Here are a few notes on Chapter 5. First, some additions to definitions:

Definition 5.1.6: We may also refer to the parametrization X as a parametrization of $V \cap S$ or a parametrization for S at p.

Definition 5.2.9: In point 1, differentiable is used to mean C^{∞} , not just having a (first) derivative. We will call the parametrization X a regular parametrization. The inverse map X^{-1} is the coordinate map and the functions u and v are the coordinates on the coordinate neighborhood $V \cap S$.

(Exuberant mathematician to 441 students: a regular parametrization is also called a *smooth embedding*. Note that a smooth embedding is a topological embedding that is also a smooth map, but in addition satisfies the regularity condition (point 3).)

Proposition 5.2.9.5, replacing Proposition 5.2.4 and Corollary 5.2.7.

Suppose X is a regular parametrization of a neighborhood W on a regular surface S, and that $p = X(q) \in W$. Then the tangent space and plane to S at p both exist. The tangent plane at p satisfies equation (5.1) and the tangent space at p is $T_pS = \text{Im}(dX_q)$.

Assignment 6, due Wednesday, February 25.

Reading: Read Chapter 5 at least through §3.

R Problem: p. 128, Problem 5.2.6. This should be very easy after doing HI Problem 5.1.1 as modified below.

HI Problems:

- **p. 84, Problem 3.3.6**, modified. We proved the "if" direction in class. Prove the "only if" direction with the additional assumption that $\kappa'(s)$ is never zero. Also find a counterexample to the original statement; that is, find a curve with torsion defined everywhere and satisfying the equation that is not contained in any sphere (and prove this, of course).
- **p. 113, Problem 5.1.1**, modified. Find two parametrizations of the cylinder, one as a surface of revolution and one that is a bijection onto the cylinder. Explain why you cannot restrict the domain of the surface of revolution parametrization to get one that is bijective.
- **p. 128, Problem 5.2.6.** Note that it is not enough to give one parametrization and show it does not satisfy the definition for a coordinate system; you must show that there is at least one point in the surface at which there cannot be any parametrization that satisfies the definition.
- **p. 128, Problem 5.2.7**, modified. Add the hypothesis that the curve is C^{∞} , and change what you are asked to prove to the following.
 - 1. Prove that if the given conditions hold, then S is a regular surface.
 - 2. Prove that if the given parametrization is a regular parametrization (defined above), then the given conditions hold.
 - 3. Find an example of a surface of revolution for which the given conditions do *not* hold but which is nevertheless a regular surface.
- p. 129, Problem 5.2.15, with the following hints and replacement for part (c).

General hint: Sketch the cross section by a plane that contains the z-axis and p and look for similar triangles.

- (b) Hint: Just compute $\pi \circ \pi^{-1}$, showing one or two intermediate steps.
- (c) Let σ be stereographic projection from the south pole S=(0,0,-1), so $\sigma:\mathbb{S}^2-\{S\}\to\mathbb{R}^2.$
 - 1. Find the formula for $\sigma^{-1} \circ \pi$, using geometry. (Do not use the formulas for π or σ to do this.)
 - 2. Find the formulas for σ and σ^{-1} . (Hint: You can do this either by slightly modifying your work in (a) and (b), or by clever use of (c1).)
 - 3. Find the formulas for the coordinate changes $\pi \circ \sigma^{-1}$ and $\sigma \circ \pi^{-1}$. (This can be done using either geometry or the formulas for the individual maps.)

Some notes on Chapter 5 on the front.