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Abstract. Let G be a connected semisimple algebraic group,B a Borel
subgroup,T a maximal torus inB with Weyl groupW , andQ a subgroup
containingB. Forw ∈ W , let XwQ denote the Schubert varietyBwQ/Q.
For y ∈ W such thatXyQ ⊆ XwQ, one knows thatByQ/Q admits a
T -stable transversal inXwQ, which we denote byNyQ,wQ. We prove that,
under certain hypotheses,NyQ,wQ is isomorphic to the orbit closure of a
highest weight vector in a certain Weyl module. We also obtain a generali-
sation of this result under slightly weaker hypotheses. Further, we prove that
our hypotheses are satisfied whenQ is a maximal parabolic subgroup corre-
sponding to a minuscule or cominuscule fundamental weight, andXyQ is an
irreducible component of the boundary ofXwQ (that is, the complement of
the open orbit of the stabiliser inG of XwQ). As a consequence, we describe
the singularity ofXwQ alongByQ/Q and obtain that the boundary ofXwQ

equals its singular locus.

Introduction

Let G be a connected semisimple algebraic group overk, an algebraically
closed field of arbitrary characteristic. Choose a Borel subgroupB, a maxi-
mal torusT of B with Weyl groupW , and a subgroupQ ⊇ B. Forw ∈ W ,
letXwQ denote the Schubert varietyBwQ/Q in G/Q, and letBd(XwQ) de-
note its boundary, that is, the complement of the open orbit ofStabG(XwQ).
Fory, w ∈ W such thatXyQ ⊆ XwQ, it is well-known that the Bruhat cell
CyQ := ByQ/Q admits a naturalT -stable transversal inXwQ, which we
denote byNyQ,wQ (see 1.2). In this paper we study, in certain cases, the
singularity of XwQ along CyQ, that is, the singularity ofNyQ,wQ at the
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point yQ/Q. The most interesting case occurs whenXyQ is an irreducible
component of the singular locus ofXwQ. Then the singularity ofNyQ,wQ

atyQ/Q is isolated; it is the generic singularity of the title.
After some preliminaries in Sect. 1, we prove in Sect. 2 the main result of

this paper (Theorem 2.6). It asserts that, under certain specific conditions on
y andw, theT -varietyNyQ,wQ is isomorphic to the orbit closure of a highest
weight vector in a certain Weyl module for a certain reductive subgroup con-
tainingT . As a consequence, we compute the Kazhdan-Lusztig polynomial
Py,w (assumingy, w maximal in theirWQ-cosets) and the multiplicity of
XwQ alongCyQ (Corollary 2.7). In Sect. 3, we consider the case whereQ
is a maximal parabolic subgroup corresponding to a minuscule weight. We
assume thatG is simply-laced, which entails no loss of generality. Using
a result of Lakshmibai-Weyman, which asserts that the Bruhat-Chevalley
order inW/WQ is generated by the simple reflections, we first show that for
every irreducible componentXyQ of Bd(XwQ), the conditions of Sect. 2
are satisfied. Then, using Theorem 2.6, we deduce thatBd(XwQ) is exactly
the singular locus ofXwQ and obtain a geometric description of the generic
singularities ofXwQ.

Our description of the singular locus, and the value of generic mul-
tiplicities and Kazhdan-Lusztig polynomials, could be deduced from the
case-by-case analysis given in [12], for classical groups, and from the com-
putation of Kazhdan-Lusztig polynomials given in [1], for typesE6, E7. In
fact, these values are known, more generally, for all pairs of Schubert vari-
etiesXyQ ⊆ XwQ in a minusculeG/Q [13], [1], [12]. But our description
of generic singularities gives a more precise geometric information.

In Sect. 4, we begin by a generalisation of Theorem 2.6: for certainy and
w, theT -varietyNyQ,wQ is isomorphic to a certain multicone in a direct sum
of Weyl modules (Theorem 4.1). We then study the generic singularities of
Schubert varieties in the variety of Lagrangian subspaces of a symplectic
spacek2n. Again we find that the singular locus of each Schubert variety is
its boundary, and, using Theorem 4.1, we give an explicit description of the
transversals. As a consequence, formulae for the corresponding Kazhdan-
Lusztig polynomials and multiplicities are obtained (the explicit formulae
for the latter are perhaps new). Finally, we work out the case of Schubert
varieties in a smooth quadric, or in the variety of flags of type(1, n) in kn+1,
by elementary geometric arguments.

Acknowledgements.We thank the referee for several useful comments about the presentation
of results concerning orbit closures of highest weight vectors.
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1 Preliminaries

1.1

Throughout the paper, the base fieldk is algebraically closed and of arbitrary
characteristic. LetG be a semisimple, connected and simply-connected,
algebraic group overk. LetT be a maximal torus insideB, a Borel subgroup.
Let U− be the unipotent radical ofB−, the Borel subgroup such thatB− ∩
B = T . Also, if Q is a parabolic subgroup containingB, let LQ denote the
Levi subgroup ofQ containingT , letQ− be the unique parabolic subgroup
such thatQ− ∩ Q = LQ, and letU−

Q be the unipotent radical ofQ−.
Let R be the root system of(G, T ). For α ∈ R, let Uα be the corre-

sponding root subgroup, and letU×
α = Uα \ {1}. LetR+ be the set of roots

of T in Lie(B), letR− = −R+, and let∆ be the set of simple roots inR+.
For a subsetI of ∆, let PI be the parabolic subgroup generated byB and
theU−α, for α ∈ I, and letRI = R∩ZI, R±

I = RI ∩R±. If Q = PI , then
LQ, RI , R±

I are also denoted byLI , RQ, R±
Q, respectively.

1.2

Let W = NG(T )/T be the Weyl group and let̀(·) (resp.≤) denote the
length function (resp. the Bruhat-Chevalley order) onW with respect to
the set of simple reflections{sα, α ∈ ∆}. For I ⊆ ∆, let WI denote the
subgroup ofW generated by{sα, α ∈ I}, letwI denote the unique element
of WI such thatwI(R+

I ) = R−
I , and letW I = {w ∈ W | w(R+

I ) ⊆ R−},
the set of maximal representatives ofW/WI .

Forw ∈ W , letewB denote the pointwB/B of G/B, letCwB = BewB

be theB-orbit of ewB, and letXwB = CwB be its Zariski closure. Recall
thatdimXwB = `(w) and thatXyB ⊆ XwB ⇐⇒ y ≤ w. More generally,
let Q be a parabolic subgroup containingB. Forw ∈ W , letewQ denote the
point wQ/Q of G/Q, let CwQ = BewQ, and letXwQ = CwQ. Note that
these depend only on the cosetwWQ, whereWQ = {w ∈ W | wQ = Q}.
If Q = PI , thenWQ = WI and we shall also writeWQ for W I . Let πQ

denote the projectionG/B → G/Q and recall thatWQ = {w ∈ W |
π−1

Q (XwQ) = XwB}.

Further, fory ≤ w in W , let NyQ,wQ = (y(U−
Q ) ∩ U−)eyQ ∩ XwQ.

This is a closed,T -stable, subvariety ofyU−
Q eQ ∩XwQ and, similarly to [7,

Lemma A4.(b)], one obtains aT -equivariant isomorphism

yU−
Q eQ ∩ XwQ

∼= CyQ × NyQ,wQ.

Thus, we may callNyQ,wQ a transversal toCyQ in XwQ.
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1.3

Let X = X (T ) be the character group ofT , let {α∨, α ∈ R} be the set of
coroots, and letX+ = {λ ∈ X | (λ, α∨) ≥ 0, ∀α ∈ ∆}. Forλ ∈ X , let
L(λ) denote the correspondingG-equivariant line bundle onG/B, and, for
λ ∈ X+, let V (λ) = H0(G/B,L(−λ))∗ be the Weyl module with highest
weightλ. It is generated by aB-stable line of weightλ, and itsT -character
is given by Weyl’s character formula (see, for example, [6, II.2.13, II.5.11]).
Similarly, if I is a subset of∆, letX+

I = {λ ∈ X | (λ, α∨) ≥ 0, ∀α ∈ I}
and, forλ ∈ X+

I , letVI(λ) = H0(PI/B,L(−λ))∗. This is the Weyl module
for LI with highest weightλ.

