LECTURES ON SCHUBERT VARIETIES

SARABILLEY’S SPRING 2007 COURSE

1. INTRODUCTION(MARCH 28, 2007)

1.1. History of Schubert Calculus.

(1) Enumerative geometry
Hermann Grassmann (1809-1877)
Hermann @sar Hannibal Schubert (1848-1911)
Francesco Severi (1879-1961)
Mario Pieri
Giovanni Zeno Giambelli (1879-1935)
(2) Topology of homogeneous spaces
e Charles Ehresmann (1905-1979)
e Claude Chevalley (1907-1984)
(3) Representation theory (in 1950's)
e A. Borel
e R. Bott
e B. Kostant
(4) Explicit computation
¢ |. Berenstein
¢ |. Gelfand
e S. Gelfand
e M. Demazure
(5) More concrete(combinatorial) theory
e A. Lascoux
e M.P. Scliutzenberger

1.2. Enumerative Geometry.

(1) Some of typical questions in enumerative geometry
e Given two planes?;, P, C R? through the origin, what idim(P; N P»)? or equivalently,
given two lines in projective spad@, how many points are in the intersection?
e How many lines meet four given lines R??
(2) An example of Schubert variety
¢ A family of lines meeting a point and contained i2-aimensional space.
(3) Schubert problem
e Countthe number of points in the intersection of Schubert varieties such that the intersection
is 0-dimensional.
(4) Many flavors
e Grassmannian manifold(variety)
¢ Flag manifold
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¢ Affine Grassmannian manifold
e Partial flag varieties
e GKM ...
(5) Common Theme
e Schubert varieties form a nice basisif (X, Z).

2. FLAG VARIETY

Let G be the general linear grougL,,(C), and B be the set of upper triangular matricesdn Then
for g € G, the coseyB is determined by the subspades,...,c;), i = 1,...,n, wherec; is theith
column vector ofj.

Definition 2.1. A flagis a nested sequence of vector subspd¢es (Fy C F» C --- C Fy) of C™". A
flag iscompletdf dim F; = i andk = n.
With the above definition we have a bijection betwe&gnB and the set of complete flags @¥'.

Observe that we inherently chose a bdsis, . . ., e, } for C" so thatc; = 22:1 gri . Equivalently,
we chose a base (complete) flag

(el> C <e1,e2) c---C (el,...,en>.

How can we canonically represeqB? Right multiplication byB adds some multiple of thé&h
column of g to jth column fori < j. Therefore we can always fifde B so thatgb is in its column
echelon form; the lowest non-zero entry in each column is a 1 and the entries to the right of each leading
one are all zeros. The leadin in each column form a permutation matrix. For example,

3100 9 5 9 7
2 0 2 1. . . 6 2 4 0
100 ol's the canonical form of the matrix= 310 ol
0 010 00 2 2
This permutation determines tpesition ofg with respect to the base fladenotedos(g) = w.
We will write w = w1, we, - -+, wy,] to meanw is the bijection mappingto w;. This is theone-line

notationfor w € S,. In the above exampley = [24 1 3] is the position ofy with respect to the base
flag. In general, we read the column numbers of leadiagn the column echelon form af from top
to bottom to get the one-line notation farwhenw determines the position gfwith respect to the base
flag.

WARNING: there are at least 8 different names used for this permutation matrix in the literature on
Schubert varieties! We have chosen this way of naming our permutation matrices to agree with the
diagram of the permutatiowhich is defined below.

Definition 2.2. Forw € S,,, the associate8chubert cells defined as
Cw ={g € G|pos(g) = w}.

* 1 0 0
Example 2.3. The Schubert cell correspondingdo= [24 1 3] is Ca413 = >1k 8 S (1)
0 010

We now can see that invertible matrices in column echelon form determine a set of representatives of

G/B. Therefore(+/ B can be written as a disjoint uniqtj,,c g Cu-
Definition 2.4. Forw € S,,, diagram ofw is defined as follows:

D(w) = {(i,w;) € [n]*|i < j and w; > w;}.
Here,[n] = {1,2,--- ,n}.
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An inversionin w is a pairl < i < j < n such thatv; > w;. Thelength of w, denoted/(w), is the
number of inversions fow. The pairs inD(w) are in bijection with the inversions far. Therefore, we
can observe that fav € S,

dim¢ Cyy = ¢(w) = number of inversions ab = |D(w)] .

Let T be the set of diagonal matrices@ The invertible diagonal matrices form an abelian group
that is isomorphic tgC*)".

How doesT” act onC,, under the left multiplication? A diagonal matrix acts on a magrby scaling
the rows ofg. Therefore, the column echelon form ¢fs unchanged, hencg - C,, = C,,. Moreover,
the fixed points of th@-action onGG/ B are exactly the permutation matrices; didixed point in each
Cy-

How does the leftB-action work onC,,? It is easy to see tha&C,, C C,, and since the identity
matrix is in B, we haveBC,, = C,,, which is same aBw.

Exercise 2.5.Prove that there are enough free variables to get any matéi, iy Bw.

Theorem 2.6. (Bruhat decomposition)

G :Uwesn BwB

and hence we have

G/B :Uwesn Buw :Uwesn C .
Remark2.7. The Schubert cell’,, can be viewed in three ways:

(1) The set of coset® - wB/B.
(2) The orbit of the permutation matri - w.
(3) The set of complete flags in positianwith respect to the base flag.

All three points of view are useful.

If we understand elements {t,, as complete flags, what is the condition for a flag to be an element
of C, in terms of equations?

Definition 2.8. Forw € Sy, letrk~ wy; ;) be the rank of the submatrix af with top left corner at1, 1)
and lower right corner &g, 7).

Note thatw can be completely recovered from the maitrkx_w.
Then we have another description for Schubert cell:

Cy = { complete flagrs | (e1, ..., e;) N Fj = rks wy; j} -
Example 2.9. Forw = [24 1 3], the condition for a complete flak, to be inC,, is
0

O =

[dim((el, e ,ei> N Fj)]i,j =

= = O
NN ==
w
=W N =

Definition 2.10. (coordinate free description of Schubert cellsfor a fixed base flag3, = (B; C
By C --- C By),andw € S, the corresponding Schubert cell is defined by

Cw(B,) = { complete flagd', | dim(B; N Fj) = rk~ wy; )} -
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Summary

G = GL,(C), invertible matrices.

B = upper triangular matrices.

T = diagonal matrices, maximal torus.
W =5,.

3. SCHUBERT VARIETIES AND BRUHAT ORDER(MARCH 30, 2007)

Definition 3.1. TheZariski topologyon A™ = C™ (or P") has closed sets given by the vanishing sets of
some collection of polynomials (homogeneous polynomials, respectively).

Note thatn x n complex matrices form an affine space of dimensiénOur goal is to describe the
closure of a Schubert cell i@/ B by equations.

* 1 0 0
Example 3.2. Forw = [241 3], an element irC, = Bw/B has the following form: T 8 3 é .
0 010

Therefore, iftM = (m;;) € BwDB, then the following equations an;;’s must be satisfied:
m21 M22 M3

] =0, det {m31 m3as m33| =0.
M4l M42 M43

ma1  M22

ma1 = mao = 0, det |:m31 Mo

Definition 3.3. For anyn x n matrix M, letrk - Mj; ; be the rank of the smallest lower left submatrix
of M containing);;. Then the rank of\/ is the size of largest non-vanishing minorsiat

Exercise 3.4.Let M be anyk x [ matrix and letr(p, q) = rk My, ,. Show that there existsfax |
matrix U with all 0, 1-entries and at most orlen each row and column such thdp, q) = rk Uy, , for

all p, g.

Lemma 3.5. Forw € S, M € BwB ifand only ifrk M, , = rk wy, 4 for all p, q.
Equivalently,N = by Mb, for someb;, b € Bifandonly ifrk M =rk_ N.

Proof. Left (or right) multiplication byB adds some multiple of row (column)to row (column): for
i< j. O
Notation Let 7, (p, q) = 7k wp, -
Definition 3.6. Matrix Schubert varietys defined as follows:
X(w) ={M € Matyxn(C) |1k, M, g <k wy, q forallp, q}

Mp1 Mpq
=4 M € Matpxn(C)| all 7 (p,q) + 1 minorsvanishon| : ... : | forallp,q
mMn1 Mngq
Tpl Tpq
We let],, be the ideal generated by al)(p,q) + 1 minorsof | : ... : | forallp,q.
Inpl - Tng

Remarl3.7. G C M, «,, is open in Zariski topology. Hencﬁ(w) NG is defined by the same equations.

Since vanishing/non-vanishing minors are unchanged by right multiplicatioB, b, also defines

Cy In G/B, and we have the following definition:
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Definition 3.8. Forw € S,,, the associate8chubert varietyX,, is defined as the closure 6%, in Zariski
topology:
Xow=0Cy.

Note thatX,, is a projective variety.
Now, our question is the following: Which Schubert cells ar&in?

Remark3.9. Forw € S, andi < j, if w(i) > w(y) thenr,(p,q) = ru(p,q) — 1 fori < p < jand
w(j) < g < w(i), wherew' = wt;;.

Proposition 3.10. (Ehressmann Tableaux Criterion 1934 Letv = [v1,vg, ..., v,] @andw = [wy, wa, ..., wy]
be two permutations i1,,.

1) C,CXye Xy C Xy e {vy...,unte > {w;,...,w,} forall .

(2) w coverwv in containing order of Schubert variety if and onlyit;; = v andi(w) = I(v) + 1.

Example 3.11. X531624 C Xe51342, but X3014 € X413 since{4, 1} £ {3,2}.

Proof. (of Proposition3.10
1)

Co C Xy ©14(p,q) < 1u(p, q) forallp,q
SHvp, .., oL g < Hwp, .., w0 {L, ... ¢} forallp, g
S{vp, ..., v e > {wp, ..., wy}< forallp.

(2) (<) Comparer, andr,,. Sincel(w) = l(v) + 1, no otherl is in boundary box fot;;. Therefore,
there is noz € S, such thatr, < r, < ry.

(=) Suppose thak,, C X,, andw coversy in containing order, so ne exists such thak,, C X, C
X,. Letj be the largest such thaf # w;, thenw; < v;. Leti be the largest index such thiak j and
v > v 2> wj.

claim: X, C Xy, € Xy, and hencet;; = w andl(w) = I(v) + 1.

proof of claim: We need to show thaX,;, C X, thatisr,;,; < r, everywhere. Le®l be the
boxes consisting of rows froth to jth and columns fromw;th tov;th. LetB be the boxes consisting of
rows from(i + 1)st to thejth and columns fromy;th to 9v; — 1)st. Sincer,(p, q) < 7 (p, ¢) forallp, q
andr,(p, q) = rutij(p, q) outside ofB, ry,. (p, ¢) < 7w (p, ¢) outside ofB. Sincev,, = wy,...vj41 =
wjy1 andv; > w;, we haver,t;;(4,q) = rv(4,q9) + 1 = r(J, q) for all w; < ¢ < v;. Furthermore,
Tot; (Dywj — 1) = 1y (p,w; — 1) < ry(p,wy — 1) fori <p < 5.

By the choice ofi, there are no othet’s in matrix for v in 2, so all jumps in rank i3 happen
because of’s to the SW ofB, so accounted for along left edge %f or lower edge of3. Therefore,

Toti; (P, q) < rw(p, q) forallp, q. O

Corollary 3.12. X, C X, if and only if there exists a sequence of transpositiQns , - - - , ta,5, such
thatw = vtgp, = tayp, ANAL(Vtap, -« ta;p,) = 1(v) +jforall 1 < j <k.

Exercise 3.13.(Chevalley’s criterion) Let s; = ¢;;11 and writew = s, - - - 84, With p = I(w). Then
X, C Xy, ifand only if there existd < iy < iy < --- < i < psuchthab = Sai, " Saj, -

Definition 3.14. v < w in Bruhat-Chevalley ordeiif X, < X,,.

Remark3.15 1) v<wE {v,..., v}« <A{wr,...,w;} foralli.
(2) (Bjorner-Brenti) We only need to check the condition in (1) fersuch thatvs; < v or only
need to check's such thatws; > w.
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3
X(w) ={9B € G/B|rg <ruv}
={F, : complete flag| dim({ey,...,e;) N F;) > rk~ w;}

4. FULTON’S ESSENTIAL SET (APRIL 4, 2007)

Let C,, and X,, be the Schubert cell and Schubert variety, respectively, that are associated to the
permutationw € S,,.

Definition 4.1. Let D'(w) = {(i,j) € [n]? such thatw(i) > j andw~'(j) < i}. This (alternate)
diagram is obtained from the entries of the permutation matrix associatedyaocanceling entries that
lie to the North and East of a 1 entry.

The essential sedf w, denotedE'ss’(w) consists of the Northeast corners of connected components
in D'(w). More preciselyEss'(w) = {(i,j) € D'(w) suchtha(i —1, ), (i,7+1)and(i—1,j+1) ¢
D'(w).

Example 4.2. We have that)’(2413) consists of the entries which are circles in the matrix:

andE'ss’(2413) consists of the entries.

Observe that the cardinality @¥ (w) is the codimension ak,,, which is (}) — I(w).
We previously found that

Me Xy < rk,y,(M)<rk,(w) <= rks (M) > rks (w)
< allrk_wy ; + 1 minors in X ;; vanish onM

Tl N ﬂj‘ij
whereXj; ; is
Tnl .- CL‘nj
Let I,, be the ideal generated by ak wy; ; + 1 minors inX|; ;. Here are some observations.

(1) Ess'(w) is all on one row if and only ifv has at most one ascent. Here, we mean that the entries
in the 1-line notation forw = (wy,we,...,w,) satisfyw; > wy > ... wg, W41 > Wiyo >
cee > Wy

(2) All of the entries inE'ss’(w) correspond to 0 entries in the canonical matrix form@gy.

(3) For (i,j) € D'(w), we haverk wy; ;; = #1 entries Southwest df, j]. This quantity is also
the number of lines crossed as we look South ffonj]. Equivalently, it is the number of lines
crossed as we look West frof j].

(4) rk_w is constant on connected component®ofw).

Proposition 4.3. (Fulton) Let I be the ideal generated by thé wy; ; + 1 minors of X|; ; for all
(1,7) € Ess'(w). Then, for anyw € S, the ideall,, = I.

Proof. It suffices to show that all of the defining minors &f are in1.

Case 1.Suppos€p, q) € D'(w). Then,(p, q) is in the same connected component as sGmg €
Ess'(w) with i < p andj > q. We haverk  wy, o = rk wy; ;1 by (4) and allrk wy, o + 1 minors of
X(p,q are also minors iX; j.
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Case 2. Suppose(p, q) lies on a vertical edge of the matrix describing the diagramnwofMore
precisely, suppos@, q) ¢ D’(w) with w=!(q) > p andw(p) > ¢. Then, we find the largestsuch that
w(q—1i) >pforall0 <i < k. If k = gthenrk wy, ) = g so there are nek  wy, , + 1 minors in
X[p,q- Otherwisek < g and(p,q — k) € D'(w). We know the defining minors fdp, ¢ — k) are inl
by Case 1, and we will show the defining minors fprq) are in the ideal generated by these.

Note that the-minors of a matrix\/ generate an ideal that contains @H- 1)-minors of M’, where
M is obtained fromM by adding a column. If = rk_wy, .y thenrk  wy, ;g = r + (k —4) for
0 <4 < k. Hence, alirk wy, ,; + 1 minors of X, , are inI by Case 1.

Case 3. Suppos€p, q) lies on a horizontal edge of the matrix describing the diagranv.oMore
precisely, suppos@, q) ¢ D’ (w) with w=!(¢) < p andw(p) < ¢. This case is very similar to Case 2,
and can be completed by looking down instead of left.

Case 4. Supposgp, q) lies on an intersection of edges in the matrix describing the diagram of
More precisely, suppos@, q) ¢ D'(w) with w=!(¢) > p andw(p) < ¢. If w™!(¢g — 1) < p then by
Case 2, we have that thé wy, ,_;; + 1 minors are inl. By the note in Case 2, this implies that all
rk wp, g + 1 minors of X, ; areinl.

If w=!(q — 1) > p then by induction we may assume these minors ae We may use the note in
Case 2 to see that dlp, ¢) minors are inl.

