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Tale of Two Rings

Power Series Ring.: Z[[X ]] over a finite or countably infinite
alphabet X = {x1, x2, . . . , xn} or X = {x1, x2, . . . }.

Two subrings. of Z[[X ]]:

I Symmetric Functions (SYM)
I Quasisymmetric Functions (QSYM)



SYM=Ring of Symmetric Functions

Defn. f (x1, x2, . . . ) ∈ Z[[X ]] is a symmetric function if for all i

f (. . . , xi , xi+1, . . . ) = f (. . . , xi+1, xi , . . . ).

Example. x2
1 x2 + x2

1 x3 + x2
2 x1 + x2

2 x3 + . . .

Defn. SYM = symmetric functions of bounded degree.



QSYM=Ring of Quasisymmetric Functions

Defn. f (x1, x2, . . . ) ∈ Z[[X ]] is a symmetric function if for all i

f (. . . , xi , xi+1, . . . ) = f (. . . , xi+1, xi , . . . ).

Example. x2
1 x2 + x2

1 x3 + x2
2 x1 + x2

2 x3 + . . .

Defn. f (x1, x2, . . . ) ∈ Z[[X ]] is a quasisymmetric function if

coef(f ; xα1
1 xα2

2 . . . xαk
k ) = coef(f ; xα1

a xα2
b . . . xαk

c )

for all 1 < a < b < · · · < c.

Example. f (X ) = x2
1 x2 + x2

1 x3 + x2
2 x3 + . . .



Why study SYM and QSYM?

I Symmetric Functions (SYM): Used in representation theory,
combinatorics, algebraic geometry, over past 200+ years.
More recently expanding applications in number theory,
theoretical physics, economics, quantum computing !

I Quasisymmetric Functions (QSYM): 0-Hecke algebra
representation theory, Schubert calculus, enumeration of linear
extensions of posets, Hopf dual of NSYM=non-commutative
symmetric functions, terminal object in the category of
combinatorial Hopf algebras.

I SYM and QSYM are easy to study with Sage!



High level goals

1. Develop intuition for some of the universal tools in algebraic
combinatorics.

2. Build up vocabulary to introduce some important open
problems and approaches to attack them.

3. Inspire you to learn more about quasisymmetric functions and
find more applications.



Main tool: Permutations

Defn. A permutation w in the symmetric group Sn is a bijection
on the set [n] = {1, 2, . . . n}.

Fact. Sn is a group under composition of bijections with the
identity function as the identity for the group.

Example. w : [4] −→ [4] given by
w(1) = 2,w(2) = 3,w(3) = 4,w(4) = 1

w−1(1) = 4,w−1(2) = 1,w−1(3) = 2,w−1(4) = 3

id(1) = 1, id(2) = 2, id(3) = 3, id(4) = 4



Some Applications of Permutations

I Card shuffling and card tricks.
I The determinant of a n × n matrix M = [mij ] is by definition

det(M) =
∑

w∈Sn

(−1)inv(w)m1,w(1)m2,w(2) · · ·mn,w(n).

I Cryptography.
I Differentiating species by DNA strings and phylogenetic trees.
I Detecting near duplicate webpages for search engines (Broder

Algorithm).
I Symmetric functions and symmetric polynomials.



Six more ways to represent a permutation
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =
[

1 2 3 4
2 3 4 1

]
= [2, 3, 4, 1]

matrix
notation

two-line
notation

one-line
notation

∗ ∗ ∗ .
. . . .
. . . .
. . . .

= = s1s2s3

1234

2341

diagram of a
permutation D∗(w) string diagram product of si ’s

adjacent transpositions



Permutation Statistics

I inv(w) = #{i < j w(j) < w(i)} = `(w) Inversions

I des(w) = #{i : w(i) > w(i + 1)} Descents

I peaks(w) = #{i : w(i − 1) < w(i) > w(j)} Peaks

Example.
w = [2, 5, 4, 3, 6, 1] =⇒ inv(w) = 8, des(w) = 3, peaks(w) = 2

Inv(w) = {(1, 5), (2, 3), (2, 4), (2, 6), (3, 4), (3, 6), (4, 6), (5, 6)}
Des(w) = {2, 3, 5}
Peaks(w) = {2, 5}
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Generating Functions by Example

Defn. Let An(x) =
∑

w∈Sn x1+des(w) =
∑

A(d , n)xd .
The A(d , n) are called Eulerian numbers.

A2(x) = x + x2

A3(x) = x + 4x2 + x3

A4(x) = x + 11x2 + 11x3 + x4

Thm. (Holte 1997, Diaconis-Fulman 2009) The probability of
carrying d on in the jth column when adding n large numbers tend
to A(d , n)/n!.
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Enumerative Results

Thm. (Gessel-Viennot 1985) The number of permutations in Sn
with a given descent set S = {s1, . . . , sk} is given by the binomial
determinant

det
[(

n − si
sj+1 − si

)]
1≤i≤j≤k

where s0 = 0, sk+1 = n.

