Objective

We wish to provide evidence for the main conjecture of Iwasawa theory formulated by Greenberg. Our result involving Selmer groups is motivated by a factorization formula obtained by Dasgupta (originally conjectured by Citro).

Acknowledgements

We are largely indebted to Ralph Greenberg under whose guidance this project has been done. We thank him for his constant support and encouragement.

4-dim. and 3-dim. Galois rep. arising from a Hida family \(\mathcal{F} \)

Notations:
- \(p \geq 5 \)
- \(\mathbb{Q}_\infty \) - the cyclotomic extension of \(\mathbb{Q} \) with \(\Gamma := \text{Gal}(\mathbb{Q}_\infty/\mathbb{Q}) \cong \mathbb{Z}_p \)
- \(\mathcal{F} \) - Hida family
- \(\mathcal{T}_\mathcal{F} \) - integral closure of the irreducible component of the ordinary Hecke algebra through \(\mathcal{F} \)

We make the following assumptions on the Hida family \(\mathcal{F} \):
- The residual representation \(\mathcal{T}_\mathcal{F} \) attached to \(\mathcal{F} \) is absolutely irreducible.
- The restriction \(\mathcal{T}_\mathcal{F} \big|_{\Gamma} \) to the inertia subgroup at \(p \) is \(p \)-distinguished.

We have a 4-dimensional representation:
\[
\rho_{\mathcal{F}} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_4(\mathcal{T}_\mathcal{F}), \quad \text{where} \quad \mathcal{T}_\mathcal{F} = \mathcal{T}_\mathcal{F} \otimes \mathcal{T}_\mathcal{F}.
\]

- \(\theta_{\mathcal{F},\mathcal{F}} \in \text{Fr}(\mathcal{T}_\mathcal{F}[\Gamma]) \) : 3-variable (Rankin-Selberg) \(p \)-adic L-function constructed by Hida.

\(\mathcal{F} \) has 2 weight variables and 1 cyclotomic variable.

- \(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \) - The dual of the Selmer group associated to \(\rho_{\mathcal{F}} \) is a finitely generated torsion module over \(\mathcal{T}_\mathcal{F}[\Gamma] \).

Under the natural map \(\pi : \mathcal{T}_\mathcal{F} \to \mathbb{Q}_p \), we have the following decomposition of Galois representations:
\[
\pi \circ \rho_{\mathcal{F}} \cong \text{Ad}^0(\rho_{\mathcal{F}}) \oplus \text{Trivial representation}.
\]

\(\text{Ad}^0(\rho_{\mathcal{F}}) : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_4(\mathcal{T}_\mathcal{F}) \).

- \(\theta_{\mathcal{F},\mathcal{F}}(\pi) \in \text{Fr}(\mathcal{T}_\mathcal{F}[\Gamma]) \) : 2-variable \(p \)-adic L-function due to work of Coates-Schmidt and Hida. We have 1 weight variable and 1 cyclotomic variable.

- \(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \) - The dual of the Selmer group is a finitely generated torsion module over \(\mathcal{T}_\mathcal{F}[\Gamma] \)

Divisors

Let \(\mathcal{T} \) be an integrally closed domain. Let \(M \) be a finitely generated torsion module over \(\mathcal{T} \).
- For each height 1 prime \(p \) in \(\mathcal{T} \), the localization \(\mathcal{T}_p \) is a DVR. By the structure theorem for DVRs
 \[
 M \otimes \mathcal{T}_p \cong \bigoplus_{n \geq 0} \mathcal{T}_p \left(\frac{T_p}{p^n} \right),
 \]
 where \(\pi \) is a uniformizer in \(\mathcal{T}_p \), \(\text{val}_p(M) = \sum a_i \).
- The divisor group \(\text{Div}(\mathcal{M}) \) is the free abelian group generated by height 1 primes of \(\mathcal{T} \).

\[
\text{Div}_\mathcal{P}(M) = \sum_{\text{primes } \mathcal{P} \text{ of } \mathcal{T}} \text{val}_\mathcal{P}(M) \cdot \mathcal{P}
\]

Theorem on the analytic side [Dasgupta]

\[
\pi(\theta_{\mathcal{F},\mathcal{F}}) = \theta_{\mathcal{F},\mathcal{F}} \cdot \frac{\theta_{\mathcal{F},\mathcal{F}}}{\xi_1}
\]

Here, \(\theta_{\mathcal{F},\mathcal{F}} \in \mathcal{T}_\mathcal{F}[\Gamma] \) and \(\frac{\theta_{\mathcal{F},\mathcal{F}}}{\xi_1} \) is the generator for the Kubota-Leopoldt \(p \)-adic L-function.

Theorem on the algebraic side [P.]

We have the following equality of elements in the divisor group of \(\mathcal{T}_\mathcal{F}[\Gamma] \):
\[
\text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \otimes \mathcal{T}_\mathcal{F}[\Gamma]) = \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee) + \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee) - \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\mathcal{T}_\mathcal{F}[\Gamma]).
\]

Specialization result [P.]

Suppose \(\theta_{\mathcal{F},\mathcal{F}} \in \mathcal{T}_\mathcal{F}[\Gamma] \) and we have the following inequality in the divisor group of \(\mathcal{T}_\mathcal{F}[\Gamma] \):
\[
\text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) \leq \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \right).
\]

Then, we have \(\text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) \leq \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \otimes \mathcal{T}_\mathcal{F}[\Gamma] \right) \) and
\[
\text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) \left(\frac{\mathcal{T}_\mathcal{F}[\Gamma]}{\theta_{\mathcal{F},\mathcal{F}}} \right) = \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \otimes \mathcal{T}_\mathcal{F}[\Gamma] \right) \left(\frac{\mathcal{T}_\mathcal{F}[\Gamma]}{\theta_{\mathcal{F},\mathcal{F}}} \right) = \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee \otimes \mathcal{T}_\mathcal{F}[\Gamma] \right).
\]

Remark: (3) can be expected to hold due to the Euler system machinery developed by Kings-Lei-Loeffler-Zerbes.

Heuristic

- (Mazur-Wiles) \(\text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) = \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee) \).
- (Hida-Tilouine-Urban) \(\text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) = \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee) \).
- Suppose (3) holds. Then
 \[
 \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) + \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]} \left(\mathcal{T}_\mathcal{F}[\Gamma] \right) \left(\frac{\mathcal{T}_\mathcal{F}[\Gamma]}{\theta_{\mathcal{F},\mathcal{F}}} \right) \leq \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee) + \text{Div}_{\mathcal{T}_\mathcal{F}[\Gamma]}(\text{Sel}_{\mathcal{F}}(\mathbb{Q}_\infty)^\vee).
 \]

Combining these results with the specialization result, we then have the main conjecture for \(\mathcal{T}_\mathcal{F} \) over \(\mathbb{Q}_\infty \).