
Math 442 Revised Supplemental Notes, §1.5 & Chapter 2 January, 2015 1

Some revision has been made to comments on the proof of the Isomperimetric Inequality
from the first version posted for these notes.

Remarks on §1.5

In §1.5, the terms “rigid motion,” “positive isometry,” and “composition of rotations
and translations” are used as if they are synonymous. The full set of rigid motions for the
plane is the set of transformations that are compositions of reflections as well as rotations
and translations. Reflections are excluded from consideration here because they reverse
orientation, and thus do not preserve the cross product and also reverse the sign of the
curvature.

By definition, an isomety is a mapping from one metric space to another that preserves
the distance function:

F : (X1, d1)→ (X2, d2) such that d2(F (x), F (y)) = d1(x, y) for all x, h ∈ X1.

(Here (Xi, di) is a set Xi with a metric (distance function) di.) The require that the metric be
preserved implies that an isometry is continuous. If the metric comes from a scalar product
on Euclidean space, a mapping that preserves the scalar product must be an isometry.
Conversely, Supplementary Problem S2.2 (at the end below, or see Assignment 3) shows
that an isometry of Euclidean space must be the sum of a translation and a mapping that
preserves the scalar product.

Here is a slight rewording of Theorem 1.5.2, the Fundamental Theorem of Plane
Curves. Let κg : I → R be a piecewise continuous function on an interval I. Then
(a) there exists a unit speed parametrized curve ~x : I → R2 with curvature function κg; and
(b) This curve is unique up to a positive isometry.

Chapter 2

Note that the Definition 2.1.1, p.39, implicitly requires that a regular curve be infinitely
differentiable, at least at the endpoints of the domain (because all the derviatives must be
defined there to make sense of the stated conditions). But the idea is that the image of the
endpoints should be “just as nice” as the other points on the curve. So for consistency we
will assume that regular means the curve is C∞.

In Green’s Theorem, 2.1.3, and its Corollary 2.1.4, the curve does not need to be C∞.
The following will suffice: Assume the curve is a positively oriented, simple closed p-curve
that is piecewise regular and C1. This means that the domain can be divided into a finite
number of closed subintervals with the parametrization regular and C1 (using one-sided
derivatives at the endpoints) on each subinterval.

The Isomperimetric Inequality, Theorem 2.3.1, should have the same conditions
on the curve as in Green’s theorem.

Some comments on the proof. One should prove that ȳ(s) is C1 (though no book I’ve
checked does this). The parametrization γ(s) for the circle may not be a simple closed
curve, so Green’s Theorem as stated does not apply. However, if the curve fails to be
simple, it go “back and forth” over a section of the circle, and the area integral −

∫
ȳdx =



Math 442 Revised Supplemental Notes, §1.5 & Chapter 2 January, 2015 2

−
∫
x′(s)ȳ(s)ds will compute the area between the curve and the axis positively when moving

counterclockwise and negatively when moving clockwise. So after cancellation, we will get
the correct area enclosed by the curve. (Contrast this to the case of arclength, where the
distance along the curve is counted as positive whichever direction the curve is parametrized.)
To go from the first to the second line of (2.6), add the nonnegative quantity (xx′ + ȳy′)2

under the radical. (I previously said the geometric arithmetic mean inequality was need
here, but it is not.) To prove the geometric mean is no greater than the arithmetic mean,
that is,

√
ab ≤ (a+ b)/2 for nonnegative a and b, start with (

√
a−
√
b)2 ≥ 0.

In Definition 2.4.1, p. 53, the last sentence should say, “If S [not C] is not convex, ...”.
The original sentence with C and the reference to Figure 2.5 should be on the next page at
the end of Definition 2.2.2.

Propositions 2.4.3 and 2.4.4. Because the definition of convex requires a curve to be
simple, it does not change the content of the first proposition to include “simple” in the
initial list of conditions on the curve. We can always reparametrize a regular closed curve
to be unit speed and counterclockwise around its interior. So let us rephrase the results of
these two propositions as follows.

Let ~x : I → R2 be a simple, regular, closed, unit speed parametrized curve that goes coun-
terclockwise around its interior, and let C be its locus. Then the following three conditions
are equivalent:

(i) The curvature of ~x is nonnegative at every point. (If it were parametrized clockwise
instead, the curvature would instead be nonpositive.)

(ii) The curve is convex, that is, the set S that is the union of C and its interior is a
convex set.

(iii) At every point of C, all of C is on one side of the tangent line to C at that point.
(Here the “side” includes its boundary, that is, the tangent line.)

Discussion. The condition that the curve be simple is necessary for our text’s definition.
Challenge: Contruct (picture, not formulas) a nontrivial example of a closed curve that is
not simple, but the union of the curve C with points in the bounded connected components
of R2 − C is a convex set. (“Nontrivial” excludes a failure to be simple because the curve
“goes around more than once,” e.g., (cos t, sin t) on [0, 4π].) Most books take (iii) as the
definition of convex. One can then prove that the curve is simple, so it satisfies the definition
of convex in our text.

Proof. We will prove the contrapositives of the equivalences; that is, we will show that
the following are equivalent.

(i) The curvature of ~x is negative at some point.

(ii) The curve fails to be convex.

(iii) At some point of C, the tangent line has points of C on one both sides.

