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Corrections to IFT and S3.5 as in email. Contents: A few more clarifications and cor-
rections for Chapter 3, some remarks on advanced calculus we need before starting Chapter
5, and more supplemental problems at the end. (We will skip Chapter 4 for now: many of
its techniques and results are closely related to Chapter 8, so more easily done then.)

But first, comment from the grader. “It would be nice if the students don’t submit
their draft [of their homework]. They should work [the draft] on scratch paper [or a board,
or whatever] first, then organize it and write a good solution. It is hard to read if there are
arrows everywhere and information spread all over the pace. In Math we are persuading
others with arguments, so the arguments should be nicely written. Also, they should staple
their work. There are staplers in the library, at the front desk or by printing.” In the future,
he may deduct points for poor organization and exposition, even if the solution is correct
(or seems to be, as well as he can make it out).

Additional Chapter 3 Corrections.

Last sentence, p. 81 should say “contact of at least order 3” (i.e., add “at least”).

Proposition 3.3.3 Proof, last line on p. 82, delete “sign(f ’)”, so it says τξ = τ .

Exercise 3.3.3, p. 83, change “osculating circle” to “osculating plane.”

Theorem 3.4.2, p. 84, should require κ(s) > 0; that is, the curvature cannot be zero
anywhere (because if it were, the torsion τ would be undefined).

Some advanced calculus

The authors of our text want the book to be accessible to a wide range of students,
so do not expect their readers to have any background in analysis beyond calculus. With
your background of Math 327/8 and 441 or 424, or 334/5, you deserve, and are expected to
handle, more sophisticated analysis. In fact, this may sometimes make definitions and proofs
simpler! So this supplement summarizes some definitions and results about differentiation
for functions of several variables. If you have taken or are taking Math 326, Math 334/5, or
Math 425, much of this material may be review.

The main reference is Folland’s Advanced Calculus, which is on reserve in the Math
Library. References below to [F] indicate that book, while [B&L] indicates our text.

Let S be a subset of Rn, usually an open one, and suppose we have a function f : S → Rm

and a ∈ S (or sometimes the closure of S). For this supplement (at least), I will dispense
with putting arrows over vectors and vector-valued functions. We define

lim
x→a

f(x) = L

to mean that for every ε > 0, there is a δ > 0 such that

||f(x)− L|| < ε whenever 0 < ||x− a|| < δ and x ∈ S.

See [F], pp. 13-14, if you would like more discussion of this definition or what follows. (The
reference uses |x| instead of ||x|| for the Euclidean norm of a vector.) When n = 1, you should
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confirm that this definition reduces to Definition 1.1.4, pp. 3-4, of [B&L]. Hopefully you will
think that the new definition is an obvious generalization of 1.1.4, at least in hindsight.
Continuity for a function at a point is defined as usual, that the limit at the point exists and
is equal to the value of the function there.

The strict analog of Proposition 1.1.6, p. 4, in [B&L] holds: If f(x) = (f1(x), f2(x), ..., fm(x))
and L = (L1, ..., Lm), then limx→a f(x) = L if and only if limx→a fj(x) = Lj for j = 1, 2, ..., n.
However, as mentioned the first week of class, if we try to make a similar proposition that
focusses on components in the domain instead of the codomain, the result is not true in
general. Here are the standard counterexamples; they are worked out in [F], pp. 14-15.

Example 1: A function that is continuous along both axes, but discontinuous along lines
through the origin (so discontinuous at (0,0)):

f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Example 2: A function that is continuous along every line through the origin, but
nonetheless discontinuous at (0,0):

f(x, y) =

{
x2y
x4+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

These examples show we must use the definition of limit carefully, and not just think
about “approaching” a point in various ways. However, the basic facts about continuity
- compositions of continuous functions and algebraic functions are continuous - follow as
expected.

Next we consider differentiablity of f : S → Rm for S ⊆ Rn, n > 1. At a minimum,
we would like to have the directional derivatives at a make sense. Recall that the direc-
tional derivative in a given direction is the derivative of f(x(t)), where x(t) is a unit speed
parametrization of the line with the given direction. In particular, the partial derivatives
of f at a point a are directional derivatives. Existence of the partial derivatives at a is
insufficient to ensure differentiability there, as we can see in example 1 above: The partials
exist at the origin, but the directional derivatives in other directions do not.

The essential feature of a derivative is that it gives linear approximation of the function.
For single variable calculus, this means

f(x)− f(a) ≈ f ′(x)(x− a), for x, a ∈ R.

