$	$(At^2 + Bt + C$	$(r)e^{rt}$	$(At + B)\cos(\omega t) + (Ct + D)\sin(\omega t)$		
g(t)	$e^{rt}\cos(\omega t)$	or $e^{rt}\sin(\omega t)$		$te^{rt}\cos(\omega t)$ or $te^{rt}\sin(\omega t)$		
Y(t)	(t) $Ae^{rt}\cos(\omega t) + Be^{rt}\sin(\omega t)$			$(At+B)e^{rt}\cos(\omega t) + (Ct+D)e^{rt}\sin(\omega t)$		

• Important: How to adjust for homogeneous solutions

Consider a particular term of g(t). If the table suggests you use the form Y(t) for this term, but Y(t) contains a constant multiple of a homogeneous solution, then you need to multiply by t (and if that still constains a homogeneous solution, then multiple by t again).

For example, $g(t) = te^{2t}$, then you would initially guess the form $Y(t) = (At + B)e^{2t}$. But if the homogeneous solutions are $y_1(t) = e^{2t}$ and $y_2(t) = e^{5t}$, then Be^{2t} is a multiple of a homogeneous solution. So you use the form: $Y(t) = t(At + B)e^{2t} = (At^2 + Bt)e^{2t}$.

For another example, if $g(t) = te^{7t}$, then you would initially guess the form $Y(t) = (At + B)e^{7t}$. But if the homogeneous solutions are $y_1(t) = e^{7t}$ and $y_2(t) = te^{7t}$, then Be^{7t} AND Ate^{7t} are both multiples of a homogeneous solution. So you use the form: $Y(t) = t^2(At + B)e^{7t} = (At^3 + Bt^2)e^{7t}$

Step 3: Compute Y'(t) and Y''(t). Substitute Y(t), Y'(t) and Y''(t) into ay'' + by' + cy = g(t).

Step 4: Solve for the coefficients and write your general solution:

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$

Step 5: Use the initial conditions and solve for c_1 and c_2 .

Here are some problems to practice identifying the correct form.

In each line, you are given g(t) as well as independent homogeneous solutions $y_1(t)$, and $y_2(t)$. Give the form of the particular solution, Y(t) (solutions below).

1.	$ay'' + by' + cy = e^{2t}$	$y_1(t) = \cos(t)$	$y_2(t) = \sin(t)$
2.	$ay'' + by' + cy = \cos(3t)$	$y_1(t) = e^{3t}$	$y_2(t) = e^{-t}$
3.	$ay'' + by' + cy = e^{4t}$	$y_1(t) = e^{4t}$	$y_2(t) = e^{-2t}$
4.	ay'' + by' + cy = t	$y_1(t) = e^{6t}$	$y_2(t) = te^{6t}$
5.	$ay'' + by' + cy = e^{3t}$	$y_1(t) = e^{3t}$	$y_2(t) = te^{3t}$
6.	$ay'' + by' + cy = e^t \sin(5t)$	$y_1(t) = e^{-t}$	$y_2(t) = e^{6t}$
7.	$ay'' + by' + cy = \sin(t) + t$	$y_1(t) = e^{-2t}\cos(4t)$	$y_2(t) = e^{-2t}\sin(4t)$
8.	$ay'' + by' + cy = \cos(2t)$	$y_1(t) = \cos(2t)$	$y_2(t) = \sin(2t)$
9.	$ay'' + by' + cy = 5 + e^{2t}$	$y_1(t) = e^{3t}$	$y_2(t) = e^{-6t}$
10.	$ay'' + by' + cy = te^{2t}\cos(5t)$	$y_1(t) = e^t$	$y_2(t) = te^t$
11.	$ay'' + by' + cy = te^{7t}$	$y_1(t) = e^{7t}$	$y_2(t) = e^{-5t}$
12.	$ay'' + by' + cy = t^2 e^{7t}$	$y_1(t) = e^{7t}$	$y_2(t) = te^{-4t}$
13.	$ay'' + by' + cy = te^{8t}$	$y_1(t) = e^{8t}$	$y_2(t) = te^{8t}$
14.	$ay'' + by' + cy = t^2 e^{-t} \sin(9t)$	$y_1(t) = \cos(9t)$	$y_2(t) = \sin(9t)$
15.	$ay'' + by' + cy = t^2 - 5 + te^t$	$y_1(t) = e^t \cos(5t)$	$y_2(t) = e^t \sin(5t)$

Solutions

1.
$$Y(t) = Ae^{2t}$$
.

