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Supplemental notes will include corrections, additions, and modifications to the text.
They will not repeat the corrections on the authors’ errata list - see link on the web for this
list.

Notation: We will use the abbreviation p-curve for parametrized curve (definition 1.1.18,
p. 5). This is to help us avoid the temptation to say just “curve” when we mean “p-curve.”
The word “curve” by itself usually means the locus (image) of a p-curve.

Problem clarifications:
Problem 1.1.3: Vector methods will give a simpler proof than the hint given in the book.
Problem 1.1.4: “distance” means “shortest (orthogonal) distance,” as in Problem 1.1.3.
Problem 1.2.6: You may assume ~x(t) is regular. At different times, I said to assume ~x(t)
is differentiable or that it is regular. If it is only differentiable, then at singular points, the
conclusion is still true because the zero vector is interpreted to be perpendicular to all other
vectors. Homework grading will allow for either assumption.
Problem 1.3.4: The term “smooth” has not been defined. Here, you may assume that f is
three times differentiable.

Smoothness: The term smooth has different meanings in different texts. Sometimes it is
used as a synonym for differentiable. Sometimes it means C∞; in practice, this of course
means, as many derivatives as you need to take are defined. Our text uses this “practical”
definition, so that when a hypothesis says “smooth,” the result can later be used in cases
where we only assume there are as many derivatives as needed in our calculations. So for
instance, in Problem 1.3.4, if we interpret “smooth” to mean C∞, we would not be able to
apply the result later for a function that is only of class C3, even though it holds in that
case.

Proposition 1.2.6.5. (That means, insert between Definition 1.2.6 and Example 1.2.7.)
Reparametrization by arclength. If ~x(t) is a regular p-curve, then there is a reparametriza-
tion of ~x by arclength. If ~x is of class Ck, then the arclength reparametrization is also of
class Ck.

Proof. We define the arclength s = f(t) as an antiderivative of the speed, ||~x′(t)||. As the
speed is strictly positive, f(t) is a strictly increasing, so it has an inverse, t = h(s). By the
inverse function theorem, because f has nonzero derivative everywhere, its inverse h is also
differentiable. The composite function ~y(s) = ~x(h(s)) is a reparametrization by arclength:
at s = f(t),

~y′(s) = ~x′(h(s))h′(s) = ~x′(t)
1

f ′(t)
=

~x′(t)

||~x′(t)||
.

If ~x is of class Ck, then the first derivative of s = f(t) (that is, ||~x′(t)||) is of class Ck−1,
so f(t) is of class Ck. In this case the inverse function theorem also tells us that the inverse
function h is of class Ck. The arclength parametrization ~y(s) is therefore the composition of
two functions of class Ck and so is also of class Ck. �

Remark. Strictly speaking, a p-curve parametrized by arclength should have zero in its
domain, because arclength is measured from a point on the curve. Note that even though
length as a physical quantity is non-negative, it is conventional to extend the definition of
arclength s(t) in equation (1.5), p. 14, to values of t that are less than a, which produces
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negative values of s(t). Having taken this step, the term “parametrized by arclength” is
further extended to apply to any unit speed parametrization, even if zero is not in the
domain. (In this case s(t) is actually the sum of arclength measured from some point on the
curve and a constant.)

Section 1.4. We will use the material on p. 28 as motivation only, and use a simplified
version of Corollary 1.4.3 as the definition of contact of order n. The motivational material
indicates how one could define this concept for curves that are not even differentiable. We
will use the concept only for curves that are at least differentiable, and usually Ck for k ≥ 3,
so might as well have a definition in terms of the derivatives of the curves.

In equation (1.14), the notation ADA means the (Euclidean) distance between A and
DA, and AP k similarly means the kth power of the distance between A and P . Here n and k
are non-negative integers. Note that for k = 0, equation (1.14) reduces to limA→P ADA = 0,
which holds because C1 and C2 intersect at P .

Now let’s consider a basic example: C1 is the locus of (t, tj) and C2 is the locus of (t, 0).
The point of intersection, P , is the origin. Let A = (t, tj). Then DA = (t, 0) and the
condition (1.14) becomes

lim
t→0

|tj|
√
t2 + t2j

k
= lim

t→0

|t|j

|t|k(1 + t2j−2)k/2
=

{
1 k = j

0 k ≤ j − 1

Therefore by the definition in the book, C2 has contact of order j− 1 with C1. Observe also
that the first j − 1 derivatives of the two p-curves agree at the origin, but the jth derivative
does not.

Motivated by this example, we make the following definition. Let ~α and ~β be two regular
curves whose loci intersect at P . Assume without loss of generality that ~α(s) and ~β(u) are

both unit speed with ~α(s0) = ~β(u0) = P . Furthermore, by replacing u by −u if necessary in

the formula for ~β, we may assume that ~α′(s0) · ~β′(u0) ≥ 0.

Definition 1.4.3.1 (replacing Definition 1.4.2): Using the notation given above, assume

that ~α(s) and ~β(u) are Cn+1. We say that ~α and ~β have contact of order n (or, contact order
n) at P if

~α(k)(s0) = ~β(k)(s0)

for all integers k with 0 ≤ k ≤ n, but

~α(n+1)(s0) 6= ~β(n+1)(s0).

It can be shown that this is equivalent to the book’s definition. One advantage to the
definition 1.4.3.1 above is that it is clearly symmetric with respect to the two curves. (With
the definition in the book, we would have either have to prove the symmetry, which is not at
all obvious, or be very careful to say C2 has contact of order n with C1 when (1.14) is satisfied,
but not claim that C1 has contact of order n with C2 unless we prove that separately.)
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Remark. Notice that in definitions, we say “if” when we really mean “if and only if.” It’s
defininately peculiar that mathematicians insist that “if” and “if and only if” do NOT mean
the same thing in any other context, but assume the former means the latter in definitions.

Now continue with the text, starting with the paragraph before Definition 1.4.4. The
middle sentence of that paragraph needs the following correction: it should end with “and
its tangent line have contact order at least 1.” (And from the errata on the web - have you
made all the corrections in your book yet? - there’s an addition to Definition 1.4.4.)

Proposition 1.4.5: Add the assumption that the curve is of class C3. The statement of
the proposition otherwise remains the same, but the proof simplifies tremendously using our
definition of contact order.

Proof. To apply our definition, we must reparametrize both the original curve ~x(t) and
the proposed osculating circle by arclength. Let ~y(s) be the reparametrization of the original
curve ~x(t) by arclength from the point ~x(t0), so ~y(0) = ~x(t0). For the proposed osculating
circle, again measuring from ~x(t0), we get

~δ(s) = ~x(t0) +
~U(t0)

κg(t0)
+

1

κg(t0)

(
sin(κg(t0)s)~T (t0)− cos(κg(t0)s)~U(t0)

)
.

(The unit tangent and normal and the curvature are those from the original curve ~x(t).)
Differentiating and evaluating at s = 0, we find that the 0th, 1st, and 2nd derivatives of ~y
and ~δ agree, so these curves have contact order at least two.

It remains to check uniqueness. If we have any other unit speed circle that passes through
~x(t0) with tangent parallel to ~T (t0), its center must be on the line ~x(t0) + λ~U(t0), where |λ|
is the radius of the circle, and 1/λ is the curvature of the circle. (Think through why this
is correct if λ < 0.) If the circle has contact order at least two with our original curve, this
means λ = 1/κg(t0), so the osculating circle is uniquely determined. �


