3.5: Non-homogeneous Constant Coefficient Second Order (Undetermined Coefficients)

Given $a y^{\prime \prime}+b y^{\prime}+c y=g(t), y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.
Step 1: Find the general solution of the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
(Write and solve the characteristic equation, then use methods from 3.1, 3.3, and 3.4).
At this point, you'll have two independent solutions to the homogeneous equation: $y_{1}(t)$ and $y_{2}(t)$.
Step 2: From the table below, identify the likely form of the answer of a particular solution, $Y(t)$, to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$. Table of Particular Solution Forms

$g(t)$	$e^{r t}$	$\sin (\omega t)$ or $\cos (\omega t)$	C	t	t^{2}	t^{3}
$Y(t)$	$A e^{r t}$	$A \cos (\omega t)+B \sin (\omega t)$	A	$A t+B$	$A t^{2}+B t+C$	$A t^{3}+B t^{2}+C t+D$

First some notes on the use of this table:

- If $g(t)$ is a sum/difference of these types, then so is $Y(t)$.

For example, if $g(t)=e^{4 t}+\sin (5 t)$, then try $Y(t)=A e^{4 t}+B \cos (5 t)+C \sin (5 t)$.

- If $g(t)$ is a product of these types, then so is $Y(t)$, but you don't need to have an extra coefficient factored throughout.
For example, if $g(t)=t^{2} e^{5 t}$, then try $Y(t)=\left(A t^{2}+B t+C\right) e^{5 t}$. You don't need to write $\left(A t^{2}+B t+C\right) D e^{5 t}$ because the D could be multiplied through to give $\left(A D t^{2}+B D t+C D\right) e^{5 t}$ which is of the first form already and the D is not needed. Here are tables of the typical products:

$g(t)$	$t e^{r t}$	$t^{2} e^{r t}$	$t \sin (\omega t)$ or $t \cos (\omega t)$
$Y(t)$	$(A t+B) e^{r t}$	$\left(A t^{2}+B t+C\right) e^{r t}$	$(A t+B) \cos (\omega t)+(C t+D) \sin (\omega t)$
$g(t)$	$e^{r t} \cos (\omega t)$ or $e^{r t} \sin (\omega t)$	$t e^{r t} \cos (\omega t)$ or $t e^{r t} \sin (\omega t)$	
$Y(t)$	$A e^{r t} \cos (\omega t)+B e^{r t} \sin (\omega t)$	$(A t+B) e^{r t} \cos (\omega t)+(C t+D) e^{r t} \sin (\omega t)$	

- Important: How to adjust for homogeneous solutions

Consider a particular term of $g(t)$. If the table suggests you use the form $Y(t)$ for this term, but $Y(t)$ contains a constant multiple of a homogeneous solution, then you need to multiply by t (and if that still constains a homogeneous solution, then multiple by t again).
For example, $g(t)=t e^{2 t}$, then you would initially guess the form $Y(t)=(A t+B) e^{2 t}$. But if the homogeneous solutions are $y_{1}(t)=e^{2 t}$ and $y_{2}(t)=e^{5 t}$, then $B e^{2 t}$ is a multiple of a homogeneous solution. So you use the form: $Y(t)=t(A t+B) e^{2 t}=\left(A t^{2}+B t\right) e^{2 t}$.
For another example, if $g(t)=t e^{7 t}$, then you would initially guess the form $Y(t)=(A t+B) e^{7 t}$. But if the homogeneous solutions are $y_{1}(t)=e^{7 t}$ and $y_{2}(t)=t e^{7 t}$, then Be $e^{7 t}$ AND Ate $e^{7 t}$ are both multiples of a homogeneous solution. So you use the form: $Y(t)=t^{2}(A t+B) e^{7 t}=\left(A t^{3}+B t^{2}\right) e^{7 t}$

Step 3: Compute $Y^{\prime}(t)$ and $Y^{\prime \prime}(t)$. Substitute $Y(t), Y^{\prime}(t)$ and $Y^{\prime \prime}(t)$ into $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$.
Step 4: Solve for the coefficients and write your general solution:

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

Step 5: Use the initial conditions and solve for c_{1} and c_{2}.

