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1. (10 total points)
(a) (5 points)

The characteristic equation of the homogeneous part of the DE is 3r> +2r — 1 = 0; this has
solutions r; = —1 and rp, = %; hence the general solution to the homogeneous part of the equation
is
ot L
y=-cie +cpe3.

To find the particular solution, we break up the forcing function into its two constituent terms
and find the particular solutions for each individually. Specifically, to find the particular solution
to 3y” +2y —y =4e " cos(t) we guess

Y1(t) = e " (Acos(t) + Bsin(t)),
since we’ll also need sine terms to balance coefficients. Then we have
Y =e " ((~A+B)cos(t)+(—A—B)sin(t)) and Y{ =e ' ((—2B)cos(t)+ (2A)sin(t)),
SO

4e”"cos(t) =3y +2Y] -1
=e ' ((—6B—2A+2B—A)cos(t) + (6A —2A — 2B — B)sin(t))
=e " ((—3A—4B)cos(t) + (4A —3B)sin(t)).

Thus we have the system of equations —3A —4B = 4 and 4A — 3B = 0, which has the solution

A= —%,B = —%. The particular solution to this part is therefore

Vi) = e (—%cos(t) - g sin(t)) |

Now let Y,(¢) be the particular solution to the 2nd part of the nonhomogeneous equation,
namely 3y” 42y —y = 2¢7". Since e~ is already a solution to the homogeneous DE, we guess
Y>(t) =Ate™". Then Yy = (—At+A)e " and ¥, = (At —2A)e™ ", so

2e! =3Y) +2V, — Y, =3(At —2A)e " +2(—At +A)e”" —Ate”!

= —4Ae”".
Equating coefficients therefore has 2 = —4A, so A = —%. The particular solution to this part
is thus ¥, = —%te‘t . Finally, we combine the two particular solutions and the homogeneous

solution to get the full general solution to the nonhomogeneous differential equation:

12 16 1
y=cie ' +crei +et (—gcos(t) ~ 55 sin(t)> — Ete*t.
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(b) (5 points)

The characteristic equation of the homogeneous part of the DE is 472 + 1 = 0 this has solutions
r= :I:%i ; hence the general solution to the homogeneous part of the equation is

1 1
Yy =] C0S (5 t) + ¢y sin (5 t).

For the particular solution to the full nonhomogenous DE, we would ordinarily guess Y (¢) =
Acos(t) + Bsin(r); however, since the homogeneous part of the DE has no y’ term we don’t need
the sine part in our guess in order to balance coefficients. Thus we guess Y = Acos(r). We then
have Y = —Acos(t), so

2cos(t) =4Y" +Y = —4Acos(t) +Acos(t) = —3Acos(t),

so we must have 2 = —3A4,1.e. A = —%. The particular solution is then
2
Y = ——cos(t
3 ( )7

and so the full general solution to the differential equation is

= lr + ¢y si lt 2 (1)
y = €1 COS8 > C2 S1n > 3cos .
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2. (10 total points)

(a) (5 points)

The characteristic equation corresponding to this differential equation is
(a¢—2)r*+Ba)r+(2a+1)=0.

The solution will exhibit oscillatory behavior if the CE has complex roots, which in turn happens
when the discriminant (‘b> — 4ac’) is negative. Thus to get an oscillating solution to the DE we
require

(Ba)? —4(a—2)(2a+1) <0,

or, after simplifying, a? + 12+ 8 < 0. Now o? 4 120 + 8 is a quadratic in « with positive
coefficient in front of the a? term, so it will be negative between its two roots. The quadratic
formula yields %+ 1200+ 8 = 0 when o = —6+2+/7. We therefore have that the DE exhibits
oscillatory behavior for

—6—2VT<a<-—2+2V7,

or —11.292 < a0 < —0.708.

Finally, for these values of o both the coefficients in front of the y” and the y’ term (ot — 2 and 3«
respectively) are negative; thus the CE has roots whose real parts (‘—g’) are negative. This trans-
lates into a general solution with sine and cosine terms multiplied by an exponentially decaying
term. That is, the solution will be damped for all & for which the solution exhibits oscillatory
behavior.



Math 307A, Winter 2014 Midterm 2 Practice Page 4 of 7

(b) (5 points)

The solution’s quasi frequency is maximized when the characteristic equation has roots with
imaginary parts of maximum magnitude. This in turn happens when the discriminant o +
120 + 8 is the most negative. This of course happens at the turning point of the quadratic,
ie. o = —2121 = —6. Hence the fastest oscillation happens for & = 6. The DE then becomes

—8y” — 18y — 11y = 0. After multiplying the whole equation by —1 we arrive at the [IVP
8"+ 18y’ +11y=0,  y(0)=1,y'(0)=0.