1.4

For future reference, let us record the following lemma.

Lemma. LetQ be a parabolic subgroup containingB. Lety ≤ w in WQ.
ThenπQ induces an isomorphismNyB,wB

∼= NyQ,wQ.

Proof. Sincey ∈ WQ, thenR+∩y(R+) = R+∩y(R+\R+
Q). This implies

thaty(U−) ∩ U− = y(U−
Q ) ∩ U−. Let H denote this group. By the Bruhat

decomposition, one hasStabH(eyB) = {1} = StabH(eyQ) and hence
πQ induces aTH-equivariant isomorphism fromHeyB ontoHeyQ. Then,
sinceπ−1

Q (XwQ) = XwB, one deduces thatπQ induces aT -equivariant
isomorphism fromNyB,wB = HeyB ∩XwB ontoHeyQ∩XwQ = NyQ,wQ.
The lemma is proved.

1.5

Let ` be a prime number different fromchar(k). For an algebraic varietyX,
let IC•(X) denote the middle intersection cohomology complex onX with
coefficients inQ` and, fori ∈ Z, let IHi(X) denote thei-th cohomology
sheaf ofIC•(X) [3, Sect. 6], see also [8, Sect. 3]. We follow the normali-
sation ofIC•(X) given in [8, 3.1(a)], that is, the restriction ofIC•(X) to
the smooth part ofX is the constant sheafQ` in degree zero. (This differs
from the normalisation in [3, Definition 6.1(a)] by a shift in degree). For
x ∈ X, let IHi

x(X) denote the stalk ofIHi(X) at x. Then, following
[7, Appendix], coupled with [8, Sects. 3–4], let us say thatX is rationally
smooth ifIHi

x(X) = 0, for everyx ∈ X and i > 0. Note that ifX is
smooth then it is rationally smooth.

Let q be an indeterminate. We shall need the following notation. For
a polynomialP =

∑
i ai q

i and a positive rational numberr, let P≤r =∑
i≤r ai q

i.
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For y ≤ w in W , let Py,w(q) be the corresponding Kazhdan-Lusztig
polynomial [7]. By [8, Theorem 4.3] (whenchar(k) > 0) and [15, Corollaire
2.10], one hasPy,w(q) =

∑
i dim IH2i

eyB
(XwB) qi. Suppose thaty < w

and thatPz,w = 1, for y < z ≤ w. Let us then recall the following de-
scription ofPy,w, given in [7, Appendix]. Suppose thatchar(k) = p > 0.
Everything in sight is defined over the prime fieldFp and one deduces from
[7] the following result.

Lemma. Lety < w in W and letd = `(w) − `(y).
(a) There exists a polynomialKy,w, of degreed, such that, for everyr ≥ 1,
the number ofFpr -rational points ofNyB,wB \ {eyB} equalsKy,w(pr).

(b) If NyB,wB \{eyB} is rationally smooth, thenPy,w = (−Ky,w)≤(d−1)/2.

Proof. The first assertion is a consequence of [7, 2.5, A4] and, sincePy,w

has degree at most(d−1)/2, the second assertion follows from the equation
preceding Equation (5) in [7, Appendix].

2 Closures of orbits of highest weight vectors as transversals

2.1

For future use, let us record here the following lemma. We relax, in this
subsection, the notation of Sect. 1.

Lemma. Let G be a connected reductive group overk; choose a maximal
unipotent subgroupU ⊂ G and a maximal torusT normalisingU . LetH be
a subgroup ofG containingU , and denote byP the normaliser ofH in G.
ThenP containsTU , andH contains the derived subgroup ofP . Moreover,
H is generated byU(T ∩ H) and by theU−α (α ∈ ∆) which it contains.

Proof. The first statement is due to F. Knop ([11, Satz 2.1]); we recall
his proof for the convenience of the reader. By a theorem of Chevalley,
there exists aG-moduleV and a vectorv ∈ V such thatH is the isotropy
subgroup of the linekv. Decomposingv in V U , we can writev =

∑
vi

where thevi are eigenvectors ofB with pairwise distinct weightsχi. Let
Q denote the intersection of the stabilisers of the lineskvi (it is a parabolic
subgroup ofG). Thenχi extends uniquely to a character ofQ, and one has
H =

⋂
i,j Ker(χ−1

j χi). Therefore, one hasQ′ ⊆ H ⊆ Q, whereQ′ denotes
the derived subgroup ofQ. SinceQ = Q′T , it follows thatH = Q′(T ∩H).
This implies the second assertion. Moreover,Q normalisesH and hence
Q ⊆ NG(H) = P . On the other hand,P normalisesRu(H), the unipotent
radical ofH. But one hasRu(H) = Ru(Q) and, sinceNG(Ru(Q)) = Q,
one deduces thatP ⊆ Q. Thus,P = Q and the first assertion follows.
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2.2

Let the notation of Sect. 1 be in force again. In this paragraph, we recall
some facts about orbit closures of a highest weight vector in a Weyl module.
Let λ ∈ X(T )+ and letP be the associated parabolic subgroup ofG (i.e.,
P is generated byB and theU−α, for thoseα ∈ ∆ such that(λ, α∨) = 0).
Thenλ extends to a character ofP , and the associated line bundleLP (−λ)
on G/P is very ample. The dual space ofH0(G/P,LP (−λ)) is the Weyl
moduleV (λ), and the affine cone overG/P embedded inPV (λ) is the
orbit closure of a highest weight vector. Denote byC(λ) this affine cone;
thenC(λ) is normal by [14, Theorem 3].

Consider nowG×P kλ, the total space of the line bundleLP (λ). Identify
kλ with theλ-weight space inV (λ). Then we have a map

φ : G ×P kλ → C(λ)

induced by(g, v) 7→ gv. We claim thatφ is proper and induces an isomor-
phismG×P (kλ \{0}) → C(λ)\{0} (in particular,φ is birational). Indeed,
consider the total spaceOPV (λ)(−1) of the tautological line bundle over
PV (λ). The canonical map

Φ : OPV (λ)(−1) → V (λ)

is the blow-up of the origin inV (λ). In particular,Φ is proper and its re-
striction to the complement of the zero section is an isomorphism on the
complement of the origin. Moreover, forG/P embedded intoPV (λ), the
spaceOG/P (−1) is the total space ofLP (λ), that is,G ×P kλ, andφ is the
restriction ofΦ. This proves our claim.

SinceC(λ) is normal, it follows from Zariski’s main theorem that

k[C(λ)] ∼= k[G ×P kλ] =
⊕
n≥0

V (nλ)∗. (†)

For later use in Sect. 4, let us record here the following generalisation. Let
λ1, . . . , λr ∈ X(T )+, letP1, . . . , Pr be the associated parabolic subgroups,
and letQ = P1 ∩· · ·∩Pr. LetV =

⊕r
i=1 V (λi), letE be theQ-submodule

spanned by the highest weight vectors, and letC(λ1, . . . , λr) = GE (which
is closed sinceG/Q is complete). Then theLPi(−λi) define a closed immer-
sion ofG/Q intoPV (λ1)×· · ·×PV (λr), and the corresponding multicone
identifies withC(λ1, . . . , λr). Also,G ×Q E is the total space of the vector
bundle

⊕r
i=1 LQ(λi). Further, along the same lines as above, one can show

that the natural mapφ : G ×Q E → V , induced by(g, v) 7→ gv, is proper

and induces an isomorphismG ×Q E× ∼=−→ GE×, whereE× denotes the
Q-stable, open subvariety ofE consisting of those vectors whose projection
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ontoV (λi) is non-zero, for everyi = 1, . . . , r. (See also the proof of [9,
Theorem 1] for a more general statement).

Moreover, by [9, Theorem 2],C(λ1, . . . , λr) is normal. Thus, by Zariski’s
main theorem, it follows that

k[C(λ1, . . . , λr)] ∼= k[G×Q E] =
⊕

n1,...,nr≥0

V (n1λ1 + · · ·+nrλr)∗. (††)

2.3

We can now prove the following

Proposition. Let I ⊂ ∆ and letP = PI , L = LI . Let β ∈ ∆ \ I. Then
U−

P eP ∩ PesβP , which is anL-stable open neighbourhood ofeP in PesβP ,
is L-isomorphic toCI(−β), the orbit closure of a highest weight vector in
the Weyl moduleVI(−β).