Here are some problems to practice identifying the correct form.
In each line, you are given $g(t)$ as well as independent homogeneous solutions $y_{1}(t)$, and $y_{2}(t)$. Give the form of the particular solution, $Y(t)$ (solutions below).

1.	$a y^{\prime \prime}+b y^{\prime}+c y=e^{2 t}$	$y_{1}(t)=\cos (t)$	$y_{2}(t)=\sin (t)$
2.	$a y^{\prime \prime}+b y^{\prime}+c y=\cos (3 t)$	$y_{1}(t)=e^{3 t}$	$y_{2}(t)=e^{-t}$
3.	$a y^{\prime \prime}+b y^{\prime}+c y=e^{4 t}$	$y_{1}(t)=e^{4 t}$	$y_{2}(t)=e^{-2 t}$
4.	$a y^{\prime \prime}+b y^{\prime}+c y=t$	$y_{1}(t)=e^{6 t}$	$y_{2}(t)=t e^{6 t}$
5.	$a y^{\prime \prime}+b y^{\prime}+c y=e^{3 t}$	$y_{1}(t)=e^{3 t}$	$y_{2}(t)=t e^{3 t}$
6.	$a y^{\prime \prime}+b y^{\prime}+c y=e^{t} \sin (5 t)$	$y_{1}(t)=e^{-t}$	$y_{2}(t)=e^{6 t}$
7.	$a y^{\prime \prime}+b y^{\prime}+c y=\sin (t)+t$	$y_{1}(t)=e^{-2 t} \cos (4 t)$	$y_{2}(t)=e^{-2 t} \sin (4 t)$
8.	$a y^{\prime \prime}+b y^{\prime}+c y=\cos (2 t)$	$y_{1}(t)=\cos (2 t)$	$y_{2}(t)=\sin (2 t)$
9.	$a y^{\prime \prime}+b y^{\prime}+c y=5+e^{2 t}$	$y_{1}(t)=e^{3 t}$	$y_{2}(t)=e^{-6 t}$
10.	$a y^{\prime \prime}+b y^{\prime}+c y=t e^{2 t} \cos (5 t)$	$y_{1}(t)=e^{t}$	$y_{2}(t)=t e^{t}$
11.	$a y^{\prime \prime}+b y^{\prime}+c y=t e^{7 t}$	$y_{1}(t)=e^{7 t}$	$y_{2}(t)=e^{-5 t}$
12.	$a y^{\prime \prime}+b y^{\prime}+c y=t^{2} e^{7 t}$	$y_{1}(t)=e^{7 t}$	$y_{2}(t)=t e^{-4 t}$
13.	$a y^{\prime \prime}+b y^{\prime}+c y=t e^{8 t}$	$y_{1}(t)=e^{8 t}$	$y_{2}(t)=t e^{8 t}$
14.	$a y^{\prime \prime}+b y^{\prime}+c y=t^{2} e^{-t} \sin (9 t)$	$y_{1}(t)=\cos (9 t)$	$y_{2}(t)=\sin (9 t)$
15.	$a y^{\prime \prime}+b y^{\prime}+c y=t^{2}-5+t e^{t}$	$y_{1}(t)=e^{t} \cos (5 t)$	$y_{2}(t)=e^{t} \sin (5 t)$

Solutions

1. $Y(t)=A e^{2 t}$.
2. $Y(t)=A \cos (3 t)+B \sin (3 t)$.
3. $Y(t)=A t e^{4 t}$.
4. $Y(t)=A t+B$.
5. $Y(t)=A t^{2} e^{3 t}$.
6. $Y(t)=A e^{t} \cos (5 t)+B e^{t} \sin (5 t)$.
7. $Y(t)=A \cos (t)+B \sin (t)+C t+D$.
8. $Y(t)=A t \cos (2 t)+B t \sin (2 t)$.
9. $Y(t)=A+B e^{2 t}$.
10. $Y(t)=(A t+B) e^{2 t} \cos (5 t)+(C t+D) e^{2 t} \sin (5 t)$.
11. $Y(t)=\left(A t^{2}+B t\right) e^{7 t}$.
12. $Y(t)=\left(A t^{3}+B t^{2}+C t\right) e^{7 t}$.
13. $Y(t)=\left(A t^{3}+B t^{2}\right) e^{8 t}$.
14. $Y(t)=\left(A t^{2}+B t+C\right) e^{-t} \cos (9 t)+\left(A t^{2}+B t+C\right) e^{-t} \sin (9 t)$.
15. $Y(t)=A t^{2}+B t+C+(D t+E) e^{t}$.

