Chapter 3: Summary of Second Order Solving Methods

We only discussed solution methods for linear second order equations.
Constant Coefficient Methods: To solve an equation of the form: $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$.
Homogeneous (when $\mathbf{g}(\mathbf{t})=\mathbf{0}$): Solve $a r^{2}+b r+c=0$ to get $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
$b^{2}-4 a c>0 \quad$ Two real roots: r_{1} and $r_{2} \quad$ General Solution: $y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
$b^{2}-4 a c=0 \quad$ Repeated root: $r \quad$ General Solution: $y(t)=c_{1} e^{r t}+c_{2} t e^{r t}$.
$b^{2}-4 a c<0 \quad$ Complex roots: $r=\lambda \pm \omega i \quad$ General Solution: $y(t)=c_{1} e^{\lambda t} \cos (\omega t)+c_{2} e^{\lambda t} \sin (\omega t)$.
Nonhomogeneous (when $g(t) \neq 0)$:

1. Solve the corresponding homogeneous equation and get independent solutions $y_{1}(t)$ and $y_{2}(t)$.
2. Find any particular solution, $Y(t)$, to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$.

- Option 1: If $g(t)$ is a product or sum of polynomials, exponentials, sines or cosines, then use undetermined coefficients.
- Option 2: If $g(t)$ involves some function other than those mentioned above, then use reduction of order (or more generally, variation of parameters). See the discussion at the bottom of this page about reduction of order for a reminder of how this can be done.

3. General Solution: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$.

Nonconstant Coefficient Methods: To solve an equation of the form: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.
Homogeneous (when $\mathbf{g}(\mathbf{t})=0$):

1. Option 1: If the equation can be written as $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$, then we say it is exact when $P^{\prime \prime}(x)-$ $Q^{\prime}(x)+R(x)=0$. In 3.2/41-45, you see how to solve these.
(a) Let $f(x)=Q(x)-P^{\prime}(x)$.

Note: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x)=0$ is the same as $\frac{d}{d x}\left(P^{\prime}(x) y^{\prime}\right)+\frac{d}{d x}(f(x) y)=0$.
(b) Integrate both sides to get $P^{\prime}(x) y^{\prime}+f(x) y=c_{1}$. Solve this 1 st order equation (integrating factor!).
2. Option 2: Change the variable. The only examples we saw were Euler equations which take the form: $t^{2} y^{\prime \prime}+$ $\alpha t y^{\prime}+\beta y=0$. In 3.3/34-41, you see how to solve these.
(a) Making the change of variable $x=\ln (t)$ leads to $y^{\prime \prime}+(\alpha-1) y^{\prime}+\beta y=0$.
(b) Solve this constant coefficient equation (using methods above).
(c) This gives a solution equation $y=y(x)$. Now replace x with $\ln (t)$.

Nonhomogeneous (when $\mathbf{g}(\mathbf{t}) \neq \mathbf{0})$: To solve an equation of the form: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

1. Solve the corresponding homogeneous equation and get a solution $y=y_{1}(t)$ (if possible, find a second independent solution as well $\left.y_{2}(t)\right)$.
2. Use reduction of order,
(a) Write $y=u(t) y_{1}(t)$. And compute y^{\prime} and $y^{\prime \prime}$
(b) Plug y, y^{\prime} and $y^{\prime \prime}$ into the original nonhomogeneous equation. Simplify to get a first order equation and solve for $u(t)$.
(c) Then $y=u(t) y_{1}(t)$ will be the full general solution.
3. Or use variation of parameters from section 3.6 (you are not expected to know this for the exam).
4. General Solution: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$