Proof. LetY = U−
P eP ∩PesβP . Observe thatY is normal: indeed, it is open

in the Schubert varietyPesβP , and the latter is normal by [14, Theorem 3].
Let P0 be the parabolic subgroup ofL associated with the dominant weight
−β. We will construct a proper birational morphismφ : L ×P0 k−β → Y .
By Zariski’s main theorem, it follows thatk[Y ] ∼= k[L ×P0 k−β]. But the
latter is isomorphic tok[CI(−β)] by (†) applied toL. Because bothY and
CI(−β) are affine, we conclude thatY ∼= CI(−β).

Chooseu ∈ U×
β and setx = uesβP . Note first thatTx = U×

β esβP =
U×

−β eP . HenceesβP andeP belong toTx (the closure ofTx in G/Q). Let
U(β) denote the unipotent radical of the minimal parabolic subgroupPβ .
Note also thatesβP is fixed byU(β) and hence, sinceP = L Uβ U(β), one
hasPesβP = L UβesβP = Lx∪LesβP . It follows thatPesβP = Lx. Thus,
Y = Lx ∩ U−

P eP .
Let Lx (resp.Tx) denote the stabiliser ofx in L (resp.T ). For any

α ∈ R+
I , one hasu−1Uαu ⊆ U(β) and henceUα stabilisesx. Therefore,

Lx containsU ∩ L and, by Lemma 2.1, it follows thatLx is generated by
(L ∩ U)Tx together with theU−γ (γ ∈ I) which it contains. But forγ ∈ I,
one hasU−γx = U−γuesβP = uU−γesβP = usβU−sβγeP . Sinceβ /∈ I

thensβγ ∈ R+ and hence one deduces that

U−γ ⊆ Lx ⇐⇒ U−sβγ ⊆ P ⇐⇒ −sβγ ∈ −R+
I ⇐⇒ (γ, β∨) = 0.

Letk−β denote the one-dimensional representation ofP0 associated with
the character−β. It follows from the above discussion thatLx is the kernel
of this representation. This implies, in particular, thatP0x = Tx = U×

−βeP .

SinceU−β eP is a closed subset ofU−
P eP , one deduces thatP0x∩U−

P eP =
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U−β eP = Txt{eP } and, sinceL/P0 is complete, it follows thatY equals
L(P0x ∩ U−

P eP ) = Lx t {eP }.

Choose an isomorphism of algebraic groupsθ−β : k
∼=−→ U−β, such that

x = θ−β(1). Consider theL-equivariant morphismφ : L ×P0 k−β −→ Y ,
(g, z) 7→ gθ−β(z)eP . Then, clearly,φ is well-defined and, sinceL/P0
is complete,φ is proper. Finally, let us prove thatφ is birational. First,
it is easily seen that the morphismL → L ×P0 k−β , induced byg 7→
(g, 1), induces an isomorphismπ : L/Lx

∼=−→ L ×P0 (k−β \ {0}), and
that φ ◦ π is the natural mapL → Lx. Further, the latter is separable,
becausek(Lx) = k(Px) = k(PesβP ) and, by the Bruhat decomposition,
the extensionk(PesβP ) ⊂ k(P ) is separable; butk(P ) containsk(L). This
proves thatφ is birational.

2.4

Keep notation as in 2.3 and letd = dim PesβP , and I0 = {α ∈ I |
(α, β∨) = 0}. By Proposition 2.3, one hasd = 1 + dimL/P0 = 1 +
#(R+

I \ R+
I0

). Note that ifd = 1 then PesβP
∼= P1. So, suppose that

d > 1. For any subsetA of W , let H(A, q) =
∑

w∈A q`(w). As usual, set
ρ = (1/2)

∑
α∈R+ α. Then, one obtains the following corollary.

Corollary. (a)The tangent spaceTeP (PesβP ) is L-isomorphic toVI(−β).

(b) The multiplicity ofPesβP at eP equals(d − 1)!
∏

γ∈R+
I \R+

I0

(−β, γ∨)
(ρ, γ∨)

.

(c) PesβP is smooth if and only ifβ is adjacent to a unique connected
componentJ of I, J is of typeAd−1 or Cd/2 (if d is even), andJ t {β}
has no branch point and hasβ as a short extremity.

(d) One hasPwI , wIwI0sβwI =
(

(1 − q)
H(WI , q)
H(WI0 , q)

)≤(d−1)/2

.

Proof. Let V = VI(−β) and letv be a highest weight vector inV . By
Proposition 2.3,TeP (PesβP ) is isomorphic, as anL-module, toT0(Lv).
But T0(Lv) is an L-stable subspace ofV containingv, and moreoverv
generatesV as anL-module. It follows thatT0(Lv) = VI(−β). This proves
assertion (a).

Let Y = U−
P eP ∩ PesβP and letm denote the maximal ideal ofk[Y ]

corresponding toeP . Thenk[Y ] ∼= ⊕
n≥0 VI(−nβ)∗, by Proposition 2.3,

together with 2.2(†) applied toL, and under this isomorphism one hasm ∼=⊕
n≥1 VI(−nβ)∗. Further, by [14, Theorem 1.ii)], the multiplication map

VI(−β)∗ ⊗ VI(−nβ)∗ → VI(−(n+1)β)∗
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is surjective, forn ≥ 0, and this implies thatmn/mn+1 ∼= VI(−nβ)∗, for
everyn ≥ 1. Thus, by Weyl’s dimension formula, one obtains that

dim
(
mn/mn+1) =

∏
γ∈R+

I

(−nβ + ρ, γ∨)
(ρ, γ∨)

= nd−1
∏

γ∈R+
I \R+

I0

−(β, γ∨)
(ρ, γ∨)

+ O(nd−2),

and assertion (b) follows.

Let us prove assertion (c). First,PesβP is smooth if and only if it is
smooth ateP and, by Proposition 2.3, this is the case if and only ifLv is
smooth at0. But we just saw thatT0(Lv) = V and, sinceLv = Lv ∪ {0},
it follows thatLv is smooth at0 if and only if Lv = V \ {0}.

Let J denote the union of the connected components ofI to which β
is adjacent and letπ denote the representation ofL on V . Then, clearly,
π maps the derived subgroupL′

J onto the derived subgroup ofπ(L), and
the restriction ofπ to L′

J has a finite kernel. Note that, ifJ ′ is a connected
component ofJ thenJ ′t{β} is connected and hence, in particular,J ′ is not
of typeG2. Thus, it follows from (the proof of) [10, Satz 1] thatLv = V \{0}
if and only if J is connected and of typeAd−1 or Cd/2 (if d is even), and
the restriction of−β to T ∩ H is a fundamental weight corresponding to a
short extremity ofJ . This proves assertion (c).

Now, to assertion (d). Using the Bruhat decomposition, one first obtains
thatπ−1

P (eP ) = P/B = XwIB andπ−1
P (XsβP ) = BsβP/B = XsβwIB.

Let w = wIwI0sβwI . We claim thatπ−1
P (PsβP/P ) = XwB. Since the

former equalsPXsβwIB, and sincewIwI0 ∈ WI , it suffices to prove that
XwB is P -stable. Thus, it suffices to prove thatw−1α ∈ R−, for every
α ∈ I. This is easily checked, and the claim follows.

Thus, by Lemma 1.4,NwIB,wB
∼= NP,wP , and, by Proposition 2.3, the

latter is smooth outsideeP . Thus, we may apply the argument of 1.5 to
computePwI ,w. So, suppose thatchar(k) = p > 0. By Proposition 2.3,
NP,wP \ {eP } is ak×-fibration over the flag varietyL/P0 and hence, using
the Bruhat decomposition ofL/P0, one deduces that, for everyr ≥ 1,

(pr − 1) #{Fpr -rational points ofL/P0} = (pr − 1)
H(WI , p

r)
H(WI0 , p

r)
.

By Lemma 1.5(b), this implies assertion (d).