2.
$$Y(t) = A\cos(3t) + B\sin(3t)$$
.

3.
$$Y(t) = Ate^{4t}$$
.

4.
$$Y(t) = At + B$$
.

5.
$$Y(t) = At^2e^{3t}$$
.

6.
$$Y(t) = Ae^t \cos(5t) + Be^t \sin(5t)$$
.

7.
$$Y(t) = A\cos(t) + B\sin(t) + Ct + D$$
.

8.
$$Y(t) = At\cos(2t) + Bt\sin(2t).$$

9.
$$Y(t) = A + Be^{2t}$$
.

10.
$$Y(t) = (At + B)e^{2t}\cos(5t) + (Ct + D)e^{2t}\sin(5t)$$
.

11.
$$Y(t) = (At^2 + Bt)e^{7t}$$
.

12.
$$Y(t) = (At^3 + Bt^2 + Ct)e^{7t}$$
.

13.
$$Y(t) = (At^3 + Bt^2)e^{8t}$$
.

14.
$$Y(t) = (At^2 + Bt + C)e^{-t}\cos(9t) + (At^2 + Bt + C)e^{-t}\sin(9t)$$
.

15.
$$Y(t) = At^2 + Bt + C + (Dt + E)e^t$$
.

Examples:

1. Give the general solution to $y'' + 10y' + 21y = 5e^{2t}$.

Solution:

- (a) Solve Homogeneous: The equation $r^2 + 10r + 21 = (r+3)(r+7) = 0$ has the roots $r_1 = -3$ and $r_2 = -7$. So $y_1(t) = e^{-3t}$ and $y_2(t) = e^{-7t}$
- (b) Particular Solution Form: $Y(t) = Ae^{2t}$
- (c) Substitute: $Y'(t) = 2Ae^{2t}$ and $Y''(t) = 4Ae^{2t}$. Substituting gives $4Ae^{2t} + 10(2Ae^{2t}) + 21(Ae^{2t}) = 5e^{2t} \Rightarrow 45Ae^{2t} = 5e^{2t}$. Thus, $A = \frac{5}{45} = \frac{1}{9}$.
- (d) General Solution: $y(t) = c_1 e^{-3t} + c_2 e^{-7t} + \frac{1}{9} e^{2t}$.
- 2. Give the general solution to y'' 2y' + y = 6t.

Solution:

- (a) Solve Homogeneous: The equation $r^2 - 2r + 1 = (r - 1)^2 = 0$ has the one root r = 1. So $y_1(t) = e^t$ and $y_2(t) = te^t$.
- (b) Particular Solution Form: Y(t) = At + B
- (c) Substitute: Y'(t) = A and Y''(t) = 0. Substituting gives $(0) 2(A) + (At + B) = 5t \Rightarrow At + (B 2A) = 6t$. Thus, A = 6 and B 2A = 0. So B = 12
- (d) General Solution: $y(t) = c_1 e^t + c_2 t e^t + 6t + 12.$

3. Give the general solution to $y'' + 4y = \cos(t)$.

Solution:

- (a) Solve Homogeneous: The equation $r^2 + 4 = 0$ has the roots $r = \pm 2i$. So $y_1(t) = \cos(2t)$ and $y_2(t) = \sin(2t)$.
- (b) Particular Solution Form: $Y(t) = A\cos(t) + B\sin(t)$
- (c) Substitute: $Y'(t) = -A\sin(t) + B\cos(t) \text{ and } Y''(t) = -A\cos(t) B\sin(t). \text{ Substituting gives } (-A\cos(t) B\sin(t)) + 4(A\cos(t) + B\sin(t)) = \cos(t) \Rightarrow 3A\cos(t) + 3B\sin(t) = \cos(t).$ Thus, $A = \frac{1}{3}$ and B = 0.
- (d) General Solution: $y(t) = c_1 \cos(2t) + c_2 \sin(2t) + \frac{1}{3} \cos(t).$
- 4. Give the general solution to $y'' 5y' = 3e^{5t}$.