These cases exhaust all of the possibilities, so we have completed the proof. O

The following proposition shows that no proper subset of the essential set will work to dgfine

Proposition 4.4. (Fulton) Letw € S,, and(pg, qo) € Ess’(w). Then there exists anxn matrix M such
thatrk My, g < vk wp,q forall (p,q) € Ess'(w) \ {(po,q0)}, andrk My, 401 = 7k Wi, g0) + 1-

Proof. DefineM = (m;;) by
wij  if i > po, j < go but(i,j) # (po,qo)

mi; = 1 if (Z,]) = (p07QO)
0 otherwise.

Then,rk M, , is the number of 1 entries lying Southwest(pfq), soM has the desired properties.
O

Warning4.5. The set of determinantal equations correspondingitowy, ,; + 1 minors for (p,q) €
Ess’(w) is not necessarily minimal. A @bner basis is given by Knutson-Miller.

Open Question 4.6.What is the analogue of the essential set@iB in other types?

Example 4.7. Forw = 2413 we haveD’(w) given by

so the essential set tells us us thatis generated by the x 1 and2 x 2 minors of

T21 X22
Xa2] = Ta,1 T42 X2 = %31 32
Ty1 T42
So

T T To1 X T3] T
Ly = (241, 242, det 20 TR gy |T2 T2 o |31 T )
31 32 Ta1 T42 T41 T42
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which can be reduced to

Iw = (:z:41,x42,det {l‘gl l‘22:|>

31 T32

Example 4.8. Forw = 3412 we haveD’(w) = Ess’'(w) given by

so
Tol Tz T3
Iy = (a1, det |x31 w32 x33|)
Tyl Taz  T43

Example 4.9. Forw = 4321 we haveD’(w) given by

1
so E'ss’(w) is the empty set. In this cas¥,, = G/B.
Definition 4.10. Let wy be the permutatiotin,n — 1,n — 2,...,2,1). Thenf((wo) = M,«, and
Xuwy = G/B = Uyp<uy, Cy.

Definition 4.11. The coordinate ringof X, is C[x11, ..., 2]/ v, cOnsisting of polynomial functions
on X,.

The standard monomials form a basis for the coordinate ring. This set was originally described by
Lakshmibai-Musili-Seshadri. See also the paper by Reiner-Shimozono in our class library.

We claim thatG/ B is a smooth manifold. This means that every point has an affine neighborhood of
dimension(}) and at every point, the dimension of the tangent spa¢g)isNote thatC,,, consists of

* x % 1 0 0 0 1

. * x 1 0 . . . 0 01 O
matrices of the form « 1.0 ol In particular, the permutation matrix = 010 ol € Cups

1 0 00 1 0 00

andC,, is its affine neighborhood of dimensid#).

SinceG/ B has a transitivés L,, action by left multiplication, every point looks locally like any other
point. Therefore, every point iY/B has an affine neighborhood of dimensi(ﬁh, and the tangent
space to every point has the same dimension, héffdg is smooth. This proves the claim.

Are all Schubert varieties smooth? No, anchdsnds toco, we find that almost all Schubert varieties
are singular. We outline a way to test for smoothness based on the defining equati&ps for

The local properties of points in a Schubert varigty are determined by the permutation matrices for
v < w sinceX,, is the union of the3-orbits of these permutation matrices;, = U,<,Cy, = Uy<y Bu.
Smoothness is a local property &q, is smooth at every point i, for v < w if and only if X,, is
smooth at.

Theorem 4.12. (Jacobian criterion) LetY be an affine variety idh™ defined byl (Y) = {f1,..., f-}
where thef; are polynomials in variables, , . . ., z,,. Then, we define the Jacobian matfiky, ..., z,) =
(gjﬁz). If p=(p1,...,pn) € A™ then the following hold:

(1) We always havek J(p1,...,pn) < codiman Y =n —dimY.
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(2) The pointp is a smooth point of” if and only ifrk J(p1,...,pn) = codimyn Y =n —dimY.

Note that{p € Y : rk J < k} is a closed set in the Zariski topology, being defined by the vanishing
of minors. The intersection of two closed sets is again a closed set. We said abovexthas gingular
atv < w, thenX,, is singular at all points ir©’,. Therefore X, is singular onC,, = X,,. Equivalently,
X, is singular at for all v < v. Hence, we have the following corollary.

Corollary 4.13. The Schubert variety(,, is smooth everywhere if and onlyXf,, is smooth at = id.

5. SVIOOTH SCHUBERT VARIETIES(APRIL 6,2007)

Recall thatX,, is smooth everywhere if and only X, is smooth at the identity matrix by Corol-
lary 4.13 Our goal is to test smoothness with the Jacobian criterion, which requires us to identify an
affine neighborhood of the identity.

ConsiderG/B = Xy, = Cuy U Uy<w,Cy. The Schubert cell’,, is an affine neighborhood afy.
For example when = 4

0 0 0 1 * ok ox 1
0 010 * x 1 0
(1) 01 00|S|x 10 0] Cw
1 000 1 000
We can move this neighborhood around to contain the identity by left multiplication by the mgtrix
0 0 01 x ok k1 1 0 0 O
. ({0 0 1 0 * x 1 0  [x21 1 0 0
(62 wolug =woBwo =15 1 o of |« 10 0| |am @ 1 0
1 0 0 O 1 0 0 O T41 T42 T43 1

In the matrix on the right, we have filled in the stars with affine coordinates.
Definition 5.1. SetY (w, id) = X,y N woCly, andY (w,v) = Xy NvweCly, -

Note,Y (w, v) is an affine neighborhood containingn X, if v < w.
Example 5.2. Is X (2413) smooth?

In Example4.7, we determined thaKw is defined byIQ413 =< T41,T42,T21T32 — T31T22 >.
Therefore,Y (2413, id) is determined by the same equations evaluated on the last matdx7)n &
41,42, To1T32 — T31 > Wherexqo was set equal to 1.

To use the Jacobian criterion, calculate

0 0 0 1 0
(5.3) J=10 0 0 01
I32 -1 21 0 0

where the columns are indexed by the ordered list of variablgses:, 32, 41, £42. The matrixJ (1) is
obtained by setting all the variables; equal to 0. Therefore, the rank #{/) is 3, while the codimension
of X (2413) is () — 3 = 3. Hence X (2413) is smooth.

Example 5.3. Is X (3412) smooth?

The affine varietyYs412 ;4 iS defined bylssio restricted to the matrix in(2) again. This ideal is
generated by f1, fo >, where
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fi=2zn
o1 1 0
fo=|z31 x32 1 |=zo1(x32m43 — Ta2) — T31243.
0 x40 w43
(5.4) J— 0 0 01 0 0
T320043 — T42 —T43 0 0 @21 21732 — w31

where the variables are in ordes;, z29, 31, 241, T42, T43. Setting the variables equal to 0 we see that
the rank ofJ(I) is 1, whereas the codimension &f(3412) is (3) —4 =2,50X(3412) is NOT smooth.

What is Sing(X (3412)) = U X (v), the singular locus oX,,?
v singular in X,
Definition 5.4. maxsing(w) = {v € S,, : v < w andv is a maximally singular point itX, }.
Claim 5.5. Sing(X (3412)) = X (1324) or equivalentlymaxsing(w) = {1324}.

Proof. We need to verify the following statements:
(1) v = 1324 is a singular point ofX' (3412).
(2) Not;; exists such that < vt;; < w with I(vt;;) = I(v) 4+ 1 andvt;; is singular.
(3) All t;; such that(vt;;) = 1, different fromt;; = 1324, are smooth.
To verify (1), letv = 1324. We have

1 0 0 O
. 21 T22 1 0

(5.5) v(sazas = | TR X,
T4 Taz T43 1

The ideal defining” (3412, 1324) is generated by, f, again but now we evaluate these polynomials on
the matrix in 6.5). So

fi =z
To1 T2 1
fo=lz31 1 0| = —x31(v20x43 — Ta2) + 21243

T41 T42 T43

0 0 0 1 0 0
5.6 J =
(5:6) <$43 —x31T43  —T2x32 + 242 0 m31 —xziTe + 3621)
where the variables are again in lexicographic order. Setting the variables equal to 0 we see that the rank

of J(1324) is1 < 2 = codim(X3412), S01324 is a singular point ofX (3412). O

Exercise 5.6.Complete the above proof by verifying that all permutations with length 2 abt®«&and
below3412 in Bruhat order are smooth points &f,, and tha134 and1243 are also smooth.

This sort of calculation “works”, but it does not give us a good feeling for how the singularities of one
Schubert variety relates to the singularities of another. Therefore, we need to study singular Schubert
varieties and their tangent spaces as a family. This is the discrete analog of studying a moduli space of
curves in order to see their properties in context.

Definition 5.7. For any subgroug? of GI,,(F), theLie algebraof H, Lie(H), is the space of tangent
vectors to the identity matrix.
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In many ways, the Lie algebra of a group is easier to work with bechitgé7) is a vector space. The
representation theory of the Lie algebra and its Lie group are closely related. Furthermore, the connected
component of containing the identity matrix can be recovered frame(H).

Observe thati,,/B ~ Si,,/(B N Sl,,). Therefore, to understand the tangent spacés/tB we want
to understand.ie(S7,,(C)). We will discuss Lie algebras in general first and then restrict our attention
to this special case by the end of the lecture.

Consider a differentiable path(t) = (¢1 (), ¢2(t), . .., ¢x(t)) € R* with velocity vector

Y <8¢1(x) D¢a(x) 3(/%(:6))
TR Tant ey :

thenv is tangent tap atz € R*.

Definition 5.8. Given any subsef C R*, v istangentto S atx € S if there exists a differentiable path
¢(t) lying in S such that(0) = x and¢’(0) = v.

Recall thegradientof a functionf(z) = f(x1,--- ,xg) IS
of
o1
(5.7) Vix)=| ...
of
oxy,

Lemma5.9.1f S = V(f1,..., f.) C R*is a closed set in the Zariski topology, afidzanishes ors,
then the tangent vectors ®at x € S are orthogonal to the gradient gf evaluated atr.

Proof. Let ¢(¢) be a differentiable path i§ such that(0) = = and¢’(0) = v. Thenf(y) = 0 for all
yeS= df(o(t) =0forallt € R. Thisimpliesd f(4(t)) = 2L ()% (0)+...+ 2L (2) %% (0) =
(Vf(x)w)=0. O
Remark5.1Q Two paths¢(t), {(t) have the same tangentat= 0 if and only if the first two terms
of their Taylor expansions agree. Thatdgf) = a + bt + ... and&(t) = a + bt + .... Therefore,
we only need to consider paths with coefficientsiin= {a + be : a,b € R}, with €2 = 0. Note
that £ is a ring with multiplication and addition defined By + be)(c + de) = ac + (ad + be)e, and
(a+ be) + (c+ de) = (a+b) + (¢ + d)e.

Using this map on Taylor series, the set of all patk with ¢(0) = = and¢’(0) = v map to vector
x +ve = (xr1 + vi€, ..., 2k + vie), With z;, v; € R.

Definition 5.11. Definev to be annfinitesimal tangenof S = V(fi,..., fr) atzif f(z +ve) =0asa
polynomial overE for all f vanishing onS.

Lemma 5.12. Every tangentt® = V (f1,..., f,) atz € S is an infinitesimal tangent.

Proof. Given a polynomialf (x) = f(x1,...,xy) over E, then by multivariate Taylor expansion
_ of of o) 0 .
(5.8) f(x +ve) = f(z)+ (vleaxl (x)+...+ Ukeaxk (x)) + (v1eaxl +...+ vkeaxk) flx)+...
All the degree 2 and higher terms in this expansion vanish Bydrence
f(@+wve) = fz) + (Vf(z)v)e
If f vanishes orb, thenf(z + ve) = 0if and only if V f(z).v = 0. Apply Lemma5.9to concludev is
an infinitesimal tangent. O

When S is sufficiently smooth then the converse to Lem&a2 holds, namely every infinitesimal
tangent is a tangent vector. We will state this precisely for linear algebraic groups and provelit,for
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Definition 5.13. A group H is alinear algebraic grougf it is both a subgroup of+/,, and it is defined
by the vanishing of some set of polynomials. For exam§lg,= V' (det —1) is a linear algebraic group.

Recall that for any matrix,
2

A
etA:I+tA+t2§+....

If {et4 .t € R} is a one-parameter subgroupt we have a parameterized patft) = ¢4 through

the identity¢(0) with velocity vector%(o) = A. Therefore,A is a tangent vector off at the identity
S0A € Lie(H).

Fact5.14. Let H be a linear algebraic group. For every infinitesimal tangenf H at the identity, (i.e.
f(I + At) = 0for all f vanishing onH) the group{e*4 : t € R} is a subgroup off.

Corollary 5.15. Lie(H) ={A € Mpxn : I + Ae € H}.

For example, let/ = SL,, = V(det —1). The vector] + Ae € H if and only if det(/ + Ae) = 1.
Observe that

1+ aqie ai12€ . A1n€
agl€ 1+ age ... A2n €
(5.9) I+ Ae =
Ap 1€ Ap2€ oo 14 apne

sodet(] + Ae) =1+ (ai1 + ...+ ann)e, Whichis1 if and only if tr(A) = 0. Therefore,
Lie(Sl,(F)) = {A € Myxy, : tr(A) = 0} = sl,.

Fact5.14is equivalent to saying(A) = 0 < det(e!!) = 1 for all t € R. To prove the fact in this
case we simply note that

det(eP) = e"(B).

Definition 5.16. A Lie algebraV over a fieldF is a vector space ovdf with a law of composition
V x V — V mapping(a,b) — [a,b] such that

(1) [,] is bilinear.
(2) [a,a] = 0.
(3) The Jacobi identityfa, [b, c]] + [b, [¢, a]] + [, [a, b]] = 0.

Exercise 5.17.Forsl,,, the bracket operation is defined by
[A,B] = AB — BA
Verify Properties 1,2,3 hold for this law of composition €lp.

6. CRITERIA FOR SMOOTHNESS OFX,, (APRIL 11,2007)
Recall,g = Lie(Sl,(F)) = {A € M, xn, : tr(A) = 0} = sl,,. Observe thag has a vector space basis

(6.1) B:{Eij:i#j}U{Hi:1§i<n},

whereFE;; is the matrix whosé;*" entry is1 and all other entries a®and H; is the matrix whosei'"
entry is1, (i + 1,7 + 1)% entry is—1 and all other entries ai@

Exercise 6.1.Compute[E;;, Ey,], [Eij, Hi), and[H;, H;] to find which elements o commute.
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For B the subgroup of upper triangular matricesdh,, Corollary 5.15 and Equatior6.1 implies
b= Lie(BNSl,) hasabasi$L;; : i < j}U{H; : 1 <1i < n}. Therefore the tangent spacedg B at
I is equal to the tangent spacedt, /(B N Sl,,) atI which is equal tgg/b. We have bijections
(6.2) g/b=Span{Ej; i < j} «—{tij € Sp} =R {ej —e;:i <j} = A,.

More generally, fon € S,,,
(6.3) v 1(g/b)v = Span{v_lEjiv 11 < j} = Span{Ey(jyu) : J < i}

is the tangent space /B atv. Note, Ej;v = E; ;) andv ' Ej; = E,j); SOv™ " Ejiv = Ey(j)(i)-

Definition 6.2. Let T;,(v) be the tangent space 16, atv.

Theorem 6.3. (Lakshmibai-Seshadri) We have that

(6.4) Tw(v) = Span{Ev(j)v(,-) 1< g andtv(j)v(i)v < w}
(6.5) = Span{Ey(j)u@) : 1 < jandvty; < w}

Proof. The two sets are equivalent sinGe;, ;v = vt;j. Xy C Xuw, = G/BimpliesT,(v) C Ty, (v).
Thus, we only need to identify which,;), ;) € T (v) i.e. whichI+E,;y,ye € Xy, by Corollary5.15
If v is the identity, then

1 -0 0 0 0 O 1 -0 0 0 0 O
0 1; 0 0; 1
rk(I + Ejie) =1k | o : =rk | : ,
0 ¢ 1 0 1 0
0 0
0 1 0 1

which impliesrk(l + Eje) = rk_(t;;). Thereforel + Eje € X (w) if and only if ¢;; < w in Bruhat
order.
Similarly, if v < w, sayv(j) = k andw(i) = ¢.