Remark.The most effective way to computePwI , wIwI0sβwI explicitly is as
follows. Letn = |I| (resp.n0 = |I0|) and leta1, . . . , an (resp.b1, . . . , bn0)
be the exponents ofWI (resp.WI0). It is well-known thatH(WI , q) =
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(1− t)−n
∏n

i=1(1− tai) (see, for example, [5, Theorem 3.15]) and one has
an analogous formula forH(WI0 , q). Thus, one obtains

PwI , wIwI0sβwI =
(

(1 − t)1+n0−n

∏n
i=1(1 − tai)∏n0
i=1(1 − tbi)

)≤(d−1)/2

.

2.5

Before we prove the main result of this section, we need the following
lemma. LetQ be a parabolic subgroup ofG containingB and lety ≤ w
in WQ. Let C[yQ,wQ] denote the union of theB-orbitsCzQ, for z ∈ [y, w].
This is aB-stable open subset ofXwQ containingCyQ as unique closed
B-orbit.

Lemma. y(U−
Q )eyQ ∩ XwQ is the uniqueT -stable, open affine subset of

XwQ containingeyQ.

Proof. Let Ω = y(U−
Q )eyQ ∩ XwQ and letΩ′ be a secondT -stable, open

affine subset ofXwQ containingeyQ. ThenZ := Ω \ Ω′ is a closed,T -
stable, subset ofΩ which does not containeyQ. SinceeyQ is the unique
closedT -orbit in y(U−

Q )eyQ, it follows thatZ = ∅ and henceΩ ⊆ Ω′.
Therefore, the algebra ofT -invariant regular functionsk[Ω′]T injects

into k[Ω]T . But the latter equalsk, becauseeyQ is the unique closedT -orbit
in Ω. Sok[Ω′]T = k and henceΩ′ contains a unique closedT -orbit, which
must be the fixed pointeyQ. Now the same argument as above givesΩ′ ⊆ Ω.
This proves the lemma.

2.6

Let Q be a parabolic subgroup ofG containingB. First, we observe that,
for anyz ∈ W , the stabiliser inG of CzQ (resp. ofXzQ) is the parabolic
subgroup generated byB and thesα, for α ∈ ∆ ∩ y(RQ) (resp. byB and
thesα, for α ∈ ∆ ∩ y(RQ ∪ R−)). This fact, which follows easily from the
Bruhat decomposition, will be used repeatedly in the sequel.

Now, lety ≤ w in WQ. LetI be a subset of∆∩ y(RQ) and letP = PI ,
L = LI . ThenP is contained in the stabiliser ofCyQ, andL is contained in
P ∩ y(Q) := PyQ, the stabiliser inP of the pointeyQ. Also, one deduces
from the Bruhat decomposition thatP/PyQ

∼= CyQ.
Further, let us suppose that :

XwQ = PXsβyQ, for someβ ∈ ∆ ∩ y(R+ \ R+
Q).

Let CI(−β) denote the orbit closure of a highest weight vector inVI(−β).
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Theorem. (a) The morphismϕ : PsβP/PyQ −→ G/Q, gPyQ 7→ geyQ

induces aP -equivariant isomorphism fromPsβP/PyQ ontoC[yQ,wQ] and
hence one has a locally trivial fibrationπ : C[yQ,wQ] −→ Pesβ

P/P , with
fiber P/PyQ

∼= CyQ.

(b) One hasL-equivariant isomorphisms :y(U−
Q )eyQ ∩XwQ

∼= CI(−β)×
CyQ and, more precisely,NyQ,wQ

∼= CI(−β).

Proof. Clearly, ϕ is a P -equivariant morphism; let us describe its image
Im ϕ. SincePsβP = P ∪ PsβP , one hasIm ϕ = PeyQ ∪ PsβPeyQ =
CyQ∪PsβCyQ. Moreover, sincesβy > y, one has, by the Bruhat decompo-
sition,Bsβ CyQ = CsβyQ. It follows thatIm ϕ = CyQ tPCsβyQ. Observe
thatCsβyQ is contained inC[yQ,wQ] and that the latter isP -stable (because
XwQ andCyQ areP -stable). Therefore, one hasIm ϕ ⊆ C[yQ,wQ]. Observe
also thatϕ−1(u) is a single point for allu ∈ CyQ.

Let us prove thatϕ is proper. Define morphisms

PsβP/PyQ
ϕ1−→ (PsβP/P ) × C[yQ,wQ]

ϕ2−→ C[yQ,wQ]

byϕ1(gPyQ) = (gP, geyQ) andϕ2((gP, geyQ)) = geyQ. Thenϕ = ϕ2◦ϕ1
and hence, sincePsβP/P is complete,ϕ2 is proper. Further,ϕ1 is injective.
For, if (gP, geyQ) = (g′P, g′eyQ) then g−1g′ ∈ PyQ. Finally, one has
Im ϕ1 = {(gP, u) | u ∈ gCyQ} and, sinceCyQ is closed inC[yQ,wQ], it
follows thatIm ϕ1 is closed. Thus, being injective with closed image,ϕ1 is
proper and the same is true forϕ.

Let Z be the set of thosez ∈ PsβP/PyQ such that the fibreϕ−1(ϕ(z))
contains an infinite irreducible component passing throughz. It is P -stable,
sinceϕ is P -equivariant. Further, by [4, Ex. II.3.22],Z is a closed subset
of PsβP/PyQ and hence,ϕ being proper,ϕ(Z) is a closed,P -stable, sub-
set ofC[yQ,wQ]. Note thatϕ(Z) = {u ∈ C[yQ,wQ] | ϕ−1(u) is infinite}.
On the other hand, we observed previously thatϕ−1(u) is a single point
for all u ∈ CyQ. SinceCyQ is the unique closedP -orbit in Im ϕ, one de-
duces thatϕ(Z) = ∅. Thus,ϕ is quasi-finite. It follows, in particular, that
dimPsβP/PyQ = dimC[yQ,wQ] = dimCwQ and hence theB-stable open
subsetϕ−1(CwQ) is the disjoint union ofB-orbits of dimensiondimCwQ.
SincePsβP/PyQ is irreducible, it follows thatϕ−1(CwQ) is in fact a single
B-orbit, namely theB-orbit of the pointx := wIsβPyQ/PyQ.

Thus,ϕ induces a quasi-finite,B-equivariant, morphism from the open
orbit Bx onto its imageBewQ. This implies thatBx, the stabiliser inB of
x, is a subgroup of finite index inBwQ, the stabiliser inB of ewQ. ButBwQ

is connected, because it containsT , and it follows thatBx = BwQ. Since,
moreover, the orbit mapB → CwQ is separable, one deduces thatϕ induces
an isomorphismBx ∼= CwQ. Thusϕ is birational.
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Finally, by [14, Theorem 3],C[yQ,wQ] is a normal variety and hence,
ϕ being proper, birational, and quasi-finite, it follows from Zariski’s main
theorem thatϕ is an isomorphism. This proves the first part of assertion (a),
and the second part follows easily.

Let us prove assertion (b). LetΩ = y(U−
Q )eyQ ∩ XwQ, let Ω′ =

π−1(U−
P eP ∩ PesβP ), and letU = {u ∈ U−

P | ueP ∈ PesβP }. ThenU
identifies, via the mapu 7→ ueP , with U−

P eP ∩PesβP and hence, by Propo-
sition 2.3, one hasU ∼= CI(−β). Further, sinceπP trivialises over the open
affine subsetU−

P eP of G/P , one deduces that the map(u, x) 7→ ux induces
anL-equivariant isomorphismφ : U × CyQ

∼= Ω′. Therefore,Ω′ is anL-
stable, open affine subset ofC[yQ,wQ] containingeyQ and hence, by Lemma
2.5, one hasΩ′ = Ω. Therefore, one has an isomorphismφ : U×CyQ → Ω,
(u, x) → ux, with U ∼= CI(−β). This proves the first isomorphism.

For the second one, observe thatU ⊆ U−
P ∩ PI′ , whereI ′ = I ∪ {β}.

Sincey−1(R−
I ) ⊆ RQ andy−1(−β) ∈ R− \ R−

Q, theny−1(R−
I′ \ R−

I ) ⊆
R− \R−

Q and hence(U−
P ∩PI′)eyQ ⊆ (y(U−

Q )∩U−)eyQ. One deduces that
φ maps isomorphicallyU×{eyQ} onto a closed subset ofNyQ,wQ. Since, by
assertion (a), they have the same dimension, it follows thatφ(U ×{eyQ}) =
NyQ,wQ. This completes the proof of the theorem.

