Assignment 5, due Wednesday, May 13.

Reading: $\S \S 8.2$ \& 8.3.

HI Problems:

Problem S6.8. Suppose $X\left(x^{1}, x^{2}\right)$ is a regular patch such that

- The x^{1} curves are principal with $\kappa_{1}=0$ everywhere, and
- The x^{2} curves are principal with κ_{2} never zero.

Prove that the x^{1} curves are straight lines in \mathbb{R}^{3}.
Hints. Use the frame $\left\{N, X_{1}, X_{2}\right\}$. What do the given conditions tell you about N and $L_{i j}=N \cdot X_{i j}$? The desired conclusion is equivalent to X_{11} being a multiple of X_{1}.

Remarks. (i) If a regular surface has no umbilic points, it can be shown that for every point, one can find a parametrization of a neighborhood with all coordinate lines principal. Thus if a surface is all parabolic - that is, the surface has $K=0$ everywhere, but one principal curvature nonzero at every point - then the result of this problem says it can only bend along a straight line.
(ii) This problem is numbered S6.8, rather than S8.something, because it only uses earlier ideas. As we didn't get to the Clairaut formula on Friday, I put in this problem and postponed the Clairaut problems until next week.
p. 254, \#7.3.8.

Problem S8.3. As a contrast to problem 7.3.8, here is an example of two surfaces with the same Gaussian curvature, but different second fundamental forms, and there is an isometry between them.

Let S_{1} be the surface of problem $\operatorname{S6.7(b)}$ (from assignment 3) with the parametrization X restricted to $U=\{(u, v): \pi<u<\pi,-\pi / 2<v<\pi / 2\}$. That is, we delete one meridian so X is a regular parametrization. Let S_{2} be the sphere of radius c centered at the origin. Find a map $Y: U \rightarrow S_{2}$ that gives a parametrization of part of S_{2} so that $F=Y \circ X^{-1}$ is an isometry from S_{1} to $Y(U)$ (which is a proper subset of S_{2}). Hint: You may choose F so that it maps each meridian onto a meridian and each parallel to a parallel (but not onto a parallel, or even a parallel less one point).

Remark: Because the two surfaces have different second fundamental forms, there cannot be an isometry of \mathbb{R}^{3} that maps one surface to the other.

One more on the next page.

Problem S8.4. We continue our exploration of the geodesic torsion τ_{g}. Suppose $\alpha(t)$ is a unit speed curve in a regular surface.
(a) Assume the curvature κ of α as a space curve is never zero. Prove that

$$
\tau=-\tau_{g}+\frac{\kappa_{g} \kappa_{n}^{\prime}-\kappa_{g}^{\prime} \kappa_{n}}{\kappa^{2}}
$$

Hints: First express P and B of the Frenet frame in terms of the Darboux frame and the three curvatures. Remember that $\kappa^{2}=\kappa_{g}^{2}+\kappa_{n}^{2}$.

Remark: Notice that the formula reduces to $\tau=-\tau_{g}$ if α is a geodesic or an asymptotic curve. Those are the two cases we considered in Problem 8.2.1 and on the midterm.)
(b) Now suppose that κ is identically zero, so α is a straight line. Find an equation relating τ_{g} and and the Gaussian curvature K.

Hint: Using the Darboux frame as the basis for the tangent space, find the entries in the matrix $L_{i j}$ for the second fundamental form. You should not have to find all of them in order to get the result!