Thm.(Billey-Burdzy-Sagan 2013) The number of permutations
with a given peak set S = {s1 < . . . < sk} for n ≥ sk is determined
by 2n−|S|−1PS(n) for the peak polynomial PS(n).

See also: “Properties of Peak Polynomials” by Fahrbach and
Talmage (manuscript 2014).



Monomial Basis of SYM
Defn. A partition of a number n is a weakly decreasing sequence
of positive integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0)

such that n =
∑
λi = |λ|.

Partitions can be visualized by their Ferrers diagram

(6, 5, 2) −→

Defn/Thm. The monomial symmetric functions

mλ = xλ1
1 xλ2

2 · · · x
λk
k + xλ1

2 xλ2
1 · · · x

λk
k + all other perms of vars

form a basis for SYMn = homogeneous symmetric functions of
degree n.

Fact. dimSYMn = p(n) = number of partitions of n.



More bases for SYM

Let X = {x1, x2, . . . , xm} be the alphabet.

Defn. ek(X ) =
∑

1≤i1<i2<...<ik≤m
xi1xi2 · · · xik .

For any partition λ = (λ1, λ2, . . . , λk), set eλ := eλ1eλ2 · · · eλk .
These are elementary symmetric functions.

Application. If F (x) = (x + r1)(x + r2) · · · (x + rm) is a
polynomial with m roots, then

F (x) =xm + (r1 + r2 + . . .+ rm)xm−1 + . . .+ (r1r2 · · · rm)
=xm + e1(r1, . . . , rm)xm−1 + . . .+ em(r1, . . . , rm).

Fundamental Theorem. SYM(X ) = Q[e1, e2, ..., em] as a
freely generated polynomial ring.
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More bases for SYM

Defn. hk(X ) =
∑

1≤i1≤i2<...≤ik≤m
xi1xi2 · · · xik . Set

hλ := hλ1hλ2 · · · hλk . These are homogeneous symmetric functions.

Defn. pk(X ) = xk
1 + xk

2 + xk
3 + . . .+ xk

m. Set pλ := pλ1pλ2 · · · pλk .
These are power symmetric functions.

Theorem. SYM = Q[e1, e2, ...] = Q[h1, h2, ...] = Q[p1, p2, ...]
over the alphabet X = {x1, x2, . . .}.

Cor. SYM has three more bases {eλ}, {hλ}, {pλ} where the
bases range over all partitions when X is infinite.
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Schur basis for SYM
Let X = {x1, x2, . . . , xm} be a finite alphabet.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) and λp = 0 for p > k.

Defn. The following are equivalent definitions for the Schur
functions Sλ(X ):

1. Sλ = det(x
λj +m−j
i )

det(x j
i )

with indices 1 ≤ i , j ≤ m.

2. Sλ =
∑

xT summed over all column strict tableaux T of
shape λ.

Defn. T is column strict if entries strictly increase along columns
and weakly increase along rows.

Example. A column strict tableau of shape (5, 3, 1)

T = 7
4 7 7
2 2 3 4 8

xT = x2
2 x3x2

4 x3
7 x8
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Multiplying Schur Functions

Littlewood-Richardson Coefficients.

Sλ(X ) · Sµ(X ) =
∑

|ν|=|λ|+|µ|
cνλ,µSν(X )

cνλ,µ = # skew tableaux of shape ν/λ such that xT = xµ and the
reverse reading word is a lattice word.

Example. If ν = (4, 3, 2) , λ = (2, 1), λ = (3, 2, 1) then

2 3
1 2

1 1

readingword = 231211



Schur Functions/Schur Polynomials

Special properties.
1. The graded ring of representations of Sn for all n > 0 is

isomorphic to SYM on an infinite alphabet. The irreducible
representations are indexed by partitions. The map sends the
irreducible V λ to Sλ.

2. Schur polynomials are characters of irreducible GLn
representations.

3. Schur polynomials represent the Schubert basis in the
Grassmannian manifolds.



Quasisymmetric Functions

Nice Algebraic Facts.
I There is an analog of the Frobenius characteristic from

symmetric function theory giving an isomorphism the
Grothendieck group of representations of 0-Hecke algebras to
QSYM. It maps the irreducible 0-Hecke algebra representation
Lα to Fα. (Duchamp-Krob-Leclerc-Thibon 1996)

I QSYM is Hopf dual to NSYM = non commutative symmetric
functions. (Malvenuto-Reutenauer 1995,
Gelfand-Krob-Lascoux-Leclerc-Retakh-Thibon 1995)

I QSYM is free over SYM on n variables and
dim(QSY(n)/SYM(n)) = n! (Garsia-Wallach 2003)

I The quotient of Z[x1, . . . , xn] mod quasisymmetric function
with no constant term has Hilbert series

∑
Cntn where Cn is

the n-th Catalan number (Aval-Bergeron-Bergeron 2004)



Monomial Basis of QSYM

Defn. A composition of a number n is a sequence of positive
integers

α = (α1, α2, . . . , αk)

such that n =
∑
αi = |α|.