To quantify how good the approximation is, let’s write it as

f(x)− f(a)− f ′(x)(x− a)→ 0,

but we need to say how quickly it goes to zero as x approaches a. In fact what we want is

lim
x→a

f(x)− f(a)− f ′(x)(x− a)

x− a
= 0. (1)
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Exercise: Show that that the equation in (1) holds if and only if

lim
x→a

f(x)− f(a)

x− a
= f ′(x).

If f : Rn → Rm, to make sense of the approximation we need the number f ′(x) to be
replaced by a linear transformation from Rn to Rm; for the moment, let’s call it L. (Remark:
The terms function, transformation, map, and mapping are essentially interchangeable.)
And since we can’t divide by the vector x− a, let us rewrite the limit in (1) as

lim
x→a

f(x)− f(a)− L(x− a)

||x− a||
= 0, for x, a ∈ Rn. (2)

Definitions. We define the function f to be differentiable at a if there is a linear function
L so that the equation in (2) holds. This definition, with slightly different notation, appears
at the top of p. 108 in [F]. Names and notation for the linear function L vary. Our text

calls it the differential of f at a, and writes it d~f~a (p. 120). Folland calls it the Fréchet
derivative and writes Df(a). Let’s use the [B&L] notation but allow omitting the arrows,
and call dfa either the derivative or the differential. (In other books, you may see it called
the total derivative, and denoted in many different ways, including Daf , Tf(a), f∗(a), and
even f ′(a). That last one is my least favorite because it tends to lead students to forget
there’s more than one independent variable.)

The matrix for dfa, which we’ll denote [dfa], has the first partials of f as its entries or
columns. (Columns, you ask? If the codomain is Rm for m > 1, each partial is a vector.) To
see this, let Ei be the vector with 1 in the ith slot and 0 in all other slots; in other words, the
unit vector parallel to the xi-axis, pointing in the positive xi direction. If you set x−a = hEi
in (2), you should see that you must have L(Ei) = dfa(Ei) = ∂f/∂xi for (2) to hold. But
L(Ei) = dfa(Ei) is also the ith column in the matrix for dfa, giving the result claimed. The
matrix [dfa] is sometimes called the Jacobian matrix for f at a, and its determinant is the
Jacobian determinant (or just the Jacobian).

If f is differentiable at a, then the directional derivative in the direction of a unit vector
u is given by dfa(u). However, existence of directional derivatives in all directions is not
enough to ensure differentiability. Here is simple example to show this.

Example 3:

f(x, y) =

{
x2y
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Suppose df(0,0) exists, and let u(u1, u2) be a unit vector. Then

df(0,0)(u) =
d

dt
f(tu1, tu2) =

d

dt

t3u21u2
t2

= u21u2.

For u = (1, 0) or (0, 1), the directional derivative is zero. (We could also deduce this from
the fact that f is identically zero along both axes, so the partial derivatives vanish at the
origin.) So if the derivative df(0,0) exists, it must be the zero transformation. But then we
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would get zero for all the directional derivatives at the origin, which the computation above
shows we do not.

Fortunately, if we require a bit more than just existence of the partial derivatives, we can
be deduce that the function is differentiable. Specifically, if f and its first partial derivatives
exist on a neighborhood of a and are continuous at a, then f is differentiable at a ([F], p. 57).
For functions of several variables, we say the function is Ck (or class Ck) if the function and
all its partials up to order k are continuous. Thus requiring a function to be C1 is sufficient
to ensure its differentiability.

Now let us turn to the Chain Rule. You may recall it as a formidable expression in terms
of partial derivatives. Using the (total) derivative instead of partial derivatives, the Chain
Rule for functions of several variables looks, except for the description of the functions and
the notation for the derivative, exactly like the chain rule in first year calculus.

Chain Rule. Suppose f : S → Rm for S ⊆ Rn and f is differentiable at a for some a ∈ S.
Also suppose g : T → Rp, where T ⊆ image(f) ⊆ Rm, and that g is differentiable at f(a).
Then h = g ◦ f is differentiable at a, and dha = dgf(a) ◦ dfa.

Here the linear function dha is given as the composition of two linear functions. If we look
at the corresponding matrices, we get [dha] = [dgf(a)] · [dfa], where · is included to emphasize
the matrix multiplication on the right side of the equation. Exercise: For n = 2, m = 3, and
p = 1, show that the matrix multiplication produces the formulas for the sums of products
of partial derivatives you were given when you first saw the multivariable Chain Rule.

Next we review the Inverse and Implicit Function Theorems. These two theorems are
closely related, and in fact essentially equivalent, in the following sense. Some books prove
the former first, and use it to prove the latter. Other books do the reverse!