1
1
1 ky(0)  ifl(v) > U(tyo)
) — . . Tk (v It [(v) > (kv
T‘k/(v + E_]’LE) - T‘k’/ . . - { rkl/(tklv) |f l('U) < l(tkl’l}) }
€
1
Thus,rk (v + Eje) = rk_w if and only if bothv < w andvtj; < w. O

Corollary 6.4. For all v < w,
(1) dimTy,(v) = [{tij € R : vty; < w}.
(2) X, issmooth ab < dimT,,(v) = l(w) < [{tij € R : vt;; < w}| = l(w).
(3) dimTy(v) > l(w).
(4) {tij € R:v <vti; <w}| > l(w) —I(v).

Exercise 6.5.Prove Property 3 in Corollar§.4using|{t;; € R : vt;; < w}| = dimT,(v).
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Is X' (4231) smooth? No! There aré transpositions in the interval from the identity 4831 in the
Hasse diagram for Bruhat order, B(#231) = 5. We have that = 2143 is not a smooth point ok 423;
along with its lower order ideal in Bruhat order.

Fact 6.6. Sing(X(4231)) = X (2143) and Sing(X (3412)) = X (1324). (Memorize these patterns!)
All other X (w) € Sl4/B are smooth.

Definition 6.7. The Bruhat graphof w has verticess < w and edges betweanandv if v = vt;; for
somei, j.

Fact 6.8. The dimension of’,,(v) is equal to the degree ofin the Bruhat graph of.

Geometric Interpretation: Say< vt;;. Then
1 1
1; 1
L= : : 1 is on thek row and+ € C 3 |J
% e 1; 1
1 1
={U + Ejv(i)} U {’Utij}.
L) is fixed by left multiplication byT.
Example 6.9. Letv = 4231. Then left multiplication byl" does the following:

t1 1 t1
to 1 _ to
t3 * 1 o *tg t3
ty 1 ty

Exercise 6.10.Show
{LS}’]),U € Sy,i < j:v <uwt;} = {1 —dimensional subvarieties of (w) fixed byT-action}.

Remark6.11 A GKM space(Goresky-Kac-MacPherson) is any symplectic manifold with a tdrus

action with a finite number dt’ fixed points and a finite number @f fixed 1-dimensional orbits. Then

this data determines a graph just like the Bruhat graph. One asks, What can we say about the singularities
and cohomology in terms of this graph?

Theorem 6.12. (Uber Smoothness Theorem) The following are equivalent fouaays,,:
(1) X, is smooth.
(2) X, is smooth atd.
(3) [{tij < w}f = l(w).
(4) The Bruhat graph foiw is regular.
(5) Pid,w(Q) =L
(6) P,w(q) =1forall v < w.
(7) ro(t) = > _ ') is palindromic.

v<w

k
(8) rw(t) = H(l +q+...+qY)for somefiy,... i} €N,
j=1
(9) w avoids3412 and4231.
Definition 6.13. w avoids3412 and 4231 means there is nd < 4; < iy < i3 < iy < m such
that f1(w;, , wi,, wiy, w;,) € {3412,4231}. Here for any se{d;, da, . .., d;} of distinct real numbers,
fl(dy,...,dg) = (v1,...,v) if d; is thev!” largest element amongly, . . ., dy }.
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Open Question 6.14.Explain whyS, is enough to determine all singularities.

If G is semisimple, then smoothness(1,2 of Uber Theorem) implies rational smoothness(4,5,6,7,8’)
implies combinatorial smoothness(3). In Type A, all three types of smoothness are equivalent. In Types
D and E, smoothness is equivalent to rational smoothness (Petersen, Carell-Kuttler). All three flavors of
smoothness can be characterized by pattern avoidance using root systems (Billey-Postnikov).

6.1. Kazhdan-Lusztig Polynomials in a Nutshell. The Kazhdan-Lusztig polynomidt, .,(q) is a poly-
nomial in 1 variable with the following properties:

(1) P, (q) has constant term 1 if < w.

l(w) —1(v) -1

(2) The degree oP, ,,(q) is less than or equal tez—.
3 Pw,w(Q)) =1

(4) Pyuw(q) #0 & v <w.

(5) If s =t;,41, ws < w, andvs < v, then

L(w)—l(2)
Poa(@) = qPosws(@) + Pows(@) — Y p(zws)g 2 Po.(q),

zs<z<ws

. - (W) =l(@)=1
wherep(z, y is the coefficient of 2 “in P,y (q).

(6) If ws < wandvs > vthenP, ,(q)) = Posw(q)-
Theorem 6.15.LetI H (w) be the intersection cohomology sheafgf with respect to middle perversity.
Then

1) Pow(q) = 3 dim(TH (Xw)v)a’.

@) D Powl@)d (v) = dim(IHY (X,))q .

v<w

(3) Ppw(q) = 1foreveryz < wif and only if X,, is rationally smooth.
In Theorem6.15 the first statement implies the coefficientsfof,,)(¢) are nonnegative.

Open Question 6.16.Find an all positive formula fo, ,,(q).

The second statement implids~ P, .,(¢)¢”) is palindromic. We will take the third statement to be
v<w

the definition for rational smoothness.
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7. THE “UBER” THEOREM (APRIL 13, 2007)

Theorem 7.1(Uber Theorem) The following are equivalent fap € S,,:
(1) X, is smooth.
(2) X, is smooth atd € S,,.
(3) #{tij : tij < w} = E(w)
(4) The Bruhat graph ofv is regular of degred(w).
5) Pid,w(Q) =1L
(6) Pypuw(g) =1forall z < w.
() rw(t) =3, <, t“ is palindromic.
(8) ru(t) = [[;(1+t -+ 4---+1%).
(9) w avoids the pattern8412 and4231.
Today'’s lecture is devoted to the proof of the Uber Theorem.
Proof of the Uber TheoremA number of the cases follow from results we have discussed in past
lectures.
(1) < (2): follows since the singular locus is closed.
(2) & (3) & (4): is a corollary of the Lakshmibai-Seshadari Theorem.
(5) < (6): follows from a theorem of Ron Irving.

Theorem 7.2(Irving). Suppose
Pyw(q) =14+ a1qg+ a2q2 4+ 4 aqu, and

Prw(q) =1+ big+bag® + - + big".
If v <a <w,thena; > b;forall 1 <7 <k.

(4) & (6) < (7): follows from the work of Carroll-Peterson.

Example 7.3. We see thatss; = 1 + 3t + 5t2 + 6t° + 4t* + ¢° is not palindromic.
Howeverrss = 1 + 3t + 4¢2 + 3t% + t* is palindromic, and factors 48 + ¢)2(1 + t + ¢2).

Pop quiz: Which X, are smooth among the following? Which characterization from the uber
theorem seems the easiest to apply? (Class consensus: (9).)

w = 45678123 € Sg? Contains subsequent®l2, fi(4512) = 3412. Singular.

w = 7432651 € S;? Contains subsequent®&s1, fI(7351) = 4231. Singular.

w = 7654321 € S;? No ascents. Avoids 3412 and 4231. Smooth.

w = 7132645 € S;? Avoids 3412 and 4231. Smooth.

w = 7263154 € S;? Contains subsequent231, fi(7231) = 4231. Singular.

We still need to show that
(1) w avoids the patterns 3412 and 4231 implies that) factors “nicely”, that this then implies
thatr,,(t) is palindromic, and that this implies that, is smooth.
(2) w contains one of the patterns 3412 and 4231 impliessthét) is not palindromic, and that
thereforer,,(¢) does not factor “nicely”.

Lemma 7.4. For w € S, r(t) factors (nicely) if one of the following hold:

Rule L: If w =[...,n, w1, ..., w,| Withn = wg, > wi1 > -+ > wy, then
rw(t) = (Lt + 82 4 ")y (1),
wherew’ = [wy,...,Wg,...,w,] € S,—1 (or equivalently,w = w's,_18,-2 - sk, where

s; = t; j+1 IS the adjacent transposition indexed By
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Rule 2: Say thatw contains aconsecutive sequendgfor somel < j < n thej + 1 integers
{n—j,n—j5+1,...,n} appearinthe one-line notation afin decreasing order, withv,, = n—j.
fw=[..,n,...,n—1,...,n— j| contains the consecutive sequence of leggthl, then

Fo(t) = (L+t4+t2 4+ 4 t7) 1y (),
wherew' = s,_1Sp_2 - Sp—jw.

Example 7.5(Rule 2 example:)w = 7132645 € S; contains the consecutive sequefi6a.

Tw(t) = (1 +t+t2) - 1y, (t), Wwherews (t) = 613254, which containg54.
Tw(t) = (1 +t+t2)% - ry, (t), wherews(t) = 51324, which containg4.
rw(t) (14t +t3)2(1 + ) - 4, (), Wherewy (t) = 4132, which containst32.
Tw(t) = (1 +t+t2)3(1 +t) - 7wy (t), wherews(t) = 312, which containss2.
Tw(t) = (L+t+t2)3(1 +1)? - 1y, (t), wherews(t) = 21.

rw( )= (1+t+t2)3(1 +¢)3.

Proof of Lemm&.4. Note thatw; = i < w™1(i) = j. Note also that satisfies the hypotheses for Rule
1if and only ifw~! satisfies the hypotheses for RuleVZhy?By Chevalley’s Criterion for Bruhat order
and becausfd, w] and[id, w~!] are isomorphic posets as intervals in the Bruhat order. Thus it suffices
to prove Rule 1. For the next part of the proof, you are asked to do the following exercise.

Exercise 7.6.Show that ifu, v € S,, such that, = v, thenu < v if and only if
Fllug, oo gy vy tuy) < fU(U1, 0y Oy e v ey U).

Claim:If n = wy > wg4q > -+ > wy, then the intervalid, w] in the Bruhat order can be partitioned
inton — k + 1 blocks{B;} such that each block; with the induced order is isomorphic to the interval

[id, w'], and the smallest element in each block has lefigth2, ..., n — k respectively.
Proof: Let B, = {« < w : z; = n}. By Exercise7.6, the Bruhat order orB; induces a poset
isomorphic to the intervalid, w'], wherew’ = [w1,...,wg =n,...,w,] € S,_1. Sincen = wy >

Wiyl > -+ > wy, the maximum length element iB,, is w’, the maximum length element iB,,_;

is w’'s,_1, etc., and in general, he maximum length elemenBijnis w’s, _15,_2---sk. Similarly,

the minimal length element iB; in general is[1,2,...,i — 1,n,i,7 + 1,...,n — 1], which is of

lengthn — i. Therefore the magp : {0,1,2,...,n — k} X [id,w'] — [id,w] given by (i,z) —

[x1,22,...,%i—1,n, %, Tit1,- .., Tn—1] IS @ bijection. Moreover, this bijection is length-preserving in

the sense that(z) + i = ¢(¢(x)), and the bijection respects Bruhat order. This establishes the claim.
From the claim it follows that,, (t) = (1 4+t + 2+ -« + t" %) - 1 (2). O

Exercise 7.7.Show that the intervdid, w] in the Bruhat order has a symmetric chain decomposition if
w is smooth.

Corollary 7.8. The interval[id, w] is rank-symmetric, rank-unimodal, atd-Sperner ifw is smooth.

Lemma 7.9.If w € S,, avoids the patterns 3412 and 4231, thesatisfies the hypotheses of either Rule
1 or Rule 2 of Lemm@.4. Moreover, the respective’ € S,,_; also avoids the patterns 3412 and 4231.

Proof. Regarding the latter part of the statement of the lemma, if Rule 1 applies andids both pat-
terns, theny’ also avoids the patterns since subsequences afe also subsequencesszlf Rule 2 ap-
pIies, then for an)[il, 12,13, ’i4} C {1, ey n—l}, we havefl(w“, wm, wzg, ’LU ) fl(wl-l y Wiy, Wi, wi4),
S0 again, ifw avoids the patterns 3412 and 4231, then so dde# remains to show that satisfies the
hypotheses of either Rule 1 or Rule 2.

Saywy = n. We consider cases by the valueiof

Cased = n orn — 1. In this case, Rule 1 applies.

Cased = n — 2. If w, = n—1, then Rule 2 applies. i, 1 = n—1, then Rule 1 applies. Otherwise
w; = n — 1 for somei < d. It cannot be the case that,_; < w,, for otherwisefl(w; =n — 1,wy =
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n, wn—1,wy) = (3412) and sow would contain the pattern 3412. Thus it must be that; > w,,, and
Rule 1 applies.

Cased <n—2. If wy > wgy1 > -+ > w,, then Rule 1 applies. Otherwise; > w, < Wet1
for somed < e < n. Without loss of generality we may assume thas the largest such index. If
w~l(k) < dforanywe 1 < k < n, thenfi(k,n,we,we1) = (3412), contradicting the assumption
thatw avoids this pattern. In particular,”!(n —1) > d, saywy; = n— 1. If f = n, then Rule 2 applies.
Otherwisef < n — 1.

Letw, =n — 2. If g < d, then either

e weyr1 £#n—1,whenfl(n — 2,n, we, wer1) = (3412), or

e weyrp =n—1andwe < wy,, Whenfl(n — 2,n, we, w,) = (3412), or

e werp =n — 1landwe > wy,, Whenfl(n — 2, we,n — 1, w,) = (4231).
If d < g < f,thenfl(n,n —2,n —1,w,) = (4231). All these cases contradict our assumption that
avoids these patterns. Thus we must have f,i.e.w=!(n —2) > w=(n - 1).

Performing similar analysis fow—'(n — 3), w=!(n — 4), etc. successively, in general comparing
w~!(k) against the valuefd = w1t (n),w (n—1),...,w 1 (k + 1)}, and knowing thatv avoids the
patterns 3412 and 4231, shows that

d<w'(n-1)<w'(n-2)<---<w (k) <w '(k—1) <

until at some point whem ! (k) = n for somek. At this point it is seen thab contains a consecutive
sequence, and Rule 2 applies.

0

Lemma 7.10.If w € S, such thatfl(w;,,w;,, w:,,w;,) = (3,4,1,2) or (4,2,3,1), thenX,, is not
smooth.

Proof. Letw' = fl(w;,, w;,, wiy, w;,) € S4. Letu' € Sy be such thaSing X (w') = X (u’). Then
eitherv’ = 1324 or v/ = 2143. Then#{t;; € S4 : u't;; < w'} > ((w') by the Lakshmibai-Seshadari
Theorem.

Letu € S, such thatu; = w; for all i ¢ {i1,42,43,44}, and fl(wi,, wiy, uig, u;,) = u'. Define
Dw({L') = {tij €S, : l’tij < w}, and deflnefo}(a:) = {tij S Dw(m) : ’{i,j,il,ig,ig,i4}’ = k} for
k =4,5,6. ThenD,,(z) = D2 (x) U D), (x) U DS ().

By Exercise?.6, if v,w € S, such that; = w;, thenv < w if and only if

(VU1 e ey OiyeeeyUn) < W1y, Wiy .oy Wy

Therefore, by repeated application of this fact, to determing;if < w, we only need to compare on
positions in{i, j, 1, i2, 43,74 }. Computer-run verifications show that fer’ € Ss containing either of
the patterns 3412 or 4231 and f@f constructed fromv” as above,

| Dy (W) > [ D (w")]
D (")) = [ Do (w")]

| Do (W) = [ Dy (w"))]
and hence
Dy (@) = > DG (") > Y [Die(w”)] = £(w”).
k=4,5,6 k=4,5,6
Thusw is a singular point ofX,,. O

This concludes our proof of the Uber Theorem.

One can generalize some conditions of the Uber Theorem for intervals in the Bruhat order poset:
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(4’): The Bruhat graph ofv, w] is regular of degreé(w) — ¢(v).

(5): Pow(q) =1.
(6"): Pruw(q)=1forallv <z <w.

The following theorem was proved around the year 2000-2001 by several teams of mathematicians:
Billey-Warrington, Cortez, Kassel-Lascoux-Reutenauer, and Manivel.

Theorem 7.11.For w € S,,, we have
Sing(Xy) = U Xy.

vEmazsing(w)
Moreover,v € mazxsing(w) if and only if X, is an irreducible component dfing(X,,). Also,v €
mazsing(w) is obtained fromw (diagrammatically) in one of three ways: ... (diagrams to be provided).
8. GRASSMANNIANS (APRIL 18, 2007)

Open Question 8.1.Characterize the maximal singular set &, C G/B whereG = SO(2n + 1),
SO(2n), Sp(2n) or any other semisimple Lie group.