Solution:

- (a) Solve Homogeneous: The equation $r^2 - 5r = 0$ has the roots $r_1 = 0$, $r_2 = 5$. So $y_1(t) = 1$ and $y_2(t) = e^{5t}$.
- (b) Particular Solution Form: $Y(t) = Ate^{5t}$ (because $y_2(t) = e^{5t}$).
- (c) Substitute: $Y'(t) = Ae^{5t} + 5Ate^{5t} = A(1+5t)e^{5t}$ and $Y''(t) = 5Ae^{5t} + 5A(1+5t)e^{5t} = A(10+25t)e^{5t}$. Substituting gives $A(10+25t)e^{5t} 5A(1+5t)e^{5t} = 3e^{5t} \Rightarrow 5Ae^{5t} = 3e^{5t}$. Thus, $A = \frac{3}{5}$.
- (d) General Solution: $y(t) = c_1 + c_2 e^{5t} + \frac{3}{5} t e^{5t}.$

5. Give the general solution to $y'' - 3y' + 3y = 3t + e^{-2t}$.

Solution:

(a) Solve Homogeneous:

The equation
$$r^2 - 3r + 3 = 0$$
 has the roots $r = \frac{3 \pm \sqrt{9-12}}{2} = \frac{3}{2} \pm \frac{\sqrt{3}}{2}i$.
So $y_1(t) = e^{3t/2}\cos(\sqrt{3}t/2)$ and $y_2(t) = e^{3t/2}\sin(\sqrt{3}t/2)$.

(b) Particular Solution Form:

$$Y(t) = At + B + Ce^{-2t}.$$

(c) Substitute:

$$Y'(t) = A - 2Ce^{-2t}$$
 and $Y''(t) = 4Ce^{-2t}$. Substituting gives $4Ce^{-2t} - 3(A - 2Ce^{-2t}) + 3(At + B + Ce^{-2t}) = 3t + e^{-2t} \Rightarrow 3At + (-3A + 3B) + (4C + 6C + 3C)e^{-2t} = 3t + e^{-2t}$. Thus, $3A = 3$, $-3A + 3B = 0$ and $13C = 1$. So $A = 1$, $B = 1$, and $C = \frac{1}{13}$

(d) General Solution:

$$y(t) = c_1 e^{3t/2} \cos(\sqrt{3}t/2) + c_2 e^{3t/2} \sin(\sqrt{3}t/2) + t + 1 + \frac{1}{13}e^{-2t}$$

6. Give the general solution to $y'' - 9y = (5t^2 - 1)e^t$.

Solution:

(a) Solve Homogeneous:

The equation
$$r^2 - 9 = 0$$
 has the roots $r = \pm 3$.
So $y_1(t) = e^{3t}$ and $y_2(t) = e^{-3t}$.

(b) Particular Solution Form:

$$Y(t) = (At^2 + Bt + C)e^t$$

(c) Substitute:

$$Y'(t) = (2At + B)e^t + (At^2 + Bt + C)e^t = (At^2 + (2A + B)t + (B + C))e^t$$
 and $Y''(t) = (2At + (2A + B))e^t + (At^2 + (2A + B)t + (B + C))e^t = (At^2 + (4A + B)t + (2A + 2B + C))e^t$. Substituting gives $(At^2 + (4A + B)t + (2A + 2B + C))e^t - 9(At^2 + Bt + C)e^t = (5t^2 - 1)e^t$

$$(At^{2} + (4A + B)t + (2A + 2B + C))e^{t} - 9(At^{2} + Bt + C)e^{t} = (5t^{2} - 1)e^{t}$$

$$\Rightarrow -8At^{2} + (4A - 8B)t + (2A + 2B - 8C) = 5t^{2} - 1.$$

Thus,
$$-8A = 5$$
, $4A - 8B = 0$ and $2A + 2B - 8C = -1$. So $A = -\frac{5}{8}$, $B = \frac{1}{2}A = -\frac{5}{16}$, and $C = \frac{2A + 2B + 1}{8} = -\frac{5}{32} - \frac{5}{64} + \frac{1}{8} = -\frac{7}{64}$.

(d) General Solution:

$$y(t) = c_1 e^{3t} + c_2 e^{-3t} + \left(-\frac{5}{8}t^2 - \frac{5}{16}t - \frac{7}{64}\right)e^t.$$