The Inverse Function Theorem, Theorem 3.18, p. 137 [F]. Suppose S is an open set
in Rn and f is a C1 function from S to Rn. Also suppose a ∈ S and dfa is invertible.
(Requiring invertible is equivalent to requiring dfa is one-to-one, or that the determinant of
[dfa] is nonzero.) Then there is an open set U ⊆ S with a ∈ U and an open subset V ⊆ Rn

with f(a) = b ∈ V such that the restriction of f to U is bijective, and its inverse function
g is also C1. Furthermore, [dgf(x)] = [dfx]

−1, so the partial derivatives of g are given by the
entries in the inverse matrix for df . If f is Ck for k > 1, then g is also Ck.

The Implicit Function Theorem: the Hypersurface (codimension 1) Case,
Theorem 3.1, pp. 114-115 in [F]. Suppose S is an open set in Rn+1 and F : S → R is C1.
Represent points in the domain as (x, z) ∈ Rn×R, so x ∈ Rn and z ∈ R, and consider the set
{(x, z) : F (x, z) = c} for a constant c ∈ R. If (a, b) ∈ S, F (a, b) = c, and ∂F/∂z(a, b) 6= 0,
then there are open sets U ⊆ Rn and V ⊆ R with (a, b) ∈ U ×V ⊆ S such that the following
hold.

1. There is a C1 function g : U → V such that F (x, g(x)) = c everywhere on U .

2. For every x ∈ U , the only solution z ∈ V for F (x, z) = c is z = g(x).

3. The partial dervatives of g are given by
∂g

∂xi
= −∂F/∂x

i

∂F/∂z
.
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4. If F is Ck for k > 1, then g is also Ck.

Other versions of the Implicit Function Theorem are similar. For a function F : Rn+k →
Rk, instead of requiring one partial derivative to be nonzero, we must have a k×k submatrix
matrix of the derivative dF be nonsingular. The deteminant for this submatrix appears in the
denominator of the formula for the partials of g, and the numerator is another determinant.
See e.g., Theorem 3.9, p.118 in [F].

Supplementary problems.

Problem S3.5. The goal of this problem is to prove the uniqueness part of Theorem 3.4.1.
Suppose ~x(s) and ~y(s) are two unit speed parametrized curves I → R3 with the same nonzero
curvature function κ and torsion function τ and the same initial conditions: for some s0 ∈ I,

~x(s0) = ~y(s0), ~x′(s0) = ~y′(s0), and ~x′′(s0) = ~y′′(s0).

Denote the Frenet frames of ~x and ~y by {~Tx, ~Px, ~Bx} and {~Ty, ~Py, ~By}, respectively. Let

f(s) = ~Tx(s) · ~Ty(s) + ~Px(s) · ~Py(s) + ~Bx(s) · ~By(s).

(a) Prove that f is constant.

(b) Determine the constant value of f , and explain why this means that ~Tx(s) = ~Ty(s)
for all s ∈ I.

(c) Conclude that ~x(s) = ~y(s) for all s ∈ I.

Remark: For part (c), we do need to solve a system of differential equations, but it is a
much simpler system than the original one in (3.17), p. 85. In fact for part (c), first year
calculus results are sufficient to draw the conclusion.

Problem S3.6. Suppose G(x, y, z) = (3yz2,−exy) and F (s, t) = (s ln t, F2(s, t), 9 − 2t),
where you know the following about the function F2: it is differentiable at (3,2),

F2(3, 2) = −2,
∂F2

∂s
(3, 2) =

√
2, and

∂F2

∂t
(3, 2) = −1.

Use the Chain Rule to find the derivative (Jacobian matrix) for H = G◦F at the point with
coordinates (s, t) = (3, 2).

Problem S3.7. Consider the equation ew(x3 + y3 + z3) =
√

1 + w2 + 3xyz near the
point (x, y, z, w) = (1, 0, 0, 0).

(a) Does the Implicit Function Theorem say you can solve for w as a differentiable function
f(x, y, z) on a neighborhood of (x, y, z) = (1, 0, 0), with f(1, 0, 0) = 0? If the answer is yes,
find the approximate value of f(1 + s, t, u) as a linear function of (s, t, u) for small (s, t, u).

(b) Does the Implicit Function Theorem say you can solve for z as a differentiable function
g(x, y, w) on a neighborhood of (x, y, w) = (1, 0, 0), with g(1, 0, 0) = 0? If the answer is yes,
find the approximate value of g(1 + s, t, v) as a linear function of (s, t, v) for small (s, t, v).