2.7

Keep the notation of 2.6. LetNyQ,wQ = TyQNyQ,wQ; it is anL-submodule
of TyQ(G/Q), isomorphic to the normal space toCyQ in XwQ at eyQ. Let
I0 = {α ∈ I | (α, β∨) = 0} and letd = `(w) − `(y) = dimXwQ −
dimXyQ = 1 + #(R+

I \ R+
I0

). Let multyQXwQ denote the multiplicity of
XwQ ateyQ. Let us then derive the following corollary.

Corollary. (a)NyQ,wQ
∼= VI(−β).

(b) multyQXwQ = (d − 1)!
∏

γ∈R+
I \R+

I0

(−β, γ∨)
(ρ, γ∨)

.

(c) Py,w(q) =
(

(1 − q)
H(WI , q)
H(WI0 , q)

)≤(d−1)/2

.

(d) One hasw = wIwI0sβy.

Proof. Assertions (a) and (b) follow immediately from the theorem, com-
bined with Corollary 2.4. Let us prove assertion (c). Sincey, w ∈ WQ, it
follows from Lemma 1.4, coupled with Theorem 2.6.(b), thatNyB,wB

∼=
NyQ,wQ

∼= CI(−β). Thus,NyB,wB \ {eyB} is smooth and hence we can
apply Lemma 1.5. So, we may assume thatchar(k) = p > 0. But then, for
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r ≥ 1, the number ofFpr -rational points ofCI(−β) was computed in the
proof of Corollary 2.4 and hence assertion (c) follows.

Finally, let us prove assertion (d). Letz = wIwI0sβy = wIsβwI0y.
Then, sinceL fixes yeQ, one haszeQ = wIsβyeQ = weQ and hence
z ∈ wWQ. Sincew ∈ WQ, by assumption, the equalityz = w will follow
if we prove thatwα ∈ R−, for all α ∈ R+

Q. Recall that, by hypothesis,

y−1β ∈ R+\R+
Q. Suppose, for a contradiction, thatwα ∈ R+, for someα ∈

R+
Q. Sinceyα ∈ R− \ {−β}, thensβyα ∈ R− and hence the assumption

wα ∈ R+ implies thatsβyα ∈ R−
I \ R−

I0
. It follows that(yα, β∨) < 0 and,

sinceR−
I ⊆ yR+

Q, one obtains thatβ = (yα, β∨)−1 (yα−sβyα) belongs to
Q(yRQ) ∩ R = yRQ. This is a contradiction and the proof of the corollary
is complete.

3 Application to the minuscule case

3.1

Throughout this section, we suppose thatG is quasi-simple and thatQ is the
maximal parabolic subgroup associated withω, a minuscule fundamental
weight. We shall also assume thatG is simply-laced, which entails no loss
of generality. For, ifG is of typeBn orCn and ifP is the maximal parabolic
subgroup corresponding to the unique minuscule fundamental weight, it is
well-known thatX := G/P identifies withG′/P ′, whereG′ is of type
Dn+1 or A2n−1, respectively, andP ′ is a maximal parabolic corresponding
to a minuscule fundamental weight. Moreover, letB′ be a Borel subgroup
in P ′ and letB = G∩B′. By the Bruhat decomposition,B′ andB have the
same number of orbits inX and it follows that the orbits are the same under
B′ or B. Thus, the Schubert varieties are the same inG/P and inG′/P ′.

Under the above assumptions, we shall prove that, fory ≤ w, the hy-
potheses of 2.6 are always satisfied ifXyQ is an irreducible component of
the singular locus ofXwQ. Thus, our previous results will give a description
of the singularity ofXwQ alongXyQ. The starting point of the proof is the
fact that,Q being minuscule, the Bruhat order onWQ is generated by simple
reflections [12, Lemma 1.14].

3.2

Forw ∈ WQ, letBd(XwQ) denote the boundary ofXwQ, that is,Bd(XwQ)
= XwQ \ PJewQ, wherePJ denotes the stabiliser ofXwQ. Also, let us
introduce the usual partial order onX (T ), defined by:µ ≤ λ ⇐⇒ λ−µ ∈
NR+.



314 M. Brion, P. Polo

Lemma. Lety ≤ w in WQ.

(a)Suppose thatXyQ is an irreducible component ofBd(XwQ). Then there
exists a unique simple rootβ such thatXyQ ⊂ XsβyQ ⊆ XwQ and one has
XwQ = PXsβyQ, whereP = Stab(XwQ) ∩ Stab(CyQ).
(b) The irreducible components ofBd(XwQ) are exactly theXsγwQ, for γ
a minimal element of the set{α ∈ R+ | XsαwQ ⊆ Bd(XwQ)}.

Proof. Let J = ∆ ∩ w(R− ∪ RQ). ThenStab(XwQ) = PJ . Let XyQ be
an irreducible component ofBd(XwQ). Observe thatXyQ is PJ -stable. By
[12, Lemma 1.14], there existsβ ∈ ∆ such thatXyQ ⊂ XsβyQ ⊆ XwQ.
Note, in particular, thatβ /∈ J . LetI = J ∩y(RQ) and letz = wIsβy. Note
thatezQ ∈ PIesβyQ ⊆ XwQ. Let us prove thatXzQ is PJ -stable. By 1.2, it
suffices to prove that(zω, α∨) ≤ 0, for α ∈ J . Observe thatsβyω = yω−β
and, sincewIyω = yω, it follows that(zω, α∨) = (yω, α∨) − (wIβ, α∨).

Also, sinceXyQ isPJ -stable, then(yω, α∨) ≤ 0, for α ∈ J . If α ∈ J \I
then(yω, α∨) = −1. Moreover, sinceG is simply-laced andwIβ 6= α, one
has−(wIβ, α∨) ≤ 1. So one obtains in this case(zω, α∨) ≤ 0. On the
other hand, ifα ∈ I then(yω, α∨) = 0 and−wIα ∈ I and hence, since
β /∈ J , one also obtains(zω, α∨) ≤ 0. This proves thatXzQ is PJ -stable
and it follows thatXzQ = XwQ.

Thus, one obtains thatwω = yω −wIβ = swIβyω, and this implies that
β = wI(yω−wω) is uniquely determined byw andy. This proves assertion
(a). Further, settingγ = wIβ, one hasγ ∈ R+ andyω = wω + γ = sγwω.

Now, letδ ∈ R+. Suppose thatXsδwQ ⊆ Bd(XwQ). First, this implies
that(wω, δ∨) < 0 and hence, sinceω is minuscule, thatsδwω = wω + δ.
Then, one deduces from [12, Lemma 1.18] that

XsδwQ ⊆ XsγwQ ⇐⇒ sγwω ≤ sδwω ⇐⇒ γ ≤ δ.

This completes the proof of the lemma.

3.3

Combining the previous lemma with the results of Sect. 2, we obtain the
following proposition. For a rational numberr, let [r] denotes the largest
integer not greater thanr.

Proposition. Lety, w ∈ WQ and letJ = ∆ ∩ w(R− ∪ RQ).
(a)Bd(XwQ) equals the singular locus ofXwQ.

(b) Suppose thatXyQ is an irreducible component ofBd(XwQ). Let β be
the unique simple root such thatXyQ ⊂ XsβyQ ⊆ XwQ and letI be the
union of the connected components ofJ ∩ y(RQ) to whichβ is adjacent.
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Then the normal spaceNyQ,wQ is isomorphic to theLI -moduleVI(−β),
andNyQ,wQ identifies with the closure of theLI -orbit of a highest weight
vector in this module.

(c) Thus,NyQ,wQ is determined by the pair(I, I ′), whereI ′ = I t {β},
and, therefore, the only possibilities are the following.

Case 1). I is of typeAp × Aq andI ′ of typeAp+q+1. ThenNyQ,wQ is
isomorphic to the cone of decomposable tensors inkp+1 ⊗ kq+1 and has
dimensionp + q + 1. One has

multyQXwQ =
(

p + q

p

)
, Py,w =

Min(p,q)∑
i=0

ti.

Case 2). I is of typeAn andI ′ of typeDn+1. ThenNyQ,wQ is isomorphic
to the cone of decomposable vectors inΛ2kn+1 and has dimension2n − 1.
One has

multyQXwQ =
1
n

(
2n − 2
n − 1

)
, Py,w =

[n−1
2 ]∑

i=0

t2i.

