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In the first two classes after the midterm, we worked through Exercise 3.5.5, finding the
eigenvalues and respective eigenfunctions for the regular Sturm-Liouville (SL) problem

(A) f ′′ + λf = 0, (B) f ′(0) = 0, and (C) f ′(l) = βf(l).

Here is a brief summary of our work and the final conclusions.

Recall the physical interpretation of the boundary condition at x = l: β = 0 means an
insulated boundary, while β < 0 models heat radiating from the end x = l according to
Newton’s Law of Cooling, with ambient temperature = 0. The case β > 0 is not physically
reasonable, because it would mean that when the end is hotter than than its surroundings,
heat flows into the object, but we can still solve the SL problem.

For convenience of computation, for each λ, we consider all possible (real) values of β.
The final answer is organized differently: given a particular value of β, we want to know
a complete set of eigenfunctions and corresponding eigenvalues. We also want to know the
norms of the eigenfunctions (for use in computing coefficients for eigenfunction expansions).

We found that when λ = 0, we get a nontrivial solution only if β = 0. (It’s the constant
solution we have found before when both ends are insulated.)

If λ = −µ2 < 0, then (A) and (B) imply an eigenfunction must be of the form f(x) =
cosh(µx). Plugging this function into (C) and doing some algebra produces

tanhµl =
β

µ
. (1)

(Note we assumed µ2 6= 0, so it’s OK to divide by µ.) By graphing both sides of this equation
as functions of µ, we saw that there is no solution if β ≤ 0, and a pair of solutions µ0,−µ0 if
β > 0. But ±µ0 give the same λ and also the same f , so we have one (linearly independent)
eigenfunction f(x) = cosh(µ0x) with eigenvalue −µ2

0.

For λ = ν2 > 0, then (A) and (B) imply an eigenfunction must be of the form f(x) =
cos(νx). If β = 0, we have the familiar case ν = nπ/l for integers n, so the eigenvalues are
λn = [nπ/l]2 for positive integers n. If β 6= 0, then (C) implies ν is a nonzero solution to

tan νl = −β
ν
. (2)

Again graphing the two sides of the equation, this time as functions of ν, we saw that there
are an infinite sequence of solutions for every (nonzero) value of β. If ν is a solution, then
−ν is also a solution; but we get the same λ and same eigenfunction for ±ν, so we restrict
attention to positive ν. We also saw that as the n→∞, the solutions will be approximately
the values where tan(νl) = 0; that is, ν ≈ nπ/l. More precisely, for large n, if β < 0,
then νn+1 ' nπ/l; and if β > 0, then νn / nπ/l. Thus for large n the eigenvalues and
eigenfunctions are almost the same as for the insulated case (β = 0).

Now we summarize and compute the norms. For β = 0, the eigenvalues are λn = [nπ/l]2

for n = 0, 1, 2, ..., and the corresponding eigenfunctions are fn(x) = cos(nπx/l). We know
from previous work that ||fn||2 = l/2.
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If β < 0, every eigenvalue has the form ν2n with νn the nth positive solution to (2).
There are an infinite number of these, with values going to infinity. The corresponding
eigenfunctions are fn(x) = cos(νnx), with

||fn||2 =

∫ l

0

cos2(νnx)dx =
l

2
+

sin(2νnl)

4νn
=
lνn + sin(νnl) cos(νnl)

2νn

=
lνn sin(νnl) + sin2(νnl) cos(νnl)

2νn sin(νnl)

=
lβ − sin2(νnl)

2β
(3)

(using the fact that νn sin(νnl) = −β cos(νnl) to get the last line). Any of these expressions
for the square of the norm is correct, and the book uses one more,

||fn||2 =
l|β|+ sin2(νnl)

2|β|
.

The last two expressions show that for large n, sin2(νnl) ≈ 0, so ||fn||2 ≈ l/2.

If β > 0, we still get the eigenvalues λn = ν2n with νn the nth positive solution to (2),
corresponding eigenfunctions are fn(x) = cos(νnx), and norm-squared as in (4). In addition,
we get one additional eigenvalue, λ = −µ2

0 where µ0 is the single positive solution to (1),
with eigenfunction cosh(µ0x). It only remains to compute the square of its norm:∫ l

0

cosh2(µ0x)dx =
2lµ0 + sinh(2µ0l)

4µ0

=
lβ + sinh2(µ0l)

2β
,

(using hypertrig identities and the fact that β/µ0 = tanhµ0l).

In all cases, by Theorem 3.10, the complete set of eigenfunctions is an orthogonal basis
for L2(0, l).

Additional remark on the physics. The eigenvalues for the physically reasonable case
β < 0 are all positive. Recall the factors exp(−kλnt) in the solution u(x,t): all positive
eigenvalues means the solution will decay to zero. This fits the situation we are modelling:
as heat radiates, the solution u(x, t) should tend to to zero.