For any point p on C, by applying an isometry we may assume that p is the origin, the
unit tangent at p is (1, 0), and therefore from our counterclockwise assumption, the interior
C includes points on the positive y-axis. To show (i’) implies (ii’), let p be a point where the
curvature is negative, and apply an isometry as just described. Near p, we may reparametrize
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C as a graph (t, f(t). Using the formula for curvature you computed for Problem 1.3.5, we
see that negative curvature at p implies that the curve has a strict local maximum for the
y-coordinate at p. Thus near near p, the curve lies in the 3rd and 4th quadrants. A chord
between two points near p on C, one in each of these quadrants, will cross the negative y-axis
arbitrarily close to the origin, which will be in the exterior of C. Therefore C is not convex.

For (ii’) implies (iii’), if the curve fails to be convex, then there will be a pair of points
p and q on the curve such that the line segment L between p and q includes no points in
the interior of C. As above, we may assume that p is the origin and the unit tangent at p
is (1, 0). Therefore from our counterclockwise assumption, the interior C includes points on
the positive y-axis. As the interior of C is bounded by C, there must be some points of C
above the x-axis.

We will now show that q must be on or below the x-axis. Reparametrize the curve near p
by (t, f(t). Using the Taylor Theorem with Remainder for the p-curve, we know that there
are positive numbers ε and M such that for t < ε, we have |f(t)| < Mt2. Thus the interior
of C includes an open set V with lower boundary Mt2 for t < ε. If q is above the x-axis,
then the line segment L will intesect V , contradicting the definition of L.

If q is below the x-axis, which is the tangent line at p, then we have points on C both
above and below that tangent line and have shown (iii’). If q is on the x-axis, WLOG on
the positive x-axis, then the definition of L means the points (x, 0) between p and q must
be in the exterior of C, so the curve goes into the first quadrant from p. Therefore there
is a point on C near p whose tangent line has positive slope. Then p is on one side of that
tangent line, and q is on the other. So we have that (ii’) implies (iii’).

For (iii’) implies (i’), I do not see a way to fill in the gap in the text’s method of proof.
Instead, we will use Proposition 2.2.8, which says that the rotation index of a simple, closed
regular curve ±1. We will prove this proposition later, with no use of Propositions 2.4.3 or
2.4.4, so no circular reasoning. If you would like to see the proof now, see Theorem 2, p.
396, in the do Carmo book on reserve (same title as our book).

This is a proof by contradiction. We assume (iii’), that there are points of C on both
sides of the tangent line at p, and (i), that the curvature is nonnegative. As before, we
may assume that tangent line is the x-axis, so we have points on the curve with positive
y-coordinate and with negative y-coordinate. Because the p-curve is continuous, by the
Extreme Value Theorem there points q and r where y has its maximum and minumum
values of y, respectively. The tangent lines at those points are also horizontal. Using the
positive orientation, we find that the unit tangent vectors at p and r are both (1, 0), while

at q the unit tangent must be (−1, 0). If ~T = (cos θ, sin θ), then at p and r, we have θ is an
multiple of 2π, while at q it is an odd integral multiple of π. Recall (p. 36) that κg = dθ/ds.
For contradiction, we assumed the curvature is nonnegative, so the angle θ is nondecreasing.
No matter the order in which the curve passes through the three points, this means that θ
changes by at least 2π between p and r, and then must change some more to complete the
closure of the curve. This contradicts Proposition 2.2.8, showing that (i) is false; therefore
(iii’) implies (i’). �

See next page for correction to 2.4.2 and supplementary problems.
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Chapter 2 Problem correction:
Problem 2.4.2 (a): κ should be κg.

Supplementary problems.

Problem S2.1. Compute the area of an an ellipse with semi-axes of lengths a and b.
(Hint: You should be able to do this by both of the following methods.
(i) Make a change of variables so the ellipse becomes a circle, and apply the change of
variables formula for integrals to the integral that gives the area. We will need the change
of variables formula in Chapter 6.
(ii) Use Corollary 2.1.4.)

Problem S2.2. Let (Rn, d) represent Rn as a metric space with the distance function d
between points defined from the scalar product in the standard way:

d( ~A, ~B) =

√
( ~A− ~B) · ( ~A− ~B).

Suppose that F : (Rn, d) → (Rn, d) is an isometry, i.e., d(F ( ~A), F ( ~B)) = d( ~A, ~B). Prove
that F preserves the scalar product:

F ( ~A) · F ( ~B) = ~A · ~B for all ~A, ~B ∈ Rn.

As we remarked in class, the converse is easy to prove. Thus isometry for Euclidean spaces
may be defined either by requiring preservation of the distance function or preservation of
the scalar product.

Problem S2.3. Use the Isoperimetric Inequality to prove that the arclength L of an ellipse
with semi-axes of lengths a and b satisfies inequality L ≥ 2π

√
ab.

Problem S2.4. Construct a nontrivial example of a closed curve that is not simple, but
the union of the curve C with points in the bounded connected components of R2 − C is a
convex set. You need not give explicit formulas, but must explain how the formulas could be
constructed. “Nontrivial” excludes a failure to be simple because the curve travels around
the same locus twice or more, e.g., (cos t, sin t) on [0, 4π].