To find out when the amplitude of the solution decays to less than 0.1, we will write the solution
in the form y = Re~“ cos(wr — &) for constants R, ¢, ® and 8, as then we know that the solution
is at most Re~“' in magnitude The characteristic equation is 872 4+ 187+ 11 = 0, which has roots

f

-1, so the solution to this DE can be written in the form

S, Vi (V7
y=e 3 (Acos <?t> —|—Bsm<?t>)

Using the initial value y(0) = 1 gives us A = 1, while the second initial value y'(0) = 0 gives us
9A4L Vipg_— -9
—§A+TB—O, so B = 77

r—__

Now recall that to convert the solution to the form y = Re™“ cos(®t — §) we use R = VA> + B2,

SO
\/12+ \/ \/ = 3.5256.

We therefore know that at time ¢ the solution is at most 24/ %e‘g t in magnitude. To find a time

beyond which the solution is always less than 11—0 in magnitude, we solve for ¢ in the equation

1 2
=/ e
10 7°¢

__ 88

Squaring both sides we get 100 =Te it. Solving for ¢ yields

t= L—LIn 8800 =3.1718.
9 7

We conclude that for oc = —6, the solution damps to magnitude less than 0.1 after t = 3.1718.



Math 307A, Winter 2014 Midterm 2 Practice Page 5 of 7

3. (10 total points)

(a) (5 points)

There are two ways to approach solving this question. One way is to solve the equation fully and
write the steady-state solution in the form y = Rcos(wt — ) for constants R, ® and 8. However,
we’ve done the full general case in class, and it’s perfectly okay to just quote the formula for R
in terms of the coefficients in the DE. To that effect, given the DE my” + yy' + ky = Fycos(w1),
we found in class that

Fo

R= .
V (k—mo?)? + 72 o?

We have m = %, Y= %, k =2 and Fy = 3. Furthermore we know that for us @ = @y = \/g =2.

Hence
3 3

\/(2—%-22)2+(%)2-22 \/O+ 2

That is, the amplitude of the steady-state respond in this example is R = 15.

(b) (5 points)

Same setup as above, but now @ = 4. Thusly:

3 _ 3 15
\/(2_%.42)2+(]1_0)2,42 \/36+% 24226

So the steady-state solution’s amplitude is now much smaller, at R = 0.4989.

R= = 0.4989.
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4. (10 total points)
(a) (6 points)

We use the series circuit differential equation that we developed in class, i.e.
2 / 1
LO" +RQO +EQ:E(Z)7

where forus L=10, R=0, 1/C =1/(6.4x 10~*) = 212 and E(t) = 125cos(15¢). Hence we
have the initial value problem

3125

100" + =20 = 125cos(151),  Q(0) =0,0'(0) = 0.

This is precisely the case where we get beats. Checking our notes from class we see that for the
initial value problem my” + ky = Fycos(ot), y(0) ='(0) = 0, we can write the solution as

y= {ﬁ sin (%(a)o - a))t)} sin (%(a)o + (o)t) ,

where @y = \/g is the system’s natural frequency. For us @y =

Furthermore for us Fy = 125, m = 10, a)g —w?= (275)2 — 152 =-2D 7(mp — ®) = —3 and

%(a)0+a)) = %5. Hence

2-125 sin St sin 551‘ 4 sin St sin 55t
———=sin| —— m(—=¢|=-—sin| - m{—t|.
10- -2 4 4 11 4 4

If you prefer decimals, the solution can be written as

0=

0 = 0.3636 sin(1.25¢) sin(13.751).

(b) (4 points)

This answer is straightforward given the way that we’ve written the solution above. Since both the
sine terms never exceed 1 in magnitude, we see that the solution never exceeds % in magnitude
at any given point in time. Since this is less than % we conclude that the circuit is safe, and will
not burn out.
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5. (10 points) (10 total points)

Here we have the initial value problem

5
my" +y + =0 y0)=1, y'(0) =0.

The corresponding characteristic equation is

5
mr2+r+§:O,

with roots

-1+ 12—4-m-5/2 —1 1
= =—4 —+1—10m.
d 2m 2m  2m Orm

We are told the solution exhibits oscillatory behavior, so the thing under the square root sign must be
negative. Hence the roots to the CE can be written as

—lj:\/l()m—l )

2m om

This means the solution will contain sine and cosine terms with radial quasi-frequency @, where

o= v 10m—1

- 2m

On the other hand, if 7 is the quasi-period, then @ = ZT”; hence

o— 2 7
2, 10
T 10
Thus we must have that —Vlgzz_l = 110. It now remains to solve for m. Cross-multiplying to clear

denominators we get

5V 10m—1="Tm,

so after squaring both sides we have 25(10m — 1) = 49m?, or

49m? —250m+25 = 0.

This quadratic has the solutions m =5 or m = 4%.

Going back to our original differential equation, we see that 5 and % are both valid (non-negative)
values for the object’s mass such that the quasi-frequency of the solution’s oscillations is 17—0. We
therefore conclude that either m =5 kg or m = % kg, and that there is no way beyond this to tell given

the problem setup.