Case 3). I is of typeDn andI ′ of typeDn+1. ThenNyQ,wQ is isomorphic
to a non-degenerate quadratic cone ink2n and has dimension2n − 1. One
has

multyQXwQ = 2, Py,w = 1 + tn−1.

Case 4). I is of typeD5 andI ′ of typeE6. ThenNyQ,wQ identifies with
V ∼= k16, a half-spin representation of Spin(10), andNyQ,wQ is isomorphic
to the cone of pure half-spinors inV and has dimension11. One has

multyQXwQ = 12, Py,w = 1 + t3.

Case 5). I is of typeE6 andI ′ of typeE7. ThenNyQ,wQ identifies with
V ∼= k27, a minuscule representation ofE6, andNyQ,wQ is isomorphic to
the orbit closure of a highest weight vector inV and has dimension17. One
has

multyQXwQ = 78, Py,w = 1 + t4 + t8.

Proof. Let XyQ be an irreducible component ofBd(XwQ). Let β be the
unique simple root such thatXyQ ⊂ XsβyQ ⊆ XwQ, let I be the union
of the connected components ofJ ∩ y(RQ) to whichβ is adjacent, and let
I ′ = I t {β}. Let us prove thateyQ is a singular point ofXwQ. By (the
proof of) Corollary 2.4.(c), it suffices to check that we are not in the situation
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whereI is of typeAn andI ′ is of typeAn+1. Suppose, for a contradiction,
that this is the case. Then

wIβ = β +
∑
α∈I

α. (∗)

On the other hand, the hypotheses imply that(wω, β∨) = 1 and(wIwω, β∨)
= −1. Thus, in particular,wIwω 6= wω and hence there existsα ∈ I
such that(wω, α∨) = −1. Moreover, sinceω is minuscule and sinceI is
connected, there exists only one suchα (otherwise, there would existγ ∈ R+

I
such that(wω, γ∨) ≥ 2) and hence (∗) implies that(wω, wIβ

∨) = 0, which
is a contradiction. This proves assertion (a). Assertion (b) then follows by
combining Lemma 3.2.(a) and Theorem 2.6.

Let us prove assertion (c). First, sinceβ is adjacent to every connected
component ofI, thenI ′ is connected. Thus, sinceG is assumed to be simply-
connected,I ′ is of typeA, D, orE. Moreover, we claim thatωβ, considered
as a fundamental weight ofI ′, is minuscule. For, since(yω, β∨) = 1 and
(yω, α∨) = 0, for α ∈ I, then(yω, γ∨) = (ωβ, γ∨), for all γ ∈ RI′ . The
claim follows, sinceω is minuscule. By inspection, one then obtains the
possibilities 1)–5). Moreover, each possibility occurs by taking, for example,
G of typeI ′, Q = PI andXwQ = PIesβQ. Finally, all the statements and
computations in cases 1)–5) are immediate consequences of Theorem 2.6
and Corollary 2.7.

4 A generalisation to certain multicones

4.1

The following result generalises, in part, Theorem 2.6. For a subsetJ of R,
we denote byJ⊥ the set of roots orthogonal toJ .

Theorem. Let Q be a parabolic subgroup ofG and lety, w ∈ WQ. Let
I = {α ∈ ∆ | PαXwQ = XwQ andPαCyQ = CyQ}. Suppose that there
exist linearly independent positive rootsβ1, . . . , βq satisfying the following
conditions:

1) For everyi = 1, . . . , q, α ∈ I, anda > 0, −βi + aα is not a root,
2) XyQ ⊂ Xsβi

yQ ⊆ XwQ, for i = 1, . . . , q,

3) XwQ = PIU−β1 · · ·U−βqXyQ and dimXwQ = dimXyQ + q +
#(R+

I \ R+
I0

), whereI0 = I ∩ {β1, . . . , βq}⊥.
Then:

(a)NyQ,wQ is LI -isomorphic toCI(β1, . . . , βq), theLI -orbit closure of the
sum of highest weight vectors in theLI -module

⊕
i=1,...,q VI(−βi). As a

consequence,NyQ,wQ identifies with this module.
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(b) Further, if CI(β1, . . . , βq) \ {0} is rationally smooth then one has

Py,w =


−

∑
J⊆{β1,...,βq}

J 6=∅

(q − 1)|J | H(WI , q)
H(WI∩J⊥ , q)




≤(`(w)−`(y)−1)/2

.

Remarks.(i) The hypotheses of the theorem are satisfied, for instance, when
β1, . . . , βq are pairwise orthogonal simple roots such thatXyQ is contained
in eachXsβi

yQ and thatXwQ = PIXsβ1 ···sβq yQ. We will see in 4.3 that they
are also satisfied for generic singularities of Schubert varieties in the variety
of Lagrangian subspaces.

(ii) Hypothesis 3) can be weakened as3)′ U−β1 · · ·U−βqeyQ ⊂ XwQ and
dimXwQ ≤ dimXyQ +q+#(R+

I \R+
I0

), as will be clear from the proof of
the theorem. This formulation will be used in the proof of Proposition 4.4.

Proof. Hypothesis (2) implies that, fori = 1, . . . , q, the root subgroupU−βi

is contained inU− ∩y(U−
Q ). Together with hypothesis (3′), this implies that

U−β1 · · ·U−βqeyQ is contained in(U− ∩ y(U−
Q ))eyQ ∩ XwQ = NyQ,wQ.

Now, let ui ∈ U×
−βi

, for i = 1, . . . , q, and letx = u1 · · ·uqeyQ. Then
x ∈ NyQ,wQ and hence, beingLI -stable,NyQ,wQ contains the orbitLIx.

Let us compute the stabiliserH = (LI)x. First, forα ∈ I, hypothesis
(1) implies thatUα commutes with everyU−βi

and henceUα ⊆ H. Since
UI := LI ∩ U is generated by theUα, α ∈ I, it follows that UI ⊆ H.
Then, by Lemma 2.1, one deduces thatH is generated byUI , H ∩ T =⋂

i=1,...,q Ker(βi), and theU−α (α ∈ I) that it contains. We claim that
the latter are exactly theU−α whereα ∈ I0. Firstly, if α ∈ I0 thenU−α

commutes with allU−βi
and fixeseyQ, whenceU−α is contained inH.

Secondly, by 2.1, again,H is normalised byT , and hence fixes all points of
Tx. Further, since theβi are linearly independent, eachuieyQ := xi belongs
to Tx and henceH is contained in the isotropy group of eachxi. As in the
proof of Proposition 2.3, this isotropy group is generated byUI , Ker(βi),
and theU−α, for α ∈ I orthogonal toβi. This concludes the proof of the
claim.

Therefore,dim(LIx) = q + #(R+
I \ R+

I0
) ≥ dimNyQ,wQ andLIx is

open inNyQ,wQ. Further, the closure ofTx in NyQ,wQ identifies with aT -
moduleE with weights−β1, . . . ,−βq of multiplicity 1. SetP0 := LI ∩PI0 ,
and consider the natural morphismφ : LI ×P0 E −→ NyQ,wQ, induced by
the identificationE = Tx and the action ofLI on NyQ,wQ. Then, using
the description of(LI)x given above, one proves, similarly to 2.3, thatφ
is proper and birational. SinceNyQ,wQ is normal, it follows from Zariski’s
main theorem thatk[NyQ,wQ] ∼= k[LI ×P0 E]. Further, by 2.2(††), applied
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to LI instead ofG, the latter is isomorphic tok[CI(β1, . . . , βq)]. Therefore,

k[NyQ,wQ] ∼= k[CI(β1, . . . , βq)].

Thus, sinceNyQ,wQ andCI(β1, . . . , βq) are affine, they are isomorphic.

Now, setC = CI(β1, . . . , βq) and suppose thatC \ {0} is rationally
smooth. Then so isNyB,wB \ {eyB}, by assertion (a), coupled with Lemma
1.4. Thus, we may apply the argument of 1.5 to computePy,w. So, suppose
thatchar(k) = p > 0.

