Skills Review: Trigonometry and Waves

The following review discusses some trigonometry, specifically facts related to waves.

Introduction and Basic Facts:

Consider functions of the form $y(t)=A \cos (\omega t-\delta)$. Our book likes to express waves in this standard form. The graph of this function looks like a wave which is oscillating about the t-axis. Here are several important facts about this wave:

- $A=$ 'the amplitude' $=$ 'the distance from the middle of the wave to the highest point'
- $\omega=$ 'angular frequency' $=$ 'how many radians between $t=0$ and $t=1$ '.
- $\omega=2 \pi f$, where $f=$ 'the frequency' $=$ 'the number of full waves between $t=0$ and $t=1$ '
- $\omega=\frac{2 \pi}{T}$ or, in other words,
$T=\frac{1}{f}=$ 'the period (or wavelength)' $=$ 'distance on the t-axis between peaks'
- $\delta=$ 'phase (or phase shift)' $=$ 'the starting angle that corresponds to $t=0$ '.

A full example with a picture is on the next page.

Converting into Standard Form:

In this class, we often will have solutions involving expressions of the form $y=A \cos (\mu t)+B \sin (\mu t)$.
In order to write this in the form above, you need the trig identity:

$$
y=R \cos (\omega t-\delta)=R \cos (\delta) \cos (\omega t)+R \sin (\delta) \sin (\omega t)
$$

Setting this equal to $y=A \cos (\mu t)+B \sin (\mu t)$, we conclude that $\omega=\mu, A=R \cos (\delta)$, and $B=R \sin (\delta)$. And from these relationships we can conclude that $R^{2}=A^{2}+B^{2}$. Therefore, we get

$$
R=\sqrt{A^{2}+B^{2}}, A=R \cos (\delta), \quad \text { and } B=R \sin (\delta)
$$

Example: Consider $y=\frac{7 \sqrt{3}}{2} \cos (12 \pi t)+\frac{7}{2} \sin (12 \pi t)$.
To write in the standard form above, we want $R=\sqrt{\left(\frac{7 \sqrt{3}}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}}=\sqrt{\frac{49(3+1)}{4}}=7$.
We also want $\frac{7 \sqrt{3}}{2}=7 \cos (\delta)$ and $\frac{7}{2}=7 \sin (\delta)$ which gives $\delta=\frac{\pi}{6}$.
Therefore, we get $y=7 \cos \left(12 \pi t-\frac{\pi}{6}\right)$. A graph of this function is on the next page.

For example: Consider $y(t)=7 \cos \left(12 \pi t-\frac{\pi}{6}\right)$. Let's say t is in minutes just to give some units. A picture is provided below.

1. $A=7$ is the amplitude. So this wave oscillates between $y=-7$ and $y=7$.
2. $\omega=12 \pi$ radians per minute. In other words, every minute we will add all radians from 0 to 12π.
3. $f=\frac{\omega}{2 \pi}=6$ waves per minute. In other words, every minute there will be 6 full waves (a full wave is peak-to-peak, or valley-to-valley).
4. $T=\frac{1}{f}=\frac{1}{6}$ minutes per wave. In other words, it take $\frac{1}{6}$ minute (i.e. 10 seconds) to complete complete one full wave.
5. $\delta=\frac{\pi}{6}$ is the 'starting angle'. In other words, when $t=0$, the wave starts at $y(0)=7 \cos \left(-\frac{\pi}{6}\right)=$ $7 \sqrt{3} / 2$. From here the wave will go up (because this is what the Cosine wave does after $-\pi / 6$) and it will complete one wave in $1 / 6$ minute (10 seconds). After these 10 seconds, it will be back to the value of $y(1 / 6)=7 \sqrt{3} / 2$ and the wave will continue in this way.