Let V be a vector space over some fi@af dimensionn, so thatl” ~ F".
Definition 8.2. G(k,n) = {k-dimensional subspacesBf }.
Example 8.3. G(1,n) = {lines through the origih=P(V).
Example 8.4. G(2,4) = {planes through the origin iii*} = {affine lines inP3}.
Fix a basis fol/: eq, ..., e,. Then ak-dimensional subspace can be represented by a matrix:

air a2 ... aig
k-dimensional subspace— span {Z Ai1€i, - - - Z aikei} —

an1 Aap2 ... An L
Let M¢i,n) be the set ofn x k matrices with ranki. Note thatG(k,n) ~ G(n — k.n), since

A € Mc(x,n) corresponds to a linear map: F* — " given by(vy, ..., v,) = (v1,...,v,)A and the
kernel of this map is an — k-dimensional subspace.

Exercise 8.5.Show thater A = ker B if and only if columns ofA span the same subspace as columns
of B.

Note that rescaling columns and adding to any column a linear combination of other columns does not
change the span. Therefore, we can choose a column echelon form as the canonical one:

3 4 7 1 2 7 1 2 4 -5 2 4
9 2 9| rescaletoget | 3 1 9 clear to the 3 1 0] cleartothe 0 1 0
6 0 7 bottom 1's 2 0 7| rigntromzs |2 0 1| leftfrom2s 2 01
3 0 3 1 0 3 1 0 0 1 00
—13 2 4 2 4 —13

clear to the 0 1 O rearrange |1 0 O

left from 1's 0 01 columns 0 1 0

1 00 0 0 1

Note that all these operations can be realized as multiplication by some invertible matrices.
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Claim 8.6. If A € M4 ), then there existg € Gl (F) such thatdg = B and B is in the canonical
form, i.e. it has the form

OO OO ¥
O O = % O %
= %X O % O %

with zeros below each of the ones and zeros to the left and right of each one.
Letiq, ..., be the indices of rows containing ones.
Claim 8.7. There is a bijectiorts (k, n) «— Mg n)/(A = Bg,g € Gly).

ForU € G(k,n) defineM(U) to be the corresponding matrix in the canonical form. Then columns
of M(U) spanU. For anyk-subset{i; < ... it} C {1,...,n} = [n] define the Schubert cell

§
1 — 11
Clivininy = 4 U € Gk, n) such thatM(U) has the form| :
1| —
\
ThenG(k,n) = U Cliyig,...in}- SChubert varieties i6'(k, n) are Xy; i, i3 = Cliyio,..in}-

{il,ig,“.,ik}c[n}
Claim 8.8. There exists amap : Gi,,/ B, — G(k,n) given by A — span{col;(A),...,colx(A)}.

Proof. Since B,, adds previous columns to later ones, it does not change spans of this kind¢ ®hus
well defined. O

Define parabolic subgroups 6fl,, by

* € Gly, ‘ *
Py = .
0 x € Gly_y,

Fact 8.9. G(k,n) ~ Gln/Pk,nfk

Follows from the fact that the magp forgets everything but the span informations of the first
columns.

Fact 8.10. Since we havé&:l,,/B,, - Gl /Py n—i ~ G(k,n), we getH*(G(k,n)) — H*(Gl,/By)
on cohomology.
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Note that the map is given byop(X,,) = X 1 —1y. Starting with a matrix inG(k,n) we

sort{wl_ gy W }

can extend it in the following way without adding nevg and thus obtaining a bijection:

* ok ok % x o« x x| 1 0 0 O
%k ok ok ****@100
1 0 0 0 1 0 0 0,0 O O O
0***%@***00@1’
01 00 O 1 0 0|0 O O O
0010 o [0] 1 ojo 0 0 0
0001 0 0 [0]1]0 0 0 0

note the essential set.
Definition 8.11. Letw {i1, ..., i} = {zlzklzlzgzkn}
Warning8.12 X,

In order to determine which Schubert cel§;, ;.\ are in Xy, ., itis convenient to look at
partitions.

Lemma 8.13. There is a bijection betwedasubsets ofn| and partitions(A; < Ag < --- < )g) such
that \y < n — k, given by{i1,...,ix} «— (i1 — 1,... 1 — k).

iy} IS not homeomorphic t&;, ;-

-----

Example 8.14.{4,6,7,8} «— (3,4,4,4) «—

Let [A\| = >_Xi. ThendimC)y = |\|. (We can index Schubert cells and varietieskbgubsets or
partitions.)

Theorem 8.15. X, C X, ifand only if C v as Ferrer's diagrams, i.eu; < v;fori =1,... k.
This partial order is isomorphic i@, (k, k, . .., k)] in Young’s lattice.
N ——’

n—k times

Example 8.16.For G(3, 5) we get
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This is a rank symmetric self dual lattice (for any two elements there exists a unique minimal one covering
both of them).

Now let’s put 1's in decreasing order:

R G SN S S 3
Ll S S S L S
SO~ O % X ¥
S OO O % ¥
SO O OO ¥
S OO oo o

*
*
*
1

0]
0
0

O = %X % % ¥ ¥

1 00 0[O0 O0O0O
Notice that the essential set is always in the column to the left from the line.

Definition 8.17. W{iy,...,ix} = “largest permutation in Bruhat order mapping{a, ..., ix}" =
<n,n— 1zkzk_12112kzk_1zl)

We will show that equations faKy;, . ;3 C G(k,n) are the same as foty,;, ;) € G/B.
Fact 8.18. Xy, ...ixy = X{iy,...i,} @nd this is a smooth morphism.

When isXyy;, .51 Smooth? Note that 3412 cannot happen siicgis, . .., ix } is a concatenation
of two decreasing sequences. But our example has 4231.:

oo o OHH**
oooHo* % %

OO O O O O o

oooooH**
cCooc oo o - %

[l S S T A 3
O = ¥ ¥ ¥ ¥ ¥ ¥

where correspond to inner corners of the partition.

Claim 8.19. If 4231 exists inW {1, ..., i}, then there are at least 2 gaps{is, .. ., i, } and Ferrer's

diagram for the corresponding partitiorhas internal corners like

l'
Theorem 8.20. X, C G(k,n) is smooth if and only if\ is a rectangle (i.e. does not have internal
corners).

If \is arectanglé:™), thenX, = G(i,m + ).

Exercise 8.21.What is the set, such thasing(X,) = U e, Xu?

Now let's consider equations fof, and Piicker coordinates fofig (2,4) = {2-planes inR*}, i.e.

aip ai2
az1 Q22 / Glo.
az1 as2
a41  a42
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Let

d t 12
ZJ( ’le j2

Let
P(A) = (P12(A), Pi3(A), P1a(A), Pas(A), Poa(A), P34(A)).

ThenP(A) € P® forany A € Mg, ). Now if A = Bg, thenP;;(A) = P;;(B) - det(g), SOP(A) =
P(B) in P if and only if the span of columns of is equal to the span of columns Bf

There is the following relation betweenieker coordinates, which follows from Sylvester's Lemma:
P13 P3y — P13 Poy + Pa3 Py = 0.

Theorem 8.22.G(2,4) = V(P12P3y — P13Pay + Po3Pi4) in P5,

Why they are equal? Look for the largést;) in the lexicographical order such that V (P1oPsy —
P3Py + P>3Py14) does not vanish and rescale the coordinates softhat 1. Put 1's into(7, 1) and
(4, 2). Put O’'s below them and int@, 2). For example, fofi.j) = (2,4) we get

O O = ¥
=% O *

Now all a,. in this matrix can be recovered;, = P;, anda,2 = P,;.
In general we have

Xill e Xilk
Pi1~~~ik (X) = det )
P(A) = (Pi,.i (A): {iy < - < iy} C [n]) € ()

Theorem 8.23. G(k,n) ~ V (Plicker equations) C P()~!, where equations are constructed in the
following way: for eachl € [£]

P . i ]1 Jk Z Pll lﬁcpji T
with the sum over al(#’, ;') obtained from(z, j) by pickingl < ¢; < ¢2 < --- < gq < k positions and
exchanging,, with j for s € [d]:
i/ = (ilv oo 7Z.q1717j15 iqlJrla o 7iq2715j27iqz+17 e 7ik)7
j/ = (iqlviqzv cee 7Z.qd>jd+1a cee >]k)

Exercise 8.24.Compare equations foXy;, ;1 to the equations for the essential set3(;, .. i, -

9. PARTIAL FLAGS, INTERSECTING ANDCHOW COHOMOLOGY (APRIL 20, 2007)

Definition 9.1. For0 < dy < ds < --- < d,, < n, define thepartial flag manifoldF'i(n, di,ds, - - - ,d,) =
Gl,/P ~ {F, = Fy, C Fy, C --- C Fd, = F"}, with dimFy, = d;. WhereP is the set of upper
triangular block matrices with block widths (and heights)ds — dy,--- ,n — d,,.
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In the Grassmannian we have the bijections:

{K — sheets} <{partitions in ak x (n — k) box}
&Sk X Sp—k \ S, mod on left
<max length coset representativedp x S,,_x \ S,
<min length coset representativesp x S,_x \ S,

Thus{iy,ig, -+ yig} < Wit i, ,ig} & w{iy, iz, - i }. So for smoothnessyy; s, .. .y C
X{iyig,iny T and only if w{ji, -+ ,jn} < w{ir, -+ ,in} and henceXy; ;, ...} is smooth if and
Only if Xw{ilﬂ'%... Jin} is.

TheT fixed points inG /P are permutations il \ S,,.

Definition 9.2. For the cosets of; \ S,,, we defing(S,,)! to be the max length coset representative and
(Sy)1 to be the min length coset representative.

Then the Schubert varieties @i/ P are indexed by the cosets 8f \ S,,, and thus by(S,,)! or (S,,);.
So looking at the map : G/B — G/P, with X,,;,(5,0) — X570 aNd X 00(5,0) — Xspw- SO We
havemin(Sru) < min(Srw) ifand only if Xs,, C X, andXs,,, is smooth if and only ifX,,, (5, w)
is smooth.

Now for intersecting Schubert varieties, done in the Grassmannian but can be generalized. Consider
the question, how many lines meet four given lineRit? We can viewR? as an open subset Bf =

R*/(1,---,1). So fix a line inR3, say the linegres, not containing the origin. This determines a 2
dimensional subspace Bf*, span{ei,es}. Then extender, ex} to a basis{ey, es, e3,e4} for R So
* ok
lines meetingg1e; = (1) 2 = Xj24) C G(2,4). ThatisX(; ») in partition notation, note that
0 =

this is with respect to the ordered badis,, e2, €3, ¢4 }. So for lines intersecting four given lines we look
ath o) (Ee)N X(Cf o) (Fe)N Xg 5 (Ge)N Xg 5)(He). One method of doing this is to solve equations!

Another method is Intersection theory.

Definition 9.3. Let X be any variety.

(1) Two subvarietied/ and V' in X meettransversallyif U NV = (J Z;, where theZ;’s are the
irreducible components, then for eachnd each point in an open sets of; " U (| V we have
Tz(Zi) = TZ(U) N Tz(v)

(2) The Chow ring ofX, denotedA®(X), is the formal sum of[V] : V is a subvariety ofX'}/ ~,
where[U] = [V] if they are rationally equivalent. With multiplication given Ey][V] = [U N
V'], with [V] ~ [V'] andV’ meetsV transversely,

Definition 9.4. If for eachz;, Codim(z;) = Codim(v) 4+ Codim(w) thenV U W is proper.

If VUW is proper, then intersection theory says ig{V’| = ¥m;[Z;] and them;’s are non-negative
integers.

Theorem 9.5. If X has a cell decompositiodX’ = |J C; thenA®*(X) = (linear) spa{[C;] : i € E,}.
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Theorem 9.6. A*(X,) = H* (X4, Z) =(linear) spa{ [X,] : v < w}.

Definition 9.7. Define the Poincare polynomial to be geodim(Cy =Y dim(A(X))i'.eg: Yt
i€E, 1€by AC kx(n—k)box
is the Poincare polynomial of G(k,n).

On theG(k,n), we have the map — dual()\). This map gives the Poincare duality &6 (G(k,n)).
OnG/B, we have X,,] — [Xuw,]. But sinceX,, C X,, implies X, C Xuw,, SO we only get duality
if X, is smooth.

Open Problem (Reiner)Which smooth varieties it7/ B exhibit Poincare duality? That is, when is
{v < w} self dual, with a nice combinatorial map?

The ring structure orl* (X ) is given by[ X {][X (] = [X{ (E.) N XS (F,)] whereF, € X[!(E,), so

we could takef, = {< e; >C< ej,ea >C --- C< ey,...,e, >}. Notationally, denote,,(F,) = XVH
Then we get the matrix form by canceling up, left and right, instead of down, left and right.

Proposition 9.8. If cod(u) = cod(\) = k(n — k) = dimG(k,n) then[X,][X,] is 1[Xy] when\ =
dual(p) and O otherwise.

Proof. First considen: = dual()), then
X0 [X ] =XA(Ea) N Xauar(n)

T )

* 00

10 10
Y lo A * 0

[ [0 1) 0 1

o 0

1 0 H
=110 o (as all the stars are canceled by 0's)

0 1

=[Xgy]for some basis.

Now if pu # dual(A) then a 1 of one of the matrices will be a 0 in the other, so there intersection will be
empty. HenceX ), (E.) N X, = 0. O

Trick - To find theCy's in [X,\][X Z C3,[Xy]. Multiple both sides by.X 4,q:(,)] and expand,
gettingC} ,[Xo| = [Xdual(u)”X)\HXu] = [Xdual(l,) (Ee) N X (Fo) N Xy (H,)]. SoCY, is the number

of points iN X gya1() (Ee) N XA (Fe) N X, (H,).

Proposition 9.9. [X,|[X#] = Z [X,], wheref has the shape of thex (n — k) box minus the
v<Xilv|=|A-1]
bottom left corner.
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Proof. To see this we count the number of points\if, .;(,) N X (Ee) N Xn(He). BUt X gya1,) N X2 = 0
if we have any gaps betweenand )\, thusdual(\) C dual(v) and they differ by only one box (or else
C¥, = 0). So assuméual(v) = dual(\) + 1 box. So just looking at their differences, we s€g =

and X a1 = ’{ , wherex # 0. ThenX ., N Xy = *
Now, takingY = {V € G(k,n) : Vcontains< e;,,e;y,- -, &, -+ ey, > and intersectspan <
€ €i;,, >IN 1dimensiod. ThenY N Xp(H,) = {V € G(k,n) : Vmeets spar< hy, -+ hy p >
in 1 dimension. Generally, spaa e;,, -+ ,&;, - ,e; > Nspa< hy,--- ,h,p >= {0}. Thus
< €t ,€i >N < hy hy g >is1dimensional. S& N Xp(H.) = {one poin} = X;(Gl)
and thusCy,, = 1. 0
Wow! This is the same as the Schur function$h Sy, = ZSMM and Sy(z1,--- ,x1) =
> T with Sy(z1,- -+, 2;) = 0if X has more thei rows.

T fillingof A

Theorem 9.10. Multiplication in A*(G(k,n)) (or in A*(G/B)) is determined by multiplication by the
unique codimension 1 subvariety (or the- 1 codimension 1 subvarieties ia®(G/B)), along with
stability.

Corollary 9.11. Pic(G(k,n)) = Z.

Theorem 9.12.We have a bijection (as rings) betwedh(G(k,n)) < span{S) : Ais contained in & x
(n — ]C)bOX} Given by[X)\] — Sdual()\)'

Now back to the line intersecting four lines problem. As we say the intersection of 4 Ii[]lé@j@]‘*.
So we are looking for the coefficient 0] = S 2) in (51 0))*. Then we see

S(1,0) X S1,0) X S1,0) X S(1,0) =5(1,0) X S1,0) X (S1,1) + S2,0))

=S51,0) X (S2,1) + S2,1))
:S(I,O) X 25(271)
:QS(Q’Q).

So we find out that the answer is 2.