For 1 ≤ i ≤ q, let vi be a highest weight vector inVI(−βi). For J ⊆
{β1, . . . , βq}, let vJ =

∑
βi∈J vi, let OJ denote theLI -orbit of vJ , and let

VJ = k-span{vi, βi ∈ J}. Then the stabiliser ofVJ in LI isLI ∩PI∩J⊥ and
hence, since the elements ofJ are linearly independent,OJ is a fibration
overLI/(LI ∩ PI∩J⊥), with fiber (k×)|J |. Therefore, the number ofFpr -
rational points ofOJ is(pr−1)|J | H(WI , p

r)
/
H(WI∩J⊥ , pr). SinceC\{0}

is the disjoint union of theOJ , for J 6= ∅, assertion (b) then follows from
Lemma 1.5(b).

4.2

Now, and until 4.5, we consider the case whereG = SP (2n) (the symplectic
group inGL(2n)) and whereQ is the stabiliser of a lagrangian subspace of
k2n. ThenG/Q is not minuscule, but cominuscule (that is,Q is maximal and
the associated simple root occurs in the highest root with coefficient one).
We will then apply the previous result to describe the generic singularities
of Schubert varieties inG/Q, the variety of lagrangian subspaces ofk2n.

The starting point is the following observation, which was pointed to us
by V. Deodhar.

Lemma. For cominusculeG/Q, the Bruhat order onG/Q is generated by
the simple reflections.

Proof. Letα be the simple root associated withQ. By assumption,α occurs
in the highest root with coefficient1. Therefore the fundamental weight
ωα∨ ∈ P (R∨), defined with respect to the base{β∨, β ∈ ∆} of R∨,
is a minuscule weight. Further, under the natural identificationW (R) ∼=
W (R∨), the stabiliser ofωα∨ in W equalsWQ. Thus, by [12, Lemma 1.14],
applied to(W (R∨), ωα∨), one obtains that the Bruhat order onWQ is
generated by the simple reflections.

4.3

For w ∈ WQ, let us first describeBd(XwQ), the boundary ofXwQ (see
3.2). We follow the notation of [2, Planche III] for the root system of type
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Cn. In particular,∆ = {α1, . . . , αn}, with αn being the unique long root in
∆. Let s1, . . . , sn denote the corresponding simple reflections.

Lemma. Lety < w in WQ. Suppose thatXyQ is an irreducible component
of Bd(XwQ). Then there exists a unique simple rootβ such thatXyQ ⊂
XsβyQ ⊆ XwQ and, denoting byI the union of the connected components
of ∆ ∩ w(R− ∪ RQ) ∩ y(RQ) to whichβ is adjacent, exactly one of the
following possibilities holds.

(1) One hasXwQ = PIXsβyQ, and either

(1.a)I is of typeAr × At andI ∪ {β} of typeAr+t+1, or

(1.b)I is of typeAr andI ∪ {β} of typeCr+1.

(2) One hasβ = αm, I = {αm−r, . . . , αm−1} ∪ {αm+1, . . . , αn−1}, for
somer < m < n, andXwQ = PαnPIXsmyQ. In this case,̀ (w) − `(y) =
n − m + r + 1.

Proof. The proof is similar to that of Lemma 3.2. LetJ = {α ∈ ∆ |
(wω, α∨) ≤ 0}andI ′ = {α ∈ J | (yω, α∨) = 0}. ThenPJ = StabG(XwQ),
andXyQ is stable byPJ , since it is an irreducible component ofBd(XwQ) =
XwQ \ PJewQ.

By Lemma 4.2, there existsβ ∈ ∆ such thatXyQ 6= PβXyQ ⊆ XwQ.
Then (yω, β∨) > 0 and, in particular,β /∈ J . Let I be the union of the
connected components ofI ′ adjacent toβ, and letz = wIsβy. Let us see
whetherXzQ is PJ -stable. One haszω = yω − (yω, β∨)wIβ.

Let α ∈ I ′. Then−wIα ∈ I ′ and hence(β,−wIα
∨) ≤ 0. There-

fore, (zω, α∨) ≤ 0. It follows thatXzQ is stable byPI′ , and hence equals
PIPβXyQ.

Next, observe that for an arbitraryγ ∈ R, (ω, γ∨) belongs to{0,±2} if
γ is short, and to{±1} if γ is long. In particular,αn /∈ I ′.

i) Suppose first thatβ is long, that is,β = αn. Then(yω, β∨) = 1. Let
α ∈ J \ I ′. Sinceα 6= β thenα is short and, since(yω, α∨) < 0, one
has(yω, α∨) = −2. Since(−wIβ, α∨) ≤ 2, it follows that(zω, α∨) ≤ 0.
This proves thatXzQ is PJ -stable. SinceXzQ 6⊆ Bd(XwQ), it follows that
XwQ = XzQ = PIXsβyQ. Further, sinceβ /∈ J , this implies thatI 6= ∅
and henceI = {αn−r, . . . , αn−1} for somer ≥ 1. This is case (1.b).

ii) Suppose now thatβ is short, sayβ = αm for somem < n. Then
(yω, β∨) = 2 and(β,−wIα

∨) ≤ 1 for anyα ∈ J (β 6= −wIα since the
latter is inRJ ).

If α is a short root inJ \ I ′ then (yω, α∨) = −2 and it follows that
(zω, α∨) ≤ 0. Next, suppose thatαn ∈ J \ I ′ and thatm < n−1 andI has
no connected component adjacent toαn. Then(wIβ, α∨

n) = (β, α∨
n) = 0,

and it follows that(zω, α∨) ≤ 0 in this case.
Therefore, ifαn /∈ J or in the case considered just above one obtains

thatXwQ = PIXsβyQ and we are in the situation of Proposition 3.3, Case 1.
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Thus,I = {αm−r, . . . , αm−1} ∪ {αm+1, . . . , αm+t} for some1 ≤ r < m
and1 ≤ t < n − m. This is the situation of case (1.a).

iii) Suppose finally thatαn ∈ J , and thatm = n − 1 or I has a con-
nected component adjacent toαn. Then one hasI = {αm−r, . . . , αm−1} ∪
{αm+1, . . . , αn−1}. (If r = 0, resp.m = n − 1, then the first, resp. second,
set is empty).

In this case, one haswIβ = αm−r + · · · + αn−1 and(zω, α∨
n) = 1.

Thus, XzQ is not stable byPαn . Yet, one has(snzω, α∨
n) = −1 and

(snzω, α∨
` ) = (zω, α∨

` ) ≤ 0, for α` ∈ J \ {αn−1, αn}. Further, one
checks thatsmwIsnα∨

n−1 = α∨
m + · · · + α∨

n−1 + 2α∨
n , and hence that

(snzω, α∨
n−1) = 0.

This proves thatXsnzQ is PJ -stable and hence equalsXwQ. Thus,
XwQ = PαnPIXsβyQ.

ThenI0, the set of roots inI orthogonal toβ = αm, equals{αm−r, . . . ,
αm−2} ∪ {αm+2, . . . , αn−1}, and one deduces thatwI ≡ (sm−r · · · sm−1)
· (sn−1 · · · sm+1) moduloWI0 . It follows thatdimXzQ − dimXyQ ≤ r +
n−m. The equality could be proved by a direct argument, but sinceXzQ =
PIPβXyQ with I of typeAr × An−1−m andI ∪ {β} of typeAr+n−m, it
follows from Proposition 3.3, Case 1), thatdimXzQ−dimXyQ = r+n−m.
Therefore,dimXwQ − dimXyQ = r + n − m + 1.

Moreover, one hasr ≥ 1. In fact, if r = 0 thenwω = snsn−1 · · · smyω
and hence(yω, α∨

m) = (wω, sn · · · smα∨
m) = −(wω, α∨

m + · · · + α∨
n−1 +

2α∨
n) = 0, a contradiction. This shows that we are in case (2).
Finally, observe that in cases (1.a) and (1.b), resp. (2),β is uniquely

determined by the equality(yω, β∨)β = wI(yω −wω), resp.(yω, β∨)β =
wI(yω −snwω). This completes the proof of the proposition.

4.4

Proposition. Let w ∈ WQ. ThenBd(XwQ) is the singular locus ofXwQ.
Indeed, ifXyQ is an irreducible component ofBd(XwQ), then(notation as
in 4.3) :

(a)In case(1.a), NyQ,wQ is isomorphic to the cone of decomposable tensors
in kn−m ⊗ kr+1, seeProposition 3.3, Case 1.

