
3.7 and 3.8: Vibrations Handout
Mass-Spring Systems:
An object is placed on a spring. If u(t) is the displacement from rest, then we say

mu′′ + γu′ + ku = F (t),

where m is the mass of the object, γ is the damping constant, k is the spring constant, and F (t) is
an external forcing function. In deriving the application, we learned various facts including: w = mg,
mg − kL = 0, Fs = k(L + u), and Fd = −γu′(t), where g = 9.8 m/s2 = 32 ft/s2 and L is the distance
the spring is stretched beyone natural length when it is at rest.

RLC circuits:
If R, C, and L are the resistance, capacitance and inductance in a circuit and E(t) is the impressed
voltage (incoming forcing function), then we have

LQ′′ +RQ′ +
1

C
Q = E(t),

where Q(t) is the charge on the capacitor at time t.

Note: This is not a physics or electronics class. You really don’t have to know hardly anything about
forces or electronics to do well on this material. You just have to put in the numbers and solve second
order systems (like we have been doing for the last two weeks). The point of this material is to expose
you to some important applications of second order equations so that you have a physical relationship
between what we are getting in the solutions and what we are seeing in the application.

Summary of Analysis:
Note: Here I state everything in terms of the mass-spring system, but, if you replace m = L, γ = R,
k = 1

C
, and F (t) = E(t), then the analysis is the same for the circuit application.

No Forcing: F (t) = 0.

1. γ = 0⇒ No Damping: Solution looks like u(t) = c1 cos(ω0t) + c2 sin(ω0t) = R cos(ω0t− δ).

• Natural frequency: ω0 =
√
k/m radians/second.

• Period: T = 2π
ω0

= 2π
√
m/k seconds/wave.

• Amplitude: R =
√
c21 + c22.

2. γ ≥ 2
√
mk ⇒ No Vibrations: No imaginary roots, only negative real roots.

γ = 2
√
mk ⇒ Critically Damped and γ > 2

√
mk ⇒ Overdamped

3. 0 < γ < 2
√
mk ⇒ Damped Vibrations:

Solutions looks like u(t) = eλt(c1 cos(µt) + c2 sin(µt)) = Reλt cos(µt− δ).

• Quasi-frequency: µ =
√

k
m
− γ2

4m2 radians/second.

• Quasi-period: T = 2π
µ

seconds/wave.

• Amplitude: Reλt =
√
c21 + c22e

λt, which goes to zero as t→∞.



Forcing: F (t) 6= 0.
As we saw in 3.5 and 3.6, we need to find the homogeneous solution and a particular solution.
For mass-spring, we primarily considered forcing functions of the form F (t) = F0 cos(ωt).

1. γ = 0 ⇒ No Damping: Find homogenous solutions (see ‘no forcing’). It will have a natural
frequency of ω0. The particular solution depends on ω and ω0.

• If ω 6= ω0, then a particular solution looks like U(t) = F0

m(ω2
0−ω2)

cos(ωt)

• If ω = ω0, then a particular solution looks like U(t) = F0

2mω0
t sin(ωt). (Resonance!)

2. γ > 0⇒ Damping: Find homogenous solutions (see ‘no forcing’).
If γ < 2

√
mk, then label µ as the quasi-frequency. If γ < 2

√
mk, then the solution will always

look like:

u(t) = uc(t) + U(t) = c1e
λt cos(µ t) + c2e

λt sin(µ t) + A cos(ωt) +B sin(ωt).

In all cases where γ > 0 the homogeneous solution, uc(t), goes to zero as t → 0. We say the
homogeneous solution, uc(t), is the transient solution and the particular solution, U(t), is the
steady state solution (or forced response).

• With some considerable algebra, you can get general messy formulas for A and B (see book
or review sheet).

• Amplitude of Steady State solution: R =
√
A2 +B2 = F0√

(k−mω2)2+γ2ω2
.

This depends on ω.

Applitude is maximized when ω = ωmax = ω0

√
1− γ2

2mk
≈ ω0. (if γ is close to zero)

At this value of ω, you get R = Rmax = F0

γω0

1√
1− γ2

4mk

.

So if γ is close to zero, then the maximum amplitude of the steady state response occurs
when ω is close to ω0 (Resonance).