10. VAKIL'S GEOMETRIC LITTLEWOOD-RICHARDSON RULE (APRIL 25, 2007)

10.1. From last time.
(1) If codimX) 4 codimX,, = dimG(k, n) then

[XpeJ: A = dual(s)
XA)[X,] =

0 otherwise



LECTURES ON SCHUBERT VARIETIES 27

(2) In general, we have

[XA[Xu] =) CLIX)
where this sum is taken over allwith codimX, = codimX) + codimX,,,

[Xduah/} [X)\] [XM] = Ciu, [Xpt.] y
and

C;\/N = #(Xdualy(E.) N X)\(F) n XM(G)
when these are all in transverse position. Hence the coeffidigfitg are nonnegative inte-
gers.
(3) There is a ring isomorphismG (k, n) — Clz1, ..., 2] /(Sx|\x > n — k) given by[X,] —
Squax- The proof of this theorem uses formulae of Giambelli, Jacobi, and Trudi. Given the

elementary symmetric functiors(z1, ..., zx) = > . ;. @, -z, we have
i EN1 €Ny €)3 i
1 ey ey
Sy = det 0 L ey
0 0 1
Recall also the Pieri Formula,
SxSi =Sy

where this sum is over al containing) such that\'| = |A\| +j and\” — \ contains no two
boxes in the same row.

4) S\S,=>_ C’KH similarly, where theCKu are the Littlewood-Richardson coefficients.

(5) These coefficients are traditionally computed via reverse lattice fillings: one places the upper
leftmost corner of the tableau farjust beneath and to the right of the lower rightmost corner of
that for A and fills the resulting array from bottom to top in all possible ways, strictly increasing
as one ascends in the columns and weakly increasing in the rows.

(6) The first four results also hold for the flag manifol8%, as well as the Grassmannians, where
the third becomes!- F'l,, ~ Clz1,...,x,]/(Sx|A # 0) with the isomorphism being given by
[Xw] — Swuw, Where these last are the Schubert polynomials. However, there does not exist a
combinatorial technigue like reverse lattice fillings to compute the Littlewood-Richardson coef-
ficients in this case. Coskun is working on this currently.

10.2. Vakil's Checkerboard. Vakil approaches Littlewood-Richardson rules for the Grassmannian ge-
ometrically, via a series of degenerations indexed by the moves of a checker game. Index Schubert
varieties byk-subsets ofn]. Given such subsets, B, C, we seek a rule to compute the integ& 5,
which is the number of irreducible componentsXf (M) N Xz (F) rationally equivalent toX¢(F)
whereF is some fixed frame andl/_ is a moving frame. This rule will take the form of a game involving
black and white checkers on anx n board.

The game will define a family of sef§,, C G(k,n) indexed by arrangementsof white checkers
ande of black checkers on the x n board, which will change as the checkers move. These should have
the properties that:

(1) Xa(M)NXp(F) =Y.

O AB®init
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(2) There is a sequence of degenerations forming a tree such that

[Yo,pe) = Z [Yocesnal

leaves

and at each stage of the degeneration we have only three possibilities,

[ O.nemt]

iz
[

Ostep.nezt]
3) Cf,B equals the number of steps unty.

>~<

[Yoo] =

Yo.nezt] + [Yostep.nezt]

10.3. Black Checkers. Black checkers encode the position of the moving fravhewith respect toF’
in a table of dimensions. Initiallf’ =< ey,...,e, > andM. =< e,,...,e; > and the number of
black checkers NW (inclusive) @, j) is dimM; N F;.

. | Fi F, Fj
. s My| O 0 1
. My | 1 1 2

Ms| 1 2 3
This example corresponds to a flafj whose marked line meets the marked lifieonly at the point
Fy and whose marked point missgs entirely.

10.4. White Checkers. Fix M andF and somé’ € G(k,n). The white checkers encode the positions
of F and M. relative toV: dimV N M; N F; equals the number of white checkers NW (inclusive) of
(,7). Thus for the samé/ andF as above, an arrangement of white checkers

(@]

@)

corresponds to & which intersects both marked lines and passes through the marked\fipimit
not Fj.

10.5. Details. On any checkerboard, let(i, j) denote the number of white checkers NW (inclusive) of
(i,7), and similarlyb(z, j) for black checkers.

Xoo = {(V, M, V) € G(k,n) x Fl, x FL,|dimM; N F; = b(i, j), dimV N M; N Fj = w(i, )}

These sets partitio&'(k,n) x Fl,, x Fl,. We define the setg,, to be the projections aX,, onto
G(k,n) obtained by fixing anV/ and anF'.

The closured’, are called closed two-step Schubert varieties, Richardson varieties, or skew Schubert
varieties.

(1) G(k,n) = || Yoe for fixed M andF .

(2) Yoo # 0 only if every white checker is happy: there is one black checker due north and one due
west (inclusive) of every white checker, and every row and column has at most one white checker
init.

(3) XA(M)NXp(F) = Yoe Wheree gives the position o/ with respect td”, o = {(a1, by), - - -, (ax, b1)},
A:{a1 <... <ak},B:{b1 <...<bk}.

Lemma 10.1. The “variety” Y., is irreducible and smooth, antimY.. = >_ b(i,j) — w(i, j) where the
sum is over all4, j) containing white checkers.
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Example 10.2.

This corresponds t&' =< e1,...,e5 >, M. =< eg, e1eqesze; > and aV with basis< vy, vy >.
v1 € span{ey, es} but is neither of these two, so we can choose= xe; + ez forx #0for2 —1 =1
dimension of freedom. Likewise, € span{ei,...,e;} and has nonzero projection ontg so we may
choosevs = xe1 + *eg + *e3 + *e4 + e5 and can eliminates altogether usingy.

Corollary 10.3. Ye,,,,, = Xa(M.) N Xp(F) # () if and only if

(1) all white checkers are happy,
(2) the union of the partitionst and B covers all the squares, and
(3) dimYee,,,, = k(n — k) — codimX — codimXg.
If these conditions hold X 4][ X 5] # 0 so the degenerations will lead somewhere.

10.6. Degeneration Rules.

(1) Black checkers start in the configuratieg;; along the antidiagonal. White checkers start in the
configurationo 45 = {(a1,bx), ..., (ak,b1)}.

(2) Black moves: sort black checkers (corresponding to basis vectors) by transposing two adjacent
rows at a time, working from left to right.

(3) White moves: after each black move, white checkers move according to nine rie08 x 3,
and4 x 4 critical submatrices, obtained by considering which white checkers can be affected by
the next black move.

(4) Black moves correspond to degenerationsi— o,.,; WhereF =< eq,...,e, >, M =<
bi,...,b, > corresponds to taking the limit as— 0 of b; = te; + (1 — t)e.

(5) Two key rules:

(@) If Yoo — Y,  thenY,  hasthe same dimension.

(b) All span and intersection data are preserved.

10.7. 2 x 2 Rules.

T|e
e ||
F; F;
1 oy
ob; i
IREKE
ob; | |
T T|e o
e o] |
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o |—
e |—
[}

10.8. 3 x 3 Rules.

—
°

L]
@]
«

e |—

® O |—
«—

—
°

[ Je]

11. IzzeT COSKUN'S LECTURE(APRIL 27, 2007)

Let's set up the basic definitions and notation. Ggk, n) be the Grassmannian manifold/eplanes
in n space. Let
s = {[A] € Gk, ) [ dim(A N Fy_pyios, > i}
be the Schubert variety i@ (k, n) indexed by the partitiod withn —k > Ay > Ao > --- > A\ > 0.
(Note, this is written in the reverse order to the lectures above.)o) die the corresponding Schu-
bert cycle in the cohomology ring fak(k,n). The notation follows Lecture 6 of Harris’s “Algebraic
Geometry” which is a good book for more details .

Example 11.1. Considero(jyo(yy in G(2,4). NoteG(2,4) = G(1,3) when weprojectivize The class
o(1) - o(1) corresponds with the family of lines meeting two given lines in general positidrsipace.
To find the irreducible components of this family, swing one of the lines around until it crosses the other
line in some plane. Now, which lines intersect both lines. There are two components:
(1) The family of lines passing through the plane exactly at the point of intersection between the two
lines which corresponds with the Schubert cyelg .
(2) The family of lines in the plane defined by the two lines which corresponds with the Schubert
cycleo( -
Thereforep (1) - o1y = 02) + o(1,1)-

The coefficients in the expansion @f; - o(;) are 1 because of the Pieri rule of course, but we could
have figured this out another way by studying tangent spaces. We could have shown that even after
swinging/, around to meet; we still have a transverse intersection.

Let V' be ann-dimension vector space and assufi{&, n) is the set of planes inV. If S € G(k,n)
the we get a short exact sequence

0—S—V-—>V/S—0.
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Fact 11.2. The tangent space to the Grassmannian at a pbjns given by
Tip)(G(k,n)) = Hom(A, V/A) ~ {k x (n — k) matriceg.

ThereforedimTj (G (k,n)) = k - (n — k) as expected for a smooth manifold.
Similarly, assuméA] € 3, is a smooth point. Suppose further thdat (A N F,,_x1;—»,) = i which
holds on a dense open setin for all i. Then

Tia)(Ex) = {¢ € Hom(A, V/A) | ¢(A N Fykyion,) € Fokrion /A Vi)

Key Fact: To show that afA] € X(;)(¢1) N X (¢2) the two Schubert varieties meet transversally, we
need to show that the corresponding tangent spaces intersect transversally, i.e.

dimTiz (B 1) (€1) N Tia)(By(L2) = 2.

(hmm, I am a little lost here. I think this intersection should have dimension 0, but the example given
has dimension 1 and it says above we should have dimension 2.)

11.1. Coskun’s version of the Littlewood-Richardson Rule for G(k,n). Fix an ordered basis say
(e1,e9,...,e,) for V. Fix k vector space¥7, ..., Vi which are spans of consecutive subsets of basis
elements. To visualize these sets, putes, ..., e, along the antidiagonal of a matrix with in the
lower left corner. Then i is spanned by{e;,eji1--- , e}, we represent; by the minimal square
containing all the basis elementslin The collection of squares is calledvBondrian tableawor tableau

for short. These tableau were named after the artist Piet Mondrian 1872-1944. Check out

http://en.wikipedia.org/wiki/Piet_Mondrian
for more information.

Example 11.3.1f V; c V5 C --- C V}, then
S ={[A] € G(k,n)|dim(ANV;) > i}

is a Schubert variety. The sStwill be represented by a nested sequence of squares in the Mondrian
tableau. For a more specific exampleVif is spanned by{es, ..., e;, } then this set is the Schubert
variety Xy;, .41 in our previous class notation. This Schubert variety will correspond with a nested
sequence of squares of side lengths. ., i; with a common lower left corner in the lower left corner

of the matrix.

Example 11.4.If the V;’s have no inclusion relations and the basis elements; iprecede the basis
elements foll; 1, then the corresponding Mondrian tableau will hé&veon-overlapping squares. This
tableau will correspond with the intersection of two Schubert varieties in opposite position.

We want to generalize the idea in Examgl.1 to intersecting any two Schubert varieties in the
Grassmannian. More specifically, take two Schubert variétipandX,, with respect to ordered bases
(e1,...,en)and(e,,...,e) respectively. We want to find a sequence of degenerations which will keep
the cohomology class of the intersection of these varieties the same but eventually leads to the union of
irreducible components. The degenerations we will use are all of thetigrm (1 — t)e;. Att =1
is gives the basis elemeat and then ag approaches 0 this degeneratginto e;. If U is the span of
(ei, ..., ej—1) then after the degeneratidéhwill be the span ofe; 1, . . ., ¢;), therefore the degeneration
is visualized as moving the square fémorth east along the diagonal by one unit.

Definition 11.5. A tableaufor G(k,n) is a collection oft distinct squares such that

(1) Each square corresponds to a subspace spanned by consecutive basis elements.
(2) No 2 squares share the same lower left corner.
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(3) If S; andS; are any 2 squares of the tableau that share their upper right corner then every square
whose lower left corner is southwest of the lower left cornesp€ontainsss.

Definition 11.6. A squareS is nestedf all the squares containin§ are totally ordered by inclusion and
for any other squarg’ eitherS c S’ or S’ C S.

Definition 11.7. Let S be the square containing e;,...,e; > and.S’ be the square containing
€it1,---,¢e;4+1 > s0S’is the result of degeneratirgto e; 1. A neighborN of S is a square such that
) €j+1 € N.
(2) N does not contaits'. . )
(3) Let .S be any square whose lower left corner is betwgeand NV, then eithelS ¢ Sor N C S.

Note that by definition the neighbors Sfare all ordered by containment.
Degeneration Algorithm: Given a tableau/,

Step 1.If every square of\/ is nested, stop.
Step 2.1f not, let S be the square whose lower left corner is southwest most among the non-nested
squares. LelN; ¢ N, C N, be the neighbors of.
Step 3. For every neighbor defin&/; (V;) to be the tableau obtained frol by replacingS andN; by
the square representiy ' NV and the square representing the spaf of N;. Define M to be
the tableau obtained frod/ by replacingS by S’ and normalizing again.
Step 4. Among the collectionV/y, M1(N1), ..., M1 (N,) retain the tableau with the same dimension as
M and repeat Step 1 with each of these as the given tableau.

For more information and pictures see lzzet Coskun’s web page. A new preprint will be coming soon.
For now see

http://math.mit.edu/" coskun/seattleoctl7.pdf

12. DIVIDED DIFFERENCE OPERATORS AND THECHOW COHOMOLOGY OF THE FLAG VARIETY
(MAy 2, 2007)

In previous lectures we derived a presentation for the Chow cohomology of the Grassmannian, given
by:
A*(G(k,n)) = Z[sx(x1,...,x0)]/ < sx: AT kX (n—Fk) >.
Here the isomorphism is given BX,\] — sg.q(1)- Today we will discuss a similar result, due to
Borel, for the Chow cohomology of the Flag variety:

Theorem 12.1(Borel). The Chow cohomology of the flag variéty;, ) is given byA*(Fl,,) ~ Z[x1, ..., xy]|/In,
wherel,, is the ideal

I, =<ei(z1,...,xn), .. en(T1,...,2p) >.

Heree;(x1,...,zy,) IS the it elementary symmetric functipfor instancee; (x1,...,z,) = 1 +
coo+xp, ande, = T129 - Ty
We will be interested in determinirig,, the image of X,,] under the above isomorphis¥,,| —7,,.
We first point out some properties thaf that must satisfy.
e The isomorphism is a ring map: K, |[X,] = > ¢, [X.] then we must have,?, = > ¢l 7,,.
The map is also graded: Sindeg(?,7,) = deg(?,) + deg(?,), and codintX, N X,) =
codim(X,,) + codim(X,), we must haveleg(?,,) = codim(X,,).
e We have seenX,,,|[Xu] = [Xu, (Fo) N Xu(Ge)] = [Xy], and hencéX,, | — 1.
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o If {(u) + £(v) = (;) = dim(Fl,), then we have the formula

[X.][X)] —{ R }

Hence in this case we must have

90 _ ?wo if v = uwwy
u 0 mod I,, otherwise
Exercise 12.2.Show thatR,, := Z[z1, ..., z,]/I, is isomorphic as a vector space to the (linear) span of
the set{x}' 2% - - - zin : i), < n — k}. For example, if. = 3thenR; = span{l, z1, 2, 22, 1179, 2332 }.
Garcia calls this the ‘Artin basis’.
Hint: Find a Gbbner basis fof,,.

The Artin basis will help us determine the Hilbert series for the dihg We will need the following
bijection between elements of this basis and elements of the symmetric group.

Lemma 12.3. There exists a bijectiof,, ~ {(i1,...,i) : ix < n — k}, sendingw to code(w).

Here thecodeof an elementv € S,, is defined to be the vector:
code(w) := (| * sonrowl|,|* sonrow2|,...,|*sonrown|)

in the matrix obtained by crossing out entries below and to the right of each entry Bér example,
code(316425) = (2,0,3,1,0,0).
Using this we derive the Hilbert series féy,:

n—1
Y dim RO = Y £ = T +t+--+1).
wWESy i=1

We now return to the issue of determinitig, the image of X,,] in the isomorphism of Theored?.1
Using the properties that we so far have derived, we consider thexcaskand make a naive guess for
what these values might be.

Recall that the set of generators fdf (F'l3) contains a single elemefX,;] of rank O, two elements
[Xo213], [X132] of rank 1, two element§Xs;s], [X231] Of rank 2, and a single elemefiX’so;] of rank
(g) = 3. To define a map tdk,, we choose to map these generators to elements of the Artin basis
according thzd] — l‘%l’g, [Xglg] — ﬂf%, [Xlgg} — X129, [Xglg] — 1, [X231] = To9, and[ngl] — 1.