Examples:

1. Give the general solution to $y^{\prime \prime}+10 y^{\prime}+21 y=5 e^{2 t}$.

Solution:

(a) Solve Homogeneous:

The equation $r^{2}+10 r+21=(r+3)(r+7)=0$ has the roots $r_{1}=-3$ and $r_{2}=-7$.
So $y_{1}(t)=e^{-3 t}$ and $y_{2}(t)=e^{-7 t}$
(b) Particular Solution Form:
$Y(t)=A e^{2 t}$
(c) Substitute:
$Y^{\prime}(t)=2 A e^{2 t}$ and $Y^{\prime \prime}(t)=4 A e^{2 t}$. Substituting gives
$4 A e^{2 t}+10\left(2 A e^{2 t}\right)+21\left(A e^{2 t}\right)=5 e^{2 t} \Rightarrow 45 A e^{2 t}=5 e^{2 t}$. Thus, $A=\frac{5}{45}=\frac{1}{9}$.
(d) General Solution:
$y(t)=c_{1} e^{-3 t}+c_{2} e^{-7 t}+\frac{1}{9} e^{2 t}$.
2. Give the general solution to $y^{\prime \prime}-2 y^{\prime}+y=6 t$.

Solution:
(a) Solve Homogeneous:

The equation $r^{2}-2 r+1=(r-1)^{2}=0$ has the one root $r=1$.
So $y_{1}(t)=e^{t}$ and $y_{2}(t)=t e^{t}$.
(b) Particular Solution Form:
$Y(t)=A t+B$
(c) Substitute:
$Y^{\prime}(t)=A$ and $Y^{\prime \prime}(t)=0$. Substituting gives
$(0)-2(A)+(A t+B)=5 t \Rightarrow A t+(B-2 A)=6 t$. Thus, $A=6$ and $B-2 A=0$. So $B=12$
(d) General Solution:
$y(t)=c_{1} e^{t}+c_{2} t e^{t}+6 t+12$.
3. Give the general solution to $y^{\prime \prime}+4 y=\cos (t)$.

Solution:

(a) Solve Homogeneous:

The equation $r^{2}+4=0$ has the roots $r= \pm 2 i$.
So $y_{1}(t)=\cos (2 t)$ and $y_{2}(t)=\sin (2 t)$.
(b) Particular Solution Form:
$Y(t)=A \cos (t)+B \sin (t)$
(c) Substitute:
$Y^{\prime}(t)=-A \sin (t)+B \cos (t)$ and $Y^{\prime \prime}(t)=-A \cos (t)-B \sin (t)$. Substituting gives
$(-A \cos (t)-B \sin (t))+4(A \cos (t)+B \sin (t))=\cos (t) \Rightarrow 3 A \cos (t)+3 B \sin (t)=\cos (t)$.
Thus, $A=\frac{1}{3}$ and $B=0$.
(d) General Solution:
$y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{1}{3} \cos (t)$.
4. Give the general solution to $y^{\prime \prime}-5 y^{\prime}=3 e^{5 t}$.

