In the first two classes after the midterm, we worked through Exercise 3.5.5, finding the eigenvalues and respective eigenfunctions for the regular Sturm-Liouville (SL) problem

$$
(A) f^{\prime \prime}+\lambda f=0, \quad(B) f^{\prime}(0)=0, \quad \text { and } \quad(C) f^{\prime}(l)=\beta f(l)
$$

Here is a brief summary of our work and the final conclusions.
Recall the physical interpretation of the boundary condition at $x=l$: $\beta=0$ means an insulated boundary, while $\beta<0$ models heat radiating from the end $x=l$ according to Newton's Law of Cooling, with ambient temperature $=0$. The case $\beta>0$ is not physically reasonable, because it would mean that when the end is hotter than than its surroundings, heat flows into the object, but we can still solve the SL problem.

For convenience of computation, for each λ, we consider all possible (real) values of β. The final answer is organized differently: given a particular value of β, we want to know a complete set of eigenfunctions and corresponding eigenvalues. We also want to know the norms of the eigenfunctions (for use in computing coefficients for eigenfunction expansions).

We found that when $\lambda=0$, we get a nontrivial solution only if $\beta=0$. (It's the constant solution we have found before when both ends are insulated.)

If $\lambda=-\mu^{2}<0$, then (A) and (B) imply an eigenfunction must be of the form $f(x)=$ $\cosh (\mu x)$. Plugging this function into (C) and doing some algebra produces

$$
\begin{equation*}
\tanh \mu l=\frac{\beta}{\mu} . \tag{1}
\end{equation*}
$$

(Note we assumed $\mu^{2} \neq 0$, so it's OK to divide by μ.) By graphing both sides of this equation as functions of μ, we saw that there is no solution if $\beta \leq 0$, and a pair of solutions $\mu_{0},-\mu_{0}$ if $\beta>0$. But $\pm \mu_{0}$ give the same λ and also the same f, so we have one (linearly independent) eigenfunction $f(x)=\cosh \left(\mu_{0} x\right)$ with eigenvalue $-\mu_{0}^{2}$.

For $\lambda=\nu^{2}>0$, then (A) and (B) imply an eigenfunction must be of the form $f(x)=$ $\cos (\nu x)$. If $\beta=0$, we have the familiar case $\nu=n \pi / l$ for integers n, so the eigenvalues are $\lambda_{n}=[n \pi / l]^{2}$ for positive integers n. If $\beta \neq 0$, then (C) implies ν is a nonzero solution to

$$
\begin{equation*}
\tan \nu l=-\frac{\beta}{\nu} \tag{2}
\end{equation*}
$$

Again graphing the two sides of the equation, this time as functions of ν, we saw that there are an infinite sequence of solutions for every (nonzero) value of β. If ν is a solution, then $-\nu$ is also a solution; but we get the same λ and same eigenfunction for $\pm \nu$, so we restrict attention to positive ν. We also saw that as the $n \rightarrow \infty$, the solutions will be approximately the values where $\tan (\nu l)=0$; that is, $\nu \approx n \pi / l$. More precisely, for large n, if $\beta<0$, then $\nu_{n+1} \gtrsim n \pi / l$; and if $\beta>0$, then $\nu_{n} \lesssim n \pi / l$. Thus for large n the eigenvalues and eigenfunctions are almost the same as for the insulated case $(\beta=0)$.

Now we summarize and compute the norms. For $\beta=0$, the eigenvalues are $\lambda_{n}=[n \pi / l]^{2}$ for $n=0,1,2, \ldots$, and the corresponding eigenfunctions are $f_{n}(x)=\cos (n \pi x / l)$. We know from previous work that $\left\|f_{n}\right\|^{2}=l / 2$.

If $\beta<0$, every eigenvalue has the form ν_{n}^{2} with ν_{n} the nth positive solution to (2). There are an infinite number of these, with values going to infinity. The corresponding eigenfunctions are $f_{n}(x)=\cos \left(\nu_{n} x\right)$, with

$$
\begin{align*}
\left\|f_{n}\right\|^{2}=\int_{0}^{l} \cos ^{2}\left(\nu_{n} x\right) d x & =\frac{l}{2}+\frac{\sin \left(2 \nu_{n} l\right)}{4 \nu_{n}}=\frac{l \nu_{n}+\sin \left(\nu_{n} l\right) \cos \left(\nu_{n} l\right)}{2 \nu_{n}} \\
& =\frac{l \nu_{n} \sin \left(\nu_{n} l\right)+\sin ^{2}\left(\nu_{n} l\right) \cos \left(\nu_{n} l\right)}{2 \nu_{n} \sin \left(\nu_{n} l\right)} \\
& =\frac{l \beta-\sin ^{2}\left(\nu_{n} l\right)}{2 \beta} \tag{3}
\end{align*}
$$

(using the fact that $\nu_{n} \sin \left(\nu_{n} l\right)=-\beta \cos \left(\nu_{n} l\right)$ to get the last line). Any of these expressions for the square of the norm is correct, and the book uses one more,

$$
\left\|f_{n}\right\|^{2}=\frac{l|\beta|+\sin ^{2}\left(\nu_{n} l\right)}{2|\beta|} .
$$

The last two expressions show that for large $n, \sin ^{2}\left(\nu_{n} l\right) \approx 0$, so $\left\|f_{n}\right\|^{2} \approx l / 2$.
If $\beta>0$, we still get the eigenvalues $\lambda_{n}=\nu_{n}^{2}$ with ν_{n} the $n t h$ positive solution to (2), corresponding eigenfunctions are $f_{n}(x)=\cos \left(\nu_{n} x\right)$, and norm-squared as in (4). In addition, we get one additional eigenvalue, $\lambda=-\mu_{0}^{2}$ where μ_{0} is the single positive solution to (1), with eigenfunction $\cosh \left(\mu_{0} x\right)$. It only remains to compute the square of its norm:

$$
\int_{0}^{l} \cosh ^{2}\left(\mu_{0} x\right) d x=\frac{2 l \mu_{0}+\sinh \left(2 \mu_{0} l\right)}{4 \mu_{0}}=\frac{l \beta+\sinh ^{2}\left(\mu_{0} l\right)}{2 \beta}
$$

(using hypertrig identities and the fact that $\beta / \mu_{0}=\tanh \mu_{0} l$).
In all cases, by Theorem 3.10, the complete set of eigenfunctions is an orthogonal basis for $L^{2}(0, l)$.

Additional remark on the physics. The eigenvalues for the physically reasonable case $\beta<0$ are all positive. Recall the factors $\exp \left(-k \lambda_{n} t\right)$ in the solution $\mathrm{u}(\mathrm{x}, \mathrm{t})$: all positive eigenvalues means the solution will decay to zero. This fits the situation we are modelling: as heat radiates, the solution $u(x, t)$ should tend to to zero.