One can check that some of the conditions on our list of requiremenig, fare indeed satisfied (e.g.,
it is a graded group map that serjds,, | to 1).

Exercise 12.4.Show thatr? =0 mod I3 andxlxg = o mod I3. For instancer:i” = x%(:cl 4+ x9 +
1‘3) — 371(.%11‘2 + x123 + $2$3) + x12223.

However, in checking that our map is indeed a ring morphism, we note:that, = x;x2, and hence
are asked to verify the formula:

[X312][X231] = [X132].

However, we consider the intersection of flags in question and compute that jXfaget X231] =
[X132] + [X312]. Accordingly, we tweak our map t8,, described above to now haji&ss;] — x1 + xo.
One can check that this indeed defines the desired isomorphism.

We seek a method for determinirig in a uniform way for alln. This is provided by the following
procedure due to Bernstein, Gelfand, and Gelfand (BGG).
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Observation. We note thatlim(R,(f)) = 1, and so for?,,, we can choose and homogeneous polyno-
mial o, of degree(’;) that is not inZ,,. We follow BGG and choose,,, = H (z; — ;) to be the
1<i<y<n
so-called ‘Vandermonde determinant’. ’
To determine the othe,, we will need the notion of divided difference operat@nZ(zx, ..., x,).
If f e Z(xy,...,x,), defines; f(z1,...,2,) := f(z1,...,%it1,i,...,2y). The divided difference
operato); is then defined to be

0i(f) == (f —sif)/(xi — Tiy1)-

Observations.We point out some properties of the

o 0(f) = 0if f=sif.

o Oi(sif) = —0if
e Oi(zjzi 1) = ﬂf?ﬂf%l(ﬂ«“fﬁ’l + 93i$f;f72 4+ 4+ ﬂsff’ul if s > 7.
o Oi(xjxi - f(x1,. .., Lo, %1, 2n)) = [~ Oi(wjxi ).

These last two facts imply that jf is polynomial then so i9;(f). The9; also satisfy some
Coxeter like relations.
° 81({’)] = (9]81 if |Z —]‘ > 1.
® 0,0;410; = 0;410;0;41.
) 82-2 =0.
Exercise 12.5Leibnitz rule for divided difference operatorsyhow thav);(fg) = (9;.f)g+ (sif)(0:g).

Theorem 12.6(Bernstein, Gelfand, GelfandSupposéX,.,,] — o, € R, under the isomorphism
of 12.1 Then we have the following:

04(0w) = ows;, mod I, if w; > w4
W 0 mod I, otherwise

The proof of this theorem relies on the following key lemma.
Lemma 12.7.1If s, - -+ 54, = sp, -+~ 8p, = w are both reduced expressions forc S, (so thatp =
K(w)), then@al s 8% = 651 s 8bp-

To prove the lemma we introduce the notion of a string diagram associated to an elermefy.

Definition 12.8. If w € S,,, we define the following sets of inversions:
I(w) == {(i,j) : i < j,w(i) > w(j)}.
J(w) := I(w™') = {(4, §) :stringi crosses string}.

Every elementv € S, can be writters,, - - - s,, such thap = |I(w)| = |J(w)| = £(w). In this case,
we will say that(a; - - - ap,) is areduced wordor w. The collection of all reduced words will be denoted
R(w) := {(ar---ap) : 8a, - 54,,p = £(w)}. For exampleR(4132) = {3213, 3231, 2321}.

Lemma 12.9.Suppose; - - - a, is areduced word fow. Thenwe have (w) = {(a1,a1+1), sq, (a2, az+
1),...,8a; = Sa,_1 (ap,ap + 1)}

Proof. We prove this by induction on the lengtiiw). We seeJ(id) = () and alsoJ(s;) = {(i,i +
1)} so that result holds fof(w) = 0,1. We assume the result holds for allwith ¢(v) < ¢(w).

If v = s4,--5q4,_, then all string crossings faw are string crossings far except the last crossing
(v(ap),v(ap + 1)). This proves the lemma and also gives us the following formula:

_ J(w)Uw(r,r+1) if l(ws,) > L(w)
J(ws,) = { Jw\w(r,r+1) if L(ws,) < £(w)
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This formula provides us with an interpretation of the so-calle@k Bruhat ordeon S,,. By defini-
tion these are given by:
Right order:v < w < J(v) C J(w), vs; > w < L(vs;) > {(w)
Left order:v > w < I(v) C I(w), siv > v < £(s;v) > L(w).

Lemma 12.10(Exchange Lemma)Suppos€a; - - - ap), (b1 ---b,) € R(w) are both reduced expres-
sions forw. Then there exists an integesuch that(bia; - - - d; - - - a,) € R(w).

Proof. From Lemmal2.9 we have(b;, b; +1) € J(w) and hencéb;, b; +1) = sq, - - - Sa,_, (@i, a; +1).
This implies thats,, = s4, - Sa;, 15a;50;_1 - Sa; @Nd hencesy, sq, -~ Sq; |, = Sq, * - Sa;- We then
havew = sq, =+ Sa, = Sb;Sa; *** Sa;_15a;41 * * * Sa,» &S desired. O

Definition 12.11. Given an elementy € S(n), we defineG(w) to be the graph with vertex s&(w),
and with edges given b, - - - ap) ~ (b1 - - - by) < the expressions differ by somse

Theorem 12.12(Tits). The graphG(w) is connected.

Proof. We prove this by induction of(w), the length ofw. First, it's clear thati(s;) is connected. Next
assume = (a; - - - ap) andb = (b; - - - b,) are elements ak(w). From the previous lemma we have that
(bray---d;---ap) € R(w), and hence by inductiofb; - - - b,) is connected t@b a; - - - d; - - - ap). If i #

p then we also havéa; - - - d; - - - ap) adjacent tda; - - - ap). If ¢ = p then we havebia; ---a,—1) €
R(w), and by the Exchange Lemma we h&ugbia; - - - d; - - - ap—1) € R(w), which is in turn adjacent
to (biaiby - --dj---ap—1) € R(w). By induction, the former of these is adjacenttovhile the latter is
adjacent ta, and hence the claim follows. O

13. SCHUBERT POLYNOMIALS (MAY 4, 2007)
Last time we saw that there is a map
A*Fl, — Zlxy, ..., xn)/ < e1,...,en >

and the Bernstein, Gelfand, Gelfand Theorem says that the classes corresponding Schubert varieties
form an additive basis for the Chow ring. This map sefllg] — oy, SO that modulo the ideal

<ei,...,e, >, the divided difference operators act by
Ows; 1T W > wiqq
Oi(oy) = :
iow) {O otherwise

Last time, we had the following candidates for thg:

321 o123 = 1

312] /> 0213 = T1

alalls

]
]
231] = 0132 = T1 + T2
213) > 0312 = 27

]

alla

132] = 0231 = T122

[
[
[
[
[
[X123] = 0301 = 2l

Let’'s check that this actually works. Start at the bottom of this list \Wiy3] — o321. Here,3 > 2
and2 > 1, so we expect thal; o321 anddro301 are both nonzero. In particular,

[321] - 51 = [321][213] = [231]

and
[321] - s9 = [321][132] = [312]
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SO we expect thal o321 = 0931 anddyose; = o312. INdeed,

2 2
2 xle - .’L‘1$2
O1(xixe) = ——= = 1102 = 0231
Ir1 — T2

and
2 xtry — aixy 2
82(551952) = — = I1 = 0312-
Tro — I3

Next, we look at{X32] — o0931. Sincel < 3, we expect thab,o23; = 0; and since3 > 1, we
should get thabhoo13 = o213).5, = 0231 = T172. Indeed,0; (z1x2) = 0 becauser;z, is symmetric
in z; andzq, and 0y (z1x2) = “;3%2“ = x1. The remaining cases follow similarlyd;0312 =
T1 + T2 = 0[319).5, ANAD20312 = 0; D10132 = 0 anddao132 = 1 = 0[132).5,; 010213 = 1 = 0pg13)., @nd
620213 =0.

Now it might be natural to ask what would happen if we took a different choice for the polynomial
03217 Suppose for example we tooks; = z3z2. Then we compute the following:

010201 (.1‘%:62) = 6182(—x§) =0 (.%2 + .7}3) =1
and
828182(1’%:62) = 8281(—3;21’3) = 82(3;3) = —1.
This doesn't quite work because we waht,, |[X.] = [X,] for all u € S,,, and in this case we get

[X321] — 0123 = 0102010321 = —1. However, if we takersy; = —:C%ﬂ?g, everything works. However,
modulo the ideal generated by the elementary symmetric functiarigy, andz?x, are equal:

x%xg + :chg = xzo(x) + 22 + 23) — .751$§ — T1T9T3
+xoxs(z1 + T2 + T3) — T1T2X3 — x%xs
= mlx% + $%$3
= 23(xy + z9 + x3) — T

= a3

In the last lecture, we saw thﬁg = (0 modulo the ideal.

However, our original choice, with3y; = 2?25 had the advantage that each monomiatjnhad
nonnegative integer coefficients. In fact, we could have takgnto be the Vandermonde determinant
]_[Kj(xi — x;), but the resulting system is a mess. The niceness of our original choice motivates the
following definition from Lascoux and Schutzenberger.

Definition 13.1. Let G,,, = o7 128 2... 2l 29, Forw < wo, we define theSchubert polymomial
G as
CIE= 8w71w0 - Gupp-

We claim that this is a "good” definition of the Schubert polynomials in the following proposition.

First we need some notation: l&t= (n — 1,n — 2,...,1,0) € [n]". We can partially order elements
a = (a1,as,...,a,) € [n]™ by containment, decreeing thatC 5 if a; < g; for all i. For such any,
letz® =zt ag? - - xln.

Proposition 13.2. The Schubert polynomia&,,(x) have the following properties:

(1) Gy, = 2% and &;; = 1. Moreover,&,, is a homogeneous polynomial of degréev) in
Zlz1, ..., 2.

(2) The monomial terms @, are contained in the set of Artin monomials, i®,, is contained in
theZ-span of monomial terms of the forrft for o C §. This implies that th&,, are nonzero.
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(3) If risthe lastdescentab € S,,, i.e. w, > wrp1 < Wi < ... < wy, then&,, is a polynomial
inxy,...,o,.

(4) The polynomials,, is symmetric inc? andz*+! if and only ifw; < w;1.

5) G, =x1+... 4+

(6) (Stability) Leti : S,, — S,,+1 be the natural inclusiofws, . .. wy,] — [w1,...,w,,n+1]. Then

6w - Gz(w)
Proof. (1) By definition, &,,, = «%. Let wé") = [n,n—1,...,1] and wé"il) =n—-1n-—
2,...,1,nl. Certainlyw(()") = w(()nfl)sn_lsn_g .-+ 8981 SO

Gid = 8w(()n) . Gwo
= 8w(n—1)anflanf2 -0 (xﬁ)
0

-1, n—2
= 0 v 1)0n-10n—2- - Or(zf 2y
0

1
n
—2 -2 1
8w(()n71)8n,1(9n,2 s Og(a] Ty Ty )

= O mn (@ 2y ).
0
But this is the Schubert polynomial indexed by the identityjn ;. Inductively, this is equal to
1.

Finally, to see that the polynomials are homogeneous, simply not&thas homogeneous of
degreen(n — 1)/2 and that the divided difference operators preserve homogeneity and decrease
degree by 1.

(2) If x> is a monomial term witl C §, then in computing;(z®), we only care about the terms

2" andz;}}". Last time, we saw tha; («{“z/1") is an element of the span of monomial terms

of the form xfixfﬁl such thatg; and 8;;+1 are at mosinax{«;, @;+1} — 1. In particular, if
ezt C 2%, then so are all termsfixf_ﬁl with the above restrictions.

(3) This will follow from (4). If r is the last descent ab, then&,, is symmetric inz, 11, ..., z,.
However there isn't am,, term inS,,,, so there can’'t be am,, term in&,,. Thus none of the
termsz,y1,...,x, appear.

(4) By Bernestein-Gelfand-Gelfandy; < w;+; if and only if 9;(&,,) = 0 if and only if S, is
symmetric inx; andx; 1.

(5) Sinces; =[1,...,i—1,i+1,4,i+2,...,n], by (4) &, is symmetric inxy, ..., z;; and by(3),
S, is a polynomial in only these variables. BY), &, is homogeneous of degréés;) = 1.
Thus&;, = c¢(z1 + ... + x;) for somec € Z. If we apply0; to &,,, on the one hand, we must
getS;,.s;, = 6,4 = 1. On the other hand, by direct computation, we get

c(xl—i—...—i—xi) _C($1+-~-+xi+1)

8¢(C($1+...+$i)): P =c.
i i

Thusc = 1.
(6) By direct computation, as in paft).

67_0 - aw71w0 (xé)
= aw—lwoananfl T al(x?ngl T xi—1$")

= Gjw)

Remarkl3.3
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¢ In geometry, the variables; are the Chern classes of certain line bundiggE;_, but this is
special to type A.
e Stability gives us a sequence on cohomology:

oo HY(Fly,) — H (Flpyr) — ...
that send$X vwu,] — [X;(wuwo)-

Proposition 13.4. (1) The se{&,, : w € S,,} forms a basis fo#,, = spaf{z® : « C §}.
(2) If we order the Artin monomials in reverse lexicographic order, then each Schubert polynomial
&, can be written as a sum whose highest monomial terri(s.
(3) LetSoo = U;2; Sn. Then{S,, : w € S} form a basis for the polynomials iy, z2, . .. over
Z.

Proof. (1) Since|S,| = n! = dim(H,,), we need only show that the Schubert polynomials are in-
dependent ovef. Suppose we have some linear combinafiop s @&, = 0. In particular,
if we look at the homogeneous terms of degkeare must have

Z Sy = 0.

wESn:

l(w)=k
Now for anywu of lengthk, if we apply the divided difference operatdy to the above sum, we
expect to geb because each summaéd, is homogeneous of degréeand applying,, lowers
the degree by. On the other hand), (> a.,,&,) = ay, hencea,, = 0.

(2) We induct or/(w), starting from the top. Certainlg,,, = (o). Suppose inductively thas.,,

can be written ag°°%®) plus lower terms in reverse lexicographic order, and that- w;., 1.
In the diagramD(w), there are 1's in positiong, w;) and (i + 1,w;41), and the former lies
above and to the right of the latter. Thus the number of free entries iithh®w is at least
equal to the number of free entries in thiet 1)th row. In terms of the code of the permutation,

c(w) = (e1,-..,¢n), ¢; = ¢ip1 + r for some nonnegative. Now we compute the following:
c(w _ c Ci+1+7r _Cit1 Cn
Oi(x ( )) = Oi(xy' - w, T )

(- af a2l - (2] + lower terms

7 n i+1
o c1 Ci+1,.Citl4r—1 c
= (aft -2 aih ---xym) + lower terms

= z°wsi) 4 lower terms

(3) Any z¢ has the property that there isiac S,, for n large enough such thatw) = «. Thusz®
can be written as a linear combination®f, and a sum of term&,, wherec(v) C ¢(w) by (2)
and induction. Since the Artin monomials form a basis for the ring of polynomials im;{heo
too must thes,,.

]

Corollary 13.5. We can write5, 5, == ) b% &,, Where the coefficients), = C° count inter-

uwe,vWo

section multiplicities. In particular, these coefficients are nonnegative integers.

Proposition 13.6. Let f = > ¢;x; with ¢; € Z. Then
f : Gw — Z(CZ - Cj)thij

where the sum is taken over &j} such that’(w) = ¢(wt;;) — 1.
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Proof. Sincef - &,, is homogeneous of degréau) + 1, we can write
f8w= > 0(f 6u) 6,
vil(v)=L(w)+1
Leta; - - - a, be areduced expression foand compute
av(f ’ Gw) = 8@1 T 8ap(f ) 6w)
= 8al T at1p—1 (Sap(f)aap(Gw) + 8ap(f)6w)

/4

= Sap 'Sap(f)aal : "aap(ew) + Zsm "'aar "'Sap(f) ’ aa1 : "8ar "'aap(Gw)-
r=1

Sincep = {(v) = L(w) + 1, Oq; - 0a,(6w) = 0. In the second summation, the only nonzero terms
will be those in whichs,, - - -5, - - - 54, = w. This implies thak,, - -- 54, - Sq, * Sa, """ Sa, " ** Sap =
wty; for i < j such thatt;; = s, -+ 54, "+ Sq,. ThUS(i,j) = 54, """ Sa,,,(ar,ar+1) @and hence

T

Sal...aar...sap(f):C,L-—Cj_ D
Corollary 13.7. (Monk’s formula)

Gsr ' 6w = § GWtij
1<r<y
K(w)zf(wtij)—l

Proof. We know thatS,, = x; + ... + =, SO we just apply the previous proposition and note that the
coefficiente; # c; ifand only if i <r < j. O

Example 13.8. ComputeS;, - G3146527.