Defn/Thm. The monomial quasisymmetric functions

Mα = xα1
1 xα2

2 · · · x
αk
k + xα1

2 xα2
3 · · · x

αk
k+1 + all other shifts

form a basis for QSYMn = homogeneous quasisymmetric functions
of deg n.

Fact. dimQSYMn = number of compositions of n = 2n−1.



Monomial Basis of QSYM

Fact. dimQSYMn = number of compositions of n = 2n−1.

Bijection:

(α1, α2, . . . , αk) −→ {α1,

α1 + α2,

α1 + α2 + α3,

. . .

α1 + α2 + · · ·+ αk−1}



Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan) The number of
partitions of n, denoted p(n), grows like

p(n) ≈ 1
4n
√

3
eπ
√

2n
3



Fundamental basis for QSYM

Defn. Let D ⊂ [p − 1] = {1, 2, . . . , p − 1}.
The fundamental quasisymmetric function

FD(X ) =
∑

xi1 · · · xip

summed over all 1 ≤ i1 ≤ . . . ≤ ip such that ij < ij+1 whenever
j ∈ D.

Example. F{3} = x1x1x1x2x2 + x1x2x2x3x3 + x1x2x3x4x5 + . . .

Other bases of QSYM. dual immaculate basis
(Berg-Bergeron-Saliola-Serrano-Zabrocki), quasi Schur basis
(Haglund-Luoto-Mason-vanWilligenburg), matroid friendly basis
(Luoto)



A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric,
and transitive relation on a set.

Defn. Young’s Lattice on all partitions is the poset defined by the
relation λ ⊂ µ if the Ferrers diagram for λ fits inside the Ferrers
diagram for µ.

⊂ ⊂

Defn. A standard Young tableau T of shape λ is a saturated
chain in Young’s lattice from ∅ to λ.

Example. T = 7
4 5 9
1 2 3 6 8



SYT=Standard Young Tableaux

Thm.(Frame-Robinson-Thrall 1954) The number of standard
tableaux of shape λ ` n, denoted f λ, is given by the hook length
formula:

f λ = n!∏
(i ,j)∈λ h(i , j)

where h(i , j) is the hook length of the cell c in the Ferrers diagram
for λ found by counting the number of cells above c plus the
number to the right of c including itself.

See also the proof by Greene-Nijenhuis-Wilf (1979).

Example. f (3,2) = 5!
1 · 1 · 2 · 3 · 4 = 5 2 1

4 3 1
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RSK=Robinson-Schensted-Knuth Bijection

Rep Theory Facts. (see Sagan’s book) The dimension of the
Sn irreducible representation V λ is f λ. Hence

n! =
∑
λ`n

(f λ)2

because the the regular representation of Sn decomposes as the
direct sum of dim(V λ) copies of V λ.

Alternative Proof. RSK gives a bijection from Sn to ∪λ`nSYT 2
λ .



RSK=Robinson-Schensted-Knuth Bijection

Input: w ∈ Sn

Output: (P,Q) ∈ SYTλ for some shape λ ` n.

Start: Set P = Q = ∅.

Step i : Insert w(i) into the first row of P by “bumping” the
smallest value b > i from the first row if it exists or adding i to the
end of the first row otherwise. If b exists, bump it into the second
row, continuing until nothing is bumped. The result is the new
tableau P. Add a new cell containing i to Q in the same position
as the new cell added to P.

Ex. w = [1, 2, 6, 3, 5, 4] 7→ P = 6
5
1 2 3 4

, Q = 6
4
1 2 3 5



Gessel’s formula for Schur functions
Thm.(Gessel,1984) For all partitions λ,

Sλ(X ) =
∑

FD(T )(X )

summed over all standard tableaux T of shape λ.

Defn. The descent set of T , denoted D(T ), is the set of numbers
i such that i + 1 appears northwest of i in T . Equivalently, i is a
descent if i + 1 appears to the left of i in the reading word of T .

Example. Expand S(3,2) in the fundamental basis

4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5

S(3,2)(X ) = F{3}(X ) + F{2,4}(X ) + F{2}(X ) + F{1,4}(X ) + F{1,3}(X )



Gessel’s formula for Schur functions

Thm.(Gessel,1984) For all partitions λ,

Sλ(X ) =
∑

FD(T )(X )

summed over all standard tableaux T of shape λ.

Proof. Partition the set of column strict tableaux of shape λ
according to their standardization. Given T , replace the 1’s from
left to right bijectively by 1, 2, . . . , a. Then replace the 2’s by
a + 1, a + 2, ..., b from left to right. Then the 3’s, etc. The result
is a standard tableau std(T ) with the same shape and xT is
compatible with the descent set of T .



Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr, 2005)

H̃µ(X ; q, t) =
∑

w∈Sn

qinvµ(w)tmajµ(w)FDes(w−1)

where Des(w) is the descent set of w in one-line notation.

Thm. (Haiman) Expanding H̃µ(X ; q, t) into Schur functions

H̃µ(X ; q, t) =
∑

i

∑
j

∑
|λ|=