Solution:

(a) Solve Homogeneous:

The equation $r^{2}-5 r=0$ has the roots $r_{1}=0, r_{2}=5$.
So $y_{1}(t)=1$ and $y_{2}(t)=e^{5 t}$.
(b) Particular Solution Form:
$Y(t)=A t e^{5 t}\left(\right.$ because $\left.y_{2}(t)=e^{5 t}\right)$.
(c) Substitute:
$Y^{\prime}(t)=A e^{5 t}+5 A t e^{5 t}=A(1+5 t) e^{5 t}$ and $Y^{\prime \prime}(t)=5 A e^{5 t}+5 A(1+5 t) e^{5 t}=A(10+25 t) e^{5 t}$.
Substituting gives
$A(10+25 t) e^{5 t}-5 A(1+5 t) e^{5 t}=3 e^{5 t} \Rightarrow 5 A e^{5 t}=3 e^{5 t}$. Thus, $A=\frac{3}{5}$.
(d) General Solution:
$y(t)=c_{1}+c_{2} e^{5 t}+\frac{3}{5} t e^{5 t}$.
5. Give the general solution to $y^{\prime \prime}-3 y^{\prime}+3 y=3 t+e^{-2 t}$.

Solution:

(a) Solve Homogeneous:

The equation $r^{2}-3 r+3=0$ has the roots $r=\frac{3 \pm \sqrt{9-12}}{\sqrt{3}^{2}}=\frac{3}{2} \pm \frac{\sqrt{3}}{2} i$.
So $y_{1}(t)=e^{3 t / 2} \cos (\sqrt{3} t / 2)$ and $y_{2}(t)=e^{3 t / 2} \sin (\sqrt{3} t / 2)$.
(b) Particular Solution Form:

$$
Y(t)=A t+B+C e^{-2 t} .
$$

(c) Substitute:
$Y^{\prime}(t)=A-2 C e^{-2 t}$ and $Y^{\prime \prime}(t)=4 C e^{-2 t}$. Substituting gives
$4 C e^{-2 t}-3\left(A-2 C e^{-2 t}\right)+3\left(A t+B+C e^{-2 t}\right)=3 t+e^{-2 t} \Rightarrow 3 A t+(-3 A+3 B)+(4 C+6 C+$
$3 C) e^{-2 t}=3 t+e^{-2 t}$. Thus, $3 A=3,-3 A+3 B=0$ and $13 C=1$. So $A=1, B=1$, and $C=\frac{1}{13}$
(d) General Solution:
$y(t)=c_{1} e^{3 t / 2} \cos (\sqrt{3} t / 2)+c_{2} e^{3 t / 2} \sin (\sqrt{3} t / 2)+t+1+\frac{1}{13} e^{-2 t}$.
6. Give the general solution to $y^{\prime \prime}-9 y=\left(5 t^{2}-1\right) e^{t}$.

Solution:

(a) Solve Homogeneous:

The equation $r^{2}-9=0$ has the roots $r= \pm 3$.
So $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-3 t}$.
(b) Particular Solution Form:
$Y(t)=\left(A t^{2}+B t+C\right) e^{t}$
(c) Substitute:
$Y^{\prime}(t)=(2 A t+B) e^{t}+\left(A t^{2}+B t+C\right) e^{t}=\left(A t^{2}+(2 A+B) t+(B+C)\right) e^{t}$ and
$Y^{\prime \prime}(t)=(2 A t+(2 A+B)) e^{t}+\left(A t^{2}+(2 A+B) t+(B+C)\right) e^{t}=\left(A t^{2}+(4 A+B) t+(2 A+2 B+C)\right) e^{t}$.
Substituting gives
$\left(A t^{2}+(4 A+B) t+(2 A+2 B+C)\right) e^{t}-9\left(A t^{2}+B t+C\right) e^{t}=\left(5 t^{2}-1\right) e^{t}$
$\Rightarrow-8 A t^{2}+(4 A-8 B) t+(2 A+2 B-8 C)=5 t^{2}-1$.
Thus, $-8 A=5,4 A-8 B=0$ and $2 A+2 B-8 C=-1$. So $A=-\frac{5}{8}, B=\frac{1}{2} A=-\frac{5}{16}$, and $C=\frac{2 A+2 B+1}{8}=-\frac{5}{32}-\frac{5}{64}+\frac{1}{8}=-\frac{7}{64}$.
(d) General Solution:
$y(t)=c_{1} e^{3 t}+c_{2} e^{-3 t}+\left(-\frac{5}{8} t^{2}-\frac{5}{16} t-\frac{7}{64}\right) e^{t}$.

