Chapter 3: Summary of Second Order Solving Methods

We only discussed solution methods for **linear** second order equations.

Constant Coefficient Methods: To solve an equation of the form: ay'' + by' + cy = q(t).

Homogeneous (when $\mathbf{g(t)} = \mathbf{0}$): Solve $ar^2 + br + c = 0$ to get $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. $b^2 - 4ac > 0$ Two real roots: r_1 and r_2 General Solution: $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$. $b^2 - 4ac = 0$ Repeated root: r General Solution: $y(t) = c_1 e^{r_1 t} + c_2 t e^{r_2 t}$. $b^2 - 4ac < 0$ Complex roots: $r = \lambda \pm \omega i$ General Solution: $y(t) = c_1 e^{\lambda t} \cos(\omega t) + c_2 e^{\lambda t} \sin(\omega t)$.

Nonhomogeneous (when $g(t) \neq 0$):

- 1. Solve the corresponding homogeneous equation and get independent solutions $y_1(t)$ and $y_2(t)$.
- 2. Find any particular solution, Y(t), to ay'' + by' + cy = g(t).
 - Option 1: If g(t) is a product or sum of polynomials, exponentials, sines or cosines, then use **undetermined coefficients**.
 - Option 2: If g(t) involves some function other than those mentioned above, then use **reduction of order** (or more generally, variation of parameters). See the discussion at the bottom of this page about reduction of order for a reminder of how this can be done.
- 3. General Solution: $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$.

Nonconstant Coefficient Methods: To solve an equation of the form: y'' + p(t)y' + q(t)y = g(t). Homogeneous (when g(t) = 0):

- 1. Option 1: If the equation can be written as P(x)y'' + Q(x)y' + R(x)y = 0, then we say it is **exact** when P''(x) Q'(x) + R(x) = 0. In 3.2/41-45, you see how to solve these.
 - (a) Let f(x)=Q(x)-P'(x). Note: P(x)y''+Q(x)y'+R(x)=0 is the same as $\frac{d}{dx}(P'(x)y')+\frac{d}{dx}(f(x)y)=0$.
 - (b) Integrate both sides to get $P'(x)y' + f(x)y = c_1$. Solve this 1st order equation (integrating factor!).
- 2. Option 2: Change the variable. The only examples we saw were **Euler equations** which take the form: $t^2y'' + \alpha ty' + \beta y = 0$. In 3.3/34-41, you see how to solve these.
 - (a) Making the change of variable $x = \ln(t)$ leads to $y'' + (\alpha 1)y' + \beta y = 0$.
 - (b) Solve this constant coefficient equation (using methods above).
 - (c) This gives a solution equation y = y(x). Now replace x with $\ln(t)$.

Nonhomogeneous (when $g(t) \neq 0$): To solve an equation of the form: y'' + p(t)y' + q(t)y = g(t).

- 1. Solve the corresponding homogeneous equation and get a solution $y = y_1(t)$ (if possible, find a second independent solution as well $y_2(t)$).
- 2. Use reduction of order,
 - (a) Write $y = u(t)y_1(t)$. And compute y' and y''
 - (b) Plug y, y' and y'' into the original nonhomogeneous equation. Simplify to get a first order equation and solve for u(t).
 - (c) Then $y = u(t)y_1(t)$ will be the full general solution.
- 3. Or use variation of parameters from section 3.6 (you are not expected to know this for the exam).
- 4. General Solution: $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$