To do this, we need only determine which transpositions that interchange deloft} with one
of {6,5,2,7} increase the length of the permutati®i146527] by 1. The only such transpositions are
4« 5,4 + 6,andl « 2. Thus

s - G3146527 = G3164527 + G3156427 + S3246517-
Exercise 13.9.Do any six applications of Monk’s formula.
Exercise 13.10.Prove tha{Xuuw, |[Xs,wel = D 1< j[Xuwtsjwol-
Open Question 13.11.Expand&, S, via some tree using iterated applications of Monk’s formula.

Corollary 13.12. (Transition Equation) Suppose = vt,; wherer is the position of the last descent of
w ands is the largest position af such thatw; < w,. Then

Guw =12, Gy+ Y Gy
where the sum is taken over all = vt;, such that < r and/(w) = ¢(w’).

Proof. The polynomialz,. is the simplest linear homogeneous polynomial of degree 1 that we can ask
for, so by the product formula,

T Gy =6y — Y Gy,
where the latter sum is taken over ak r such that(v) = ¢(vt;,.) — 1. O

Remark13.13 This is a very efficient way to multiply out Schubert polynomials without eating up as
much computer memory; it is a sort of "depth-first” multiplication.
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14. ON "FLAGS, SCHUBERT POLYNOMIALS, DEGENERACYLOCI, AND DETERMINANTAL
FORMULAS” BY WILLIAM FULTON.

This lecture was given by Ashesh Bakshi and Steve Klee.

14.1. Fiber Bundles. We need to introduce some definitions and facts about fiber bundles. More de-
tailed information can be found in Milnor and Stasheffkaracteristic Classes

Definition 14.1. Let B be a topological space. rfeal vector bundle of rankn (or n-plane bundl@
over B consists of a topological spaée= F({) and a continuous surjective map £ — B with the
following properties:

(1) For eachh € B, the setp—!(b) has the structure of a reatdimensional vector space.

(2) The bundle idocally trivial, i.e. each poink € B has a neighborhood and a homeomorphism
h: U x R" — p~!(U) such that for each’ € U, the correspondence— h(V',v) defines an
isomorphism fronR™ to p~!(b') and the following diagram commutes: whergis projection
onto the first coordinate.

We sayB is thebase spacef the bundle andv is thetotal spaceof the bundle. The mapis called the
projection mapand the sep~!(b) is called thefiber overb, and is occasionally denoted(¢).

Similarly, if F'is a topological space, we can definélzer bundlewith fiber F' to be a continuous
surjectionp : E — B such that for each € B, p~!(b) is homeomorphic td” and such that local
triviality is satisfied.

Remarkl4.2 For general fiber bundles, we may require additional structure such as a Lie group action
on F'. We omit these requirements at this point for the sake of simplicity. For example, in the case of a
vector bundle, the Lie grou@ L, (R) acts transitively on each fiber.

Remarkl4.3 Depending on what we want to emphasize, we may simply saypth&t — B is a fiber
bundle with fiberF' rather than saying is a fiber bundle with total spadg, base spacé®, projection
mapp, and fiberF'.

Example 14.4. Any topological spacd’ can be viewed as a fiber bundle over a space consisting of a
single point{x}.

Example 14.5.1f £ is ann-plane bundle with projectiop : £ — B such thatt' is homeomorphic to
B x R™, we say that is atrivial bundle.

Example 14.6.1f M is a smoothm-manifold, the tangent bundIEM is a smooth-plane bundle over
M.

Definition 14.7. If p : E — B is a bundle, aectionof the bundle isamap: B — E such thap o sis
the identity map orB.

Sometimes it is important to construct new vector bundles from known vector bundles. The following
constructions will be of particular importance:

Definition 14.8. Suppos€ is a fiber bundle with projection: £ — B. If U is a subset oB, we define
the restriction of to U, denotedt|U to be the bundle with total spade(¢|U) = p~1(U), base space
U (both with the subspace topology), and projection map given by the restrictiptoof (¢|U). It is
trivial to check that this is indeed a fiber bundle.

For our purposes, we will focus primarily on bundles whose fibers are vector spaces, projective spaces,
and flag manifolds.
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Definition 14.9. Suppose€ is a fiber bundle with fibe#' and projectiorp : £ — B. Let X be any
space. Given a continuous mgp. X — B, we construct théenduced bundler pullback bundlef*¢
over X as follows. The total spacB(f*¢) is the subset oK x E consisting of all pairgz, v) such that
f(x) = p(v). The projection map; : E(f*¢) — X sends(z,v) — z. There is also an induced map
f E(f*¢) — E(¢) sending(x, v) — v so that the following diagram commutes.

In the specific case thatis ann-plane bundle, notice that the mgps a linear isomorphism on each
fiber of f*¢. This motivates the following definition.

Definition 14.10. Suppose : E — B is ann-plane bundle and’ : £’ — B’ is anm-plane bundle. A
bundle maps a pair of continuous maps : £ — E’ andf : B — B’ suchthapo F' = fop’ and such
that F' is R-linear when restricted to any fiber pf We will usually only describe the mag : £ — E’
and use the requisite commutative diagram to induce thefnap — B’.

If p: E(§) — B is a vector bundle with fibeR™, it may be natural to ask questions about vector
subspaces of the fibers pf A subbundle; C ¢ is ak-plane bundle oveB whose total spacé&(n) is
a subspace aF(¢) such that over each poibte B, Fy(n) is ak-dimensional subspace &§(£). This
gives rise to one additional construction:

Definition 14.11. Suppose€t is ann-plane bundle oveB andrn C £ is a k-plane subbundle. The
quotient bundl€ /i is an(n — k)-plane bundle oveB. Over each poink € B, F,(£/n) is the vector
space quotienk}, (&) /Fy(n).

Remarkl4.12 As before, if we do not wish to emphasize the subbumdte ¢, we may simply say that
E' C FEis ak-plane subbundle oF. In saying this, we mean to indicate that there is a subbupdfet
whose total space iE’, and whose projection mapjgE’.

Example 14.13.Suppose : E — B is ann-plane bundle. We form a new projective bunillgZ) over
B such thatF, (P(E)) = P(F,(E)), i.e. the fiber oveb in P(E) is the real projective space on the vector
spacefy,(E). We can also vieWP(E) as a rankKn — 1)-vector bundle oveF.

Definition 14.14. Suppose€ : E % B andn : E' & B’ aren- andm—plane bundles over a common
base spac#3. We obtain the total space of new bundle Hgmy) by decreeing that for eadhe B,
Fy(Hom(¢, n)) is themn-dimensional vector space of linear maps frpmt (b) — p'~1(b). (It takes a

fair amount of work to show that this space can be given a topology that gives it the structure of a vector
bundle.) Similarly we can obtain bundlés n (respectivel\¢ & n) by applying the tensor product (resp.
direct sum) functors to the fiber over each point. (The latter bundle is callalfiteey sunof £ andn.)

14.2. Degeneracy Loci. In general, subbundles of vector bundles are not as easy to find as one might
expect. Using cohomology theory, it is possible to show that the tangent space of real projective space
P"™ admits a line subbundle (i.e. a subbundle of rank 1) if and onlyif odd. Moreover, the tangent
space to complex projective space never admits a line subbundle.

Now, however, we will bestow upon ourselves a most fortunate situation that is analogous to a decom-
position of a vector space into a flag of subspaces.

Definition 14.15. Suppose : E — B is a vector bundle of rank. We sayF is afiltered vector bundle
(over B) if there is a chain of subbundlds, ¢ £ C ... C E,, = E such thatk; has ranki over B.

Dually, if £ = F, is a filtered vector bundle, there is a descending chain of surjective bundle maps

E=Qn—Qn1—...25 Q22—
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whereQ; = E/E,_; has rank.. As a means of notation, in this case we occasionally abuse notation and
write £ = E, - E,_1 — ... — Ej to indicate this chain of quotient bundles.

With this notation in place, supposé is a variety, andz, and F, are filtered vector bundles of rank
noverX. If h: E — F'is a bundle map then we can form a chain of maps

By CEyC...CEy 5 Fy— Fyy — ... Fy.
For anyl < p, ¢ < n, we will denote the composition of bundle maps

By Epg ..o By 5y Fyy = ... > F,
ask, — F,.

Definition 14.16. For a permutatiomw € S,,, we define thelegeneracy locuQ,, = Q,,(h) = Qy(h, E,, F)
to be the subset of poinise X such that the restricted mdg,|z — F;,|h(z) has rank at most, (q, p)
forall 1 < p,q < n. As a means of convenience we abbreviate this by sayingdthas defined by the
conditions that rank,, — F;,) < (g, p) for all p, q.

As in the case of flag varieties, we can use Fulton’s essential set to determine a smaller generating set
for Q.

Definition 14.17. In the theorem below we are using the definition that the Essential Set is the collection
of southeast corners of connected components in the permutation matxi>after canceling south and
east from the entrie§, w(7)).

Proposition 14.18. The variety2,, is defined by the conditions
rank(Ep, — Fy) < ruw(q,p)
forall pandqin {1,...n} such thatq,p) € Ess(w).

Proof. If we pick a pointz € €2, then we know the condition that the rank of the nigp, — F,|, is
bounded by, (g, p) for all p, q is equivalent to the rank being bounded for all p&irs) in the essential
setofw. If U C X is a trivializing neighborhood of for all E; (i.e. E;|U is homeomorphic to the trivial
bundle), then the result certainly holds ovén €),, where E,, and F;, have the same behavior over all
fibers. Thus the assertion holds in a neighborhood of each pdint in O

14.3. Flag Bundles. Suppose thap : £ — X is a rankn vector bundle over a varietf{. Theflag
bundleof E, denotedF((FE) is a vector bundle of rank(n — 1)/2 over X with projection mapp :

FI(E) — X. Sincep is a continuous map to the base space of a bundle, using the pullback construction
of definition14.9we can form an induced bundi& E. The flag bundle comes equipped with a universal
flag of subbundle#/, of p* E, with eachU; a vector bundle of rank The situation is as follows:

The flag bundle is universal in the following sense:fit ¥ — X is a continuous map such that
f*E has a complete flag of subbundles c V, C ... C V,,_1 C f*E, then there is a unique map
f : Y — FI(E) such thatf*U; = V; as subbundles of*E for all 7. Finally, the universal flag of
subbundles of'/( E) gives a universal flag of quotient bundles

p*E_»Qn—l — .o
whereQ; = p*E /U, _; for all i.
We can construck'/( E) as a sequence of projective bundles (fiber bundles whose fiber is some projec-
tive space). Start with the canonical projection map P(E) — X. Then-plane bundle(E) admits
a universal line subbundl&/;: for L € P(F), letb = pi(L). As a point inP(E), L represents a line
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through the origin inf;,(E), and the fiber oveL in pj(E) is canonically isomorphic té;(E). OverL,
take M, to be the collection of points € F;,(E) such thate lies on L. Now we can také?(pi E /M),
which is aP"~2-bundle overP(E) with projection mapp,. As before, the pullback bundie(p; E)
admits a universal line subbundié;. Iterating this process, we obtali(F).

We attempt to gain some intuition for the universal flag bundle with the following example, which will
be useful later.

Example 14.19.Supposé/ is ann-dimensional vector space, viewed as the trivial bundle over the one
point space{by } with projectionp : V- — {bp}. The flag bundlg"i(V') is the flag manifold. Moreover,
we can explicitly describe the universal flag of subbundigof p*E: for a complete flagh, onV,
Ui|We = W;.
Proof. We run through the above algorithm to construct the universal flag buridlé). We start by
takingP(V), the space of line®; through the origin iri” with projectionp; onto{bo }. In this casep;V’
is the trivial bundleP(V') x V' with the universal line subbundle/; = {(V1,z) e P(V) x V : 2z € V1 }.

Next, we look at the projective space on the quotient burifé”) x V')/M;, and consider the
projection mag, : P(p*V/M;) — P(V). ForV; € P(V), we can explicitly computg;, ' (V7): the fiber
overVj in p*V /M is the vector spacg/V;, so the fiber oveV; by p, isPP(V/V1). But alineV; through
the origin inV//V; can be identified with a plane i, C V that contains/;. Thus we can identify
P(p1V/My) with the collection of partial flag¥; C V» in V' with projection magVy C V42) 2

Under this identificationg’(p; (V') can be viewed as the set of triplg$,, V1, x) whereV; € P(V) is
a line through the origin iV andV4 is a 2-plane containingy’. This has a universal two-plane subbundle
M, whose fiber over the paiiVz, V1) € P(pi(V')/M,) is the set of points € V5, which can be used to
define a universal line subbundlé, / p3 M, overP(p*V/My).

From here, we appeal to the induction gods. O

Suppose our bundI® 2, X admits a complete flag of subbundles = Fy C Es C ... C B, 1 C
E. Thenp* E admits a complete flag of subbundjgs”; C ... C p*E, is acomplete flag of subbundles.
Thus, overFi(E) we have a map of filtered vector bundles

P'E1C...Cp'Ep 1 Cp"E=p"FE—>Qpn1—>...>» Q1.

Forw € S, we can form the degeneracy lodg in FI(E), denoted,,(E,). We will show that if X
is an irreducible variety, thef?,,(F, ) is an irreducible subvariety dfi(F) of codimension (w).

14.4. Schubert Varieties. We will now work in the specific case that the varietyis a single point.
Here a bundle oveX is ann-dimensional vector spacé; and, as noted in examplet.19 the flag
bundleFi(V)) = Fi(n) is just the flag manifold with universal subbundlg. Suppose we fix a flayf,
of vector spaces i. For a permutatiomw in .S,,, we look at the open Schubert cell

X0 =X0(Va) ={We € FI(V) : dim(W,; N V},,) = rw(q,p);p,q € [n]}
and the closed Schubert variety
Xy = {We € FI(V) : dim(W, NVp) > r4(q,p);psq € [n]}.

Now we considep : FI(V) — X = {x}. As before p*V is the trivial bundleF’[(V) x V. Using our
fixed flagV,, we get a flag of subbundles &f(V) x V:

FIV)xViCFI(V)xVoC...CFI(V)x V,_1 CFI(V) x V.
We also have a universal flag of quotient bundles
FZ(V) XV —=Qn-1... Q1

whereQ); is the quotient bundleFi (V') x V') /U,,—;. As in the previous sectio[(V') x V; = p*V;, so
we can look at the degeneracy lodts (V).
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Proposition 14.20. For anyw € Sy, Q. (Ve) = Xy, -

Proof. Recall that the universal subbundlg of FI(V') x V satisfied/;|W, = W, for W, € FI(V). To
compute the degeneracy locls (Vs ), we need to compute the ranks of the mgpsd/’), — Q,. For a
complete flagV,, we can computép*V'),,|W, = V,, and

QulWa = (5"V/Un—)|Wa = pVIWa/Up—o We = V/Wir_.

Thus overV,, the map(p*V), — Q, is simply the restriction of the quotient mé&p — V/W,,_,.

Now €,,(V4) is the subvariety of[(V) of all flagsW, such that the map,, — @, has rank at most
rw(q, p). Over asingle flag, this is just a map oufigf so saying its rank is at most, (g, p) is equivalent
to saying that its kernel has dimension at least r,,(¢,p). The kernel of the mapy,, — V/W,,_, is
clearlyV, N W,,_,. ThusQ,,(V4) is the collection of complete flags such that foraiindg,

dim(W,NV,) > p—rw(n—q,p)
= p—#{i<n—q:w(i)<p}
= p—#{i<p:w (i) <n-q}
= #{i<p:rw (i) >n—g}
#{i <p:wow (i) < q}
#{i < q:w-woli) < p)
= T’w‘w()(Q7p)'

But this is preciselyX ;.. -
O

14.5. Double Schubert polynomials. To state the main theorem in this paper we will need a slight
generalization of Schubert polynomials.

