Assignment 7, last assignment collected, due Friday, May 29.

Reading: pp. 306-324

## R Problems:

Problem S8.5. Prove a compact regular surface in $\mathbb{R}^{3}$ that is not homeomorphic to a sphere has points where the Gaussian curvature $K$ is positive, is negative, and is zero.

## Part (c) of Problem S8.6 below.

## HI Problems:

Problem 8.4.4, p. 319. Hint: When $u_{2}-u_{1}=2 \pi=v_{2}-v_{1}$, your formula for the double integral of $K$ should give a value of zero. (Do you see why?)

Problem 8.4.5, p. 319.

Problem S8.6, a modification of Problem 8.4.6 on p. 319.
Let $S$ be a compact regular surface in $\mathbb{R}^{3}$.
(a) Assume the Gaussian curvature $K$ is positive everywhere on $S$. Prove that the Gauss map $n$ is a diffeomorphism.
(b) In problem 8.4.6, p. 319, change the hypothesis that $S$ is homeomorphic to the sphere to the condition that the Gaussian curvature $K$ is positive everywhere on $S$, and do the modified problem.
(c) $\mathbf{R}$ problem for class discussion Friday: Sketch or describe a counterexample to the original version of problem 8.4.6, and outline the proof that it is a counterexample. Can you devise a modified definition of area of the image of $n$ that would make the original version true?

Problem 8.4.7, p. 319. Correction: Assume $K \leq 0$ everywhere (not $K \geq 0$ ).

Problem 8.4.8, p. 320. Remarks and hints: Assuming the curve $P(t)$ is simple means not only that it splits the sphere into only two regions, but that for $t \in I$ the image only goes once around the boundary between the two regions. To simplify the calculations, you may assume that one of the curves ( $\alpha$ or $P$ ) is unit speed (but you cannot assume both are unit speed). Late in the calculations, you should find it useful to recall that for $f$ and $g$ functions of $t$,

$$
\frac{d}{d t} \arctan \left(\frac{f}{g}\right)=\frac{f^{\prime} g-f g^{\prime}}{f^{2}+g^{2}}
$$