(b) In case(1.b), NyQ,wQ
∼= S2kr+1 and NyQ,wQ is isomorphic to the

cone over the2-uple embedding ofPr in P(S2kr+1). Therefore, one has
multyQXwQ = 2r andPy,w = 1.

(c) In case(2), NyQ,wQ is isomorphic toC, the orbit closure of the sum of
highest weight vectors in theGL(r + 1) × GL(n − m)-module
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kr+1 ⊗ kn−m ⊕ S2kr+1 = NyQ,wQ. One has

Py,w =
Min(r,n−m)∑

i=0

ti and multyQXwQ =
r∑

i=0

(
n − m + r

i

)
.

(c′) Furthermore, in case(2), C identifies with the contraction to a point of
the zero section of the vector bundleO(−1) ⊗ kn−m ⊕ O(−2) overPr.

Proof. Let XyQ be an irreducible component ofBd(XwQ). In cases (1.a)
and (1.b), the assertions follow at once from Theorem 2.6 and Corollary 2.7.
In these cases,eyQ is a singular point ofXwQ.

Suppose now that we are in case (2). We saw in 4.3 (iii) thatw =
sαnwIsαmy. Therefore,w = wIsβsγy, whereβ = αm andγ = sβwIαn =
2

∑n−1
i=m αi + αn. It is easily seen thatβ andγ satisfy hypothesis (1) of

Theorem 4.1. We know already thatXyQ ⊂ XsβyQ ⊆ XwQ. We claim that

XyQ ⊂ XsγyQ = XsβsγyQ ⊆ XwQ. (∗)

First, sinceXwQ is PI -stable, it is clear thatXwQ ⊇ XsβsγyQ. Further,
one hasγ∨ = α∨

m + · · · + α∨
n and we saw in 4.3 (iii) that(yω, α∨

m) = 2,
(yω, α∨

n) = −1 and(yω, α∨
i ) = 0 for m < i < n. Thus,(yω, γ∨) = 1

and henceXyQ ⊂ XsγyQ. Similarly, one checks thatsγβ∨ = −α∨
m −

2
∑

m<i≤n α∨
i , so that(sγyω, β∨) = 0 and henceXsγyQ = XsβsγyQ. This

proves claim(∗).
One then deduces thatU−γeyQ is contained inXsγyQ, which isPβ-stable

(recall thatβ is a simple root). It follows thatU−βU−γeyQ ⊆ XsγyQ ⊆
XwQ.

Also, we saw in 4.3 (iii) thatdimXwQ −dimXyQ = r+n−m+1 and
thatI0 = {αm−r, . . . , αm−2} ∪ {αm+2, . . . , αn−1}. Since, then,#(R+

I \
R+

I0
) = r +n − 1−m, it follows thatβ, γ satisfy hypotheses (1),(2),(3′) of

Theorem 4.1. Therefore,NyQ,wQ is LI -isomorphic to the orbit closure of
the sum of highest weight vectors in theLI -moduleVI(−β) ⊕ VI(−γ) =
NyQ,wQ.

Further, by looking at the highest weights−β and−γ, one sees thatLI

acts onNyQ,wQ asGL(r + 1) ×GL(n − m) on kr+1 ⊗ kn−m ⊕ S2kr+1.
This proves the first part of assertion (c).

Let us prove assertion (c′). Observe thatC = {u⊗v⊕tu2|u ∈ kr+1, v ∈
kn−m, t ∈ k}. Denote byĈ the subset ofPr × C consisting of all pairs
(x, u⊗v⊕tu2)such that the pointu lies on the linex. Then the first projection
p1 : Ĉ → Pr makesĈ the total space of the vector bundleO(−1)⊗kn−m ⊕
O(−2). Moreover, the second projectionp2 : Ĉ → C identifiesC with the
contraction to a point of the zero section of this vector bundle.
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Now, let us prove the remaining part of assertion (c). First, using Lemma
1.5 and either of the descriptions ofC given in (c) or (c′), one easily deduces
thatPy,w is as asserted. Secondly,k[C] is isomorphic to the bigraded algebra⊕

i,j≥0 VI(i(ωm+1 + ωm−1) + 2jωm−1), andm, the maximal ideal corre-
sponding toeyQ, identifies with the augmentation ideal. Further, it follows
from [14, Theorem 1.ii)] that one hasmq =

⊕
i+j≥q VI(i(ωm+1 +ωm−1)+

2jωm−1), for everyq ≥ 1. One deduces that

mq/mq+1 ∼=
q⊕

i=0

VI

(
iωm+1 + (2q − i)ωm−1

)
and, therefore, that

dim
(
mq/mq+1) =

q∑
i=0

(
i + n − m − 1

n − m − 1

) (
2q − i + r

r

)
.

It follows that

multyQXwQ =
(n − m + r)!

(n − m − 1)! r!
κn−m−1, r,

whereκa,b denotes
∫ 1
0 xa(2 − x)bdx, for a, b ∈ N. Using integration by

parts, one obtains that theκa,b satisfy the recursion formula(a + 1)κa,b =
1 + κa+1,b−1. From this one deduces that, for alla, b ∈ N, one has

(a + b + 1)!
a! b!

κa,b =
b∑

i=0

(
a + b + 1

i

)
.

This completes the proof of assertion (c). Finally, in all caseseyQ is a singular
point of XwQ. This shows thatBd(XwQ) is the singular locus ofXwQ, as
asserted.

4.5

The only other case of a cominusculeG/Q which is not minuscule is the case
whereG = Spin(2n+1) andQ is the maximal parabolic corresponding to
the fundamental weightω1 (the natural representation). But the results in this
case are well-known and easily proved by direct arguments, as follows. Re-
call thatG/Q is a smooth quadric hypersurfaceQ ⊂ P(k2n+1). Moreover,
each Schubert variety is the intersection ofQ with a linear,B-stable sub-
space. But theB-stable subspaces ofk2n+1 are: a flag of completely isotropic
spacesV1, . . . , Vn, their orthogonalsVn+1, . . . , V2n, andV2n+1 = k2n+1

(indexed by their dimensions). It follows that the Schubert varieties in
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G/Q are: the projective spacesP(V1), . . . , P(Vn) = Q ∩ P(Vn+1) and the
quadratic conesQ∩P(Vn+2), . . . ,Q∩P(V2n+1). Denote byX0, . . . , Xn−1
the former and byXn, . . . , X2n−1 the latter (indexed by their dimension).
Clearly,X0, . . . , Xn−1 andX2n−1 are smooth, but forn ≤ i ≤ 2n − 2, Xi

is singular alongX2n−i−2 with a non-degenerate quadratic cone of dimen-
sion2(i−n +1) as a transversal singularity. It follows that the multiplicity
of Xi along X2n−i−2 is 2, whereas the corresponding Kazhdan–Lusztig
polynomial is trivial.

4.6

As a final example, suppose now thatG = SL(n+1), with n ≥ 3, and
consider the varietyF (1, n) of flags of type(1, n) in kn+1. Let {ei, 1 ≤
i ≤ n+1} be the standard basis ofkn+1. For i = 0, . . . , n+1, let Ei =
k-span{eq, q ≤ i}. It is easily seen that the Schubert varieties inF (1, n)
are exactly the

Xi,j = {(`, H) ∈ Pn × (Pn)∗ | ` ⊂ H, ` ⊆ Ei, Ej−1 ⊆ H},

for 1 ≤ i 6= j ≤ n+1. Then, clearly,Xi,j is smooth ifi < j, or if j = 1
or i = n+1. So, suppose that2 ≤ j < i ≤ n. ThenXi,j containsXj−1,i+1
and one checks easily thatXi,j is smooth outsideXj−1,i+1 and that the
transversal alongXj−1,i+1 is isomorphic to

{(x, y) ∈ Ei/Ej−1 × (Ei/Ej−1)∗ | 〈x, y〉 = 0},

which is a non-degenerate quadratic cone ink2(i−j+1). As we saw in Propo-
sition 3.3, Case 3), the Kazhdan-Lusztig polynomial corresponding to this
cone is1 + ti−j .

Remark.The previous results could also be obtained by checking that The-
orem 4.1 applies in that case.
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Expośe 589, Ast́erisque92–93(1982), 249–273