Definition 14.21. Let A be a commutative ring. Recall that for edck i < n—1, thedivided difference
operator oA |z, . .., z,] takes a polynomiaP to

(141) 8ZP _ P(:Ul,...,x‘n) — P(l‘l,.. . ,xi,1,$x+i,$i,$i+2,...,i‘n)
Ti — Ti41

Definition 14.22. Let s; denote the transposition exchangirand:+1. Thedouble Schubert polynomial
for the permutationv is a homogeneous polynomial #m variables of degreé(w). Write w as the
productwy - s;, - - - - s;,., Wherer = £(wy) — ¢(w), and set

(14.2) Guw(T, s Tny Yty yn) = O 000 (] (@i — )

i+j<n
Here they; are to be regarded as constants, i.e., the operators are defined on theeiing , z,,], where
AistheringZly, . .., yn).

Remarkl14.23 The above definition is independent of the choice;of. . ., s;; and we can recover the
ordinary Schubert polynomials &, (x1,...,z,) = Gy(x1,...,2,,0,...,0).

Conversely, the double Schubert polynomials can be expressed in terms of ordinary Schubert polyno-
mials. For brevity, writex andy in place ofzy,...,z, andy; ..., y, (respectively.)

Fact 14.24. For any permutatiomw € S,,,
Su(@,y) =Y (1) Su(2)8,(y)

where the sum is over pairs of permutatignsv) such that=! - v = w andf(u) + £(v) = £(w).
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Remark14.25 Supposed is a ring, ¢y, . .., ¢, are elements ofi, and/ is the ideal ofA[z| generated

by the polynomials;(z) — ¢; where thee; are the elementary symmetric functions. Notice that the
operatorsd,, map [ to itself, and hence descend to well-defined operators, also denotéd fspm
Alx]/T — Alz]/I.

14.6. Chern classes.Letw : E 2 B be a complex n-plane bundle. There are certhiaracteristic
classesn the singular cohomology ring of the base space. Working &itf2) coefficients, one has

the Stiefel-Whitney classes, which can be used to study diverse questions: When can a smooth closed
m-manifold be realized as the boundary of (@n + 1)-manifold? For whichn is the projective space

P parallelizable? For whick: can a manifold be immersed Ri™?

Working instead with integer coefficients, we have for eickk i < n a Chern classc;(w) €
H?(B;Z). As is the case for the Stiefel-Whitney classes, they play an important role in the study of
the topology of vector bundles and manifolds, and as we’'ll see below they crop up when we study the
strucutre of the Chow ring as well. A proof of the existence of Chern classes is beyond the scope of
this lecture; see Fultonoung Tableaxchapter three of Fulton’tersection Theoryor Milnor and
Stasheff'sCharacteristic Classefor different constructions. For now we content ourselves with listing
a few of their properties, not all of which will be used here:

Fact 14.26. (Vanishing) For any complex-plane bundlev, ¢;(w) = 0 for i > n.

Fact 14.27. (Naturality) Given complex-plane bundle¥¥ — B andE’ — B’, and maps" : £ — FE’
andf : B — B’ so that the pai(F, f) is a bundle map (cf. definitioh4.10, then for each, ¢;(w) =

frei(W).
Definition 14.28. A short exact sequenad vector bundles is a sequence
Oﬁwliwiw”ﬂo
of bundles over a common base sp&tsuch that:f andg induce the identity map on the base space,
and for eaclb € B, the restriction to the fiber oveér

0— w’]b & w|b g—|b> w”]b — 0

is a short exact sequence of linear maps between vector spaces.

Fact 14.29. (Whitney formula) If0 — o' — w — " — 0 is a short exact sequence of vector bundles
over B, whereB is paracompact (or, if you prefer to avoid lengthy topological definitions, wBeigea

variety), thercg (w) = >,y ¢i(w') U cj(w").

It is often convenient to work in the ring/™'(B; Z) of all formal infinite seriest = ag + a1 + - - -
with a; € H*(B), with the product operatiofl'(B; Z) x H'(B;Z) = H"(B;Z) given by:

(a0+a1—i—'~)*(bo+bl+---):Z Z (aj Ubg) = (agUbg) + (a1 Ubg +apgUby) + -
1=0 j+k=l

In this ring define theéotal Chern class:(w) = 1 + ¢1(w) + c2(w) + - - - . Two useful consequences
are the following: the total Chern class of a vector bundle is a unit in the ring and the Whitney formula
becomes simply(w) = ¢(w’) * ¢(w").

Definition 14.30. Let G (C*°) denote the complex Grassmanniarkeslanes through the origin i6>°.
Notice in particular that wheh = 1, G1,(C>®) = CP>. Theuniversalk-plane bundley* overG (C>)
is the bundle whose total space is the subsét,gfC>) x C* consisting of all pairgV, =) such that”
is ak-plane inC>* andz € V.
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Fact 14.31.1f p : E — B is a complext-plane bundle, then there is a map B — G (C>) such that
E = f*~F.

Fact 14.32. The cohomology ringZ*(CP>;Z) is a polynomial ring generated in degree 2dyyy!).
As a corollary,H*(CP>) = 0 for all odd integers.

We need to introduce one final piece of notation. Supgdseann-plane bundle oveX andny is an
m-plane bundle oveY. Theexternal tensor produadf ¢ andn is the bundleé®n over X x Y whose
fiber over(z,y) is F;(§) ® Fy(n).

Lemma 14.33. Suppos& andn are line bundles over a common base spéteThenc; (¢ ® ) =

c1(§) + i)

Proof. (The reader is invited to skip this proof if so inclined; only the statement will be of use below.)
Recall the Kunneth formula for cohomology: X andY are spaces, then the cross product gives an
isomorphismH*(X x Y;Z) — @, ;, H'(X;Z) ® HI(Y;Z) in cases (like this one) where all the
cohomology groups are free.

Letd : B — B x B be the diagonal map — (x, z). By Fact14.3] there are map$, g : B — CP>
such thatf*~v! = ¢ andg*y' = . We can certainly mag x g : B x B — CP>® x CP>, and it is
clear that(f x g)*(y'®~!) = £&n. Moreover,d*(é&n) = ¢ @ n. This is illustrated in the following
commutative diagram:

By the Kunneth formulaH?(CP> x CP>;Z) is isomorphic to( H?(CP>®) @ H°(CP>;Z)) ®
(HY(CP>;Z) ® H?(CP>;Z)); H'(CP*>) = 0 by Fact14.32 Thusc;(y'&~!) can be written as
ac1(y!) x 141 x bey (y1) for somea,b € Z. Fix any points in CP>. To determine the constants
a and b, we consider the mapg : CP* x {x} — CP> x CP> sending(P,x) — (P,*) and
2 : {¥} x CP>® — CP> x CP> defined similarly. We can identify; (y'&~') with 4! and hence
Glea(ytert)) = a(y? )><1 Using the equation faf; (v &~!) from the Kunneth formula} (acy (1) x
1+1xbey(7Y) = aci(vh) x 1 +0. Thusa = 1. Similarly, b = 1.

Now by naturality, we can computg (£ ® n):

aen) = d(fxg) " (aht'@rh))
= d((fx @) (a(y) x1+1xa(h)
= d(f*(a(v") x g1+ [ 1 x g*(c1(v))
= d'(c1(&§) x 1+ 1xe1(n))

EUl+1Uei(n)

(&) +c1(n))

= Cl

|
5

1

14.7. A Giambelli formula for flag bundles. The key result in the paper is the following:

Theorem 14.34.For any complete flagr, of subbundles in a vector bundieof rankn on a nonsingular
variety X and anyw € S,,, the class of2,,(E,) in A““)(FI(E)) is given by the formula

(14.3) [Qu(Ea)] = Su(@1s- o Tty )
wherez; is the first Chern class der(Q; — Q;—1) andy; is the first Chern class df; /E;_;.
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This proof depends on a few key facts, which we will state without proof.

First of all, let A = A*X be the Chow ring ofX. There is a canonical (surjective) homomor-
phism fromA[x1,...,z,] — A*(FI(F)) whose kernel is the idedl generated by the polynomials
ei(x1,...,xn) — ¢;(E). As noted in14.25 this means that the divided difference operators descend to
well-defined operators oA[z1, .. .,x,]/I, and hence also cA*(FI(E)). We'll also need:

Lemma 14.35.Letw € S,,, 1 < k < n,and setw’ = w - s;. Then

Qu(Ed)] i w(k) > w(k+1),

Ok ([ (Es)]) = {0 if w(k) <w(k+1).

Lemma 14.36. Let E' be a vector bundle of rank on a nonsingular varietyX, and lets : X — F be
a section. If the image of intersects the zero-section transversally, then' (0)] € H2?X is equal to

ci(E)

In words, the top Chern class of a complex vector bundle is Pdraiaal to the zero set of a generic
section. This theorem is well known to algebraic geometers working in the area but a concise state-
ment is hard to find. One reference containing a (somewhat) accesible proof is: W. Fulton, Equivariant
Intersection Theory, Notes by Dave Anderson, Michigan University, 2005-2006, available at:

http://www.math.lsa.umich.edu/"danderson/notes.html

Proof. (of Theoreml4.34 Our first goal is to establish the formula for the longest permutatignThe
essential set for this permutation is the collection of péfisn — p) : 1 < p < n}, so the degeneracy
locus ofQ,,,(F,) is determined by the condition that rdpkE, — Q,—p) < 7w, (p,n — p) = 0 for
1 < p < n,i.e. all these maps have rafk

Let H = @)~ Hom(p*E,, Qu—p) and H' = -7 Hom(p*Ep, Qn—p—1). Over each element
W, € FI(E), the fiberH |y, is a direct sum of complex vector spa@;i Hom(p* Ep|w, , Qn—plw.)-
An element of the fiber can be written as @n— 1)-tuple (o, . .. ay—1), with eacha,, a C-linear map
from p* B, |w, 10 Qn—plw.. Let Ky, be the collection ofn — 1)-tuples making the following diagram
commute for eac:

| claim that K = Uy, iy Kw. is @ subbundle off. In fact K is the kernel of a bundle map
g: H — H'carrying(ai,...,a,-1)1t0 (51,...,08,—2) Where, for each, 8, = ap10tp — jn—p o .
One can check that this map is surjective, so we have an exact sequence of bundles

0-K—HLH -0

Since Honp* Ep|w., , Qn—p|w. ) has rankp(n — p), H has rankzz;ll p(n — p). Similarly, H' has rank
ZZ;Q p(n—p—1), and by dimension considerations it follows ttiahas rankV = n(n —1)/2. Define
asections : FI(E) — K, Wy — (aq,...,an—1), Wherea, is the linear magp*E, — Qn—p)|w.. The
zero locus is an old friendk =1 (0) = {W, € FI(E) : p*Eylw, — Qn—plw, = 0} = Q. Therefore by
lemmal4.36 we can relate the class of the degeneracy locus to the Chern clagses of

[y (E6)] = en(K)

Our goal now is to computey (K). Recall that since we have an exact sequence of bundles

0 K—>H—>H —0
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, by the Whitney formula:(H) = ¢(H')c(K). In particular, the top Chern class & is the product of
the top Chern class aff’ with ¢y (K). Noting the similarity between the bundlés and H', we will
study the bundle Hofp* Ey, Q¢). By some basic homological algebra,

Hom(p"Ex, Q¢) = (p"Ex)" ® Qe

where(p* E.)* denotes the dual bundle Hgpt Ey;, C). One final fact we must cite is that for a complex
bundlew, ¢;(w*) = (—1)"¢;(w).
Since we have a filtration
Qe—> Q1> ... >
and for alli the sequence
0 — ker(Q; - Qi—1) — Qi — Qi—1 — 0
is exact, we can decompogg as a sum of line bundles:

¢
Qe = Pker(Q; - Qi-1).
=1

Similarly, by the filtration
p'EL — p*Ey — ... — p"E,
for all j < k we get a short exact sequence
0—p'Ej.1—p'Ej — p"E;j/p*E;j—1 — 0.
Hence we can decompogéFE), as a sum of line bundles
k

p"Ex =P r*E;/p"Ej 1.
7j=1
Thus (since the Hom functor commutes with finite direct sums)
k

(0" Ex)" = D" Ej/p Ej-1)*.
j=1

This means we have reduced our study to
Hom(p* By, Qo) = €D ((0Ej/p*Ej1)" ® ker(Qi — Qi-1))-

1<i<k
1<5<t

Since each factor of the above sum is a tensor product of line bundles, LémB&mplies that
c(p*Ej/p"Ej1 @ker(Qi — Qi—1)) = 1+ z; — yj.
Thus by the Whitney product theorem,
c(Hom(p* By, Qo) = [[ (14 —y)).

1<i<k
1<5<¢

Since the top Chern class of a product bundle is the product of the top Chern classes of each of its factors,
the top Chern class of Hop* Ey, Q¢) is
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In particular, this means that the top Chern clas&/a$ the product

1
I @i-v)
1

1<i<p
1<j<n—p

n—

p=

and the top Chern class &f’ is

n—2
T I @i—w)

p=1 1<i<p
1<j<n—p—1

Sincecy (K) is the quotient of the top Chern classedband H’,

n—1
en(®) =[] @-w) ][] II @i —vnsp)

1<i<n—1 p=11<i<p

- H (zi —yj5)

i+j<n
= Gwo ($7 y)
We have established the following identities:

[Qwo(EO)] = H (.7}1 - yj) = Gwo(xay>'

i+j<n
Now, for anyw € S, write w = wg « S, - -+ + Sk, Wwherer = n(n — 1)/2 — ¢(w). Since
sk(k) > si(k + 1) for anyk, applying Lemmal4.35r times gives
[Qw(Ee)] = O, 0+ 0 O, ([Quy (Ee)])
- akr 0---0 akl (Gwo(l"y))
= Gw($>y)'

0

From this theorem Fulton deduces a more general statement that generalizes the above in a humber of
ways:
(1) Instead of applying to a flag of subbundles inside a single bundle, it applies in the setting of a
morphism of filtered bundled; C --- C Aq L By — -+ — By.

(2) Instead of requiring a complete flag, it allows for partial flags.
(3) It permits X to be singular.

The proof (and even the full statement) of the generalization are out of reach; they require additional
tools from algebraic geometry and the theory of characteristic classes. (The idea of the proof is to set
E = A; & B, embedA; in E as the graph of, apply the above theorem, and pull back the resulting
formula for a cohomology class iIH*(FI(E)) to one inH*(X).) Let’s content ourselves with a weaker
statement, still too hard to prove but strong enough to work an interesting example:

Corollary 14.37. Given a generic morphism of filtered complex vector bundles - -- C A, LA By —
-~ — By on a smooth varietyX, the class of the degeneracy locusAh(.X) is given by

[Qu(h)] = Gw(x1,.  y TnY1, - Yn)
wherex; = ¢; (ker(Bz — Bifl)) andyi =C (Al/Azfl)
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Example 14.38.Let us work out one explicit computation of the class of a degeneracy locus in the Chow
ring. Supposeéh : & — F is a generic map of-plane bundles on a variety, adtf € Es; C --- C

Ey = FandF = Fy - F3 —» --- — I} are complete flags of subbundles and quotient bundles. Let
w = [2431] € S4. The the essential set{$3, 1), (2, 3)}, and corresponding rank matrix is:

o O O

1
1
1

W N =t =
W N =

1 2
Thereforef,, consists of those points afover whichE; — Fj is zero andts — F5 has rank< 1.
Sincew = wq - s9 - 51,
Gu(z,y) = hode((z1—y1)(x1 —y2) (21 — y3)(v2 — y1)(v2 — y2) (23 — y1))
= Oi((z1 —y1)(z1 — y2) (1 — y3) (72 — y1)(z3 — 1))
= (21 —y1)(x2 — 1) (3 — y1)(z1 + 22 — Y2 — Y3).
Settingx; = ¢ (ker(F; — F;_1)) andy; = ¢1(E;/E;_1), our formula yields:

W

[Quw(h)] = (z1 —y1)(z2 — y1) (23 — y1) (21 + 2 — Y2 — ¥3)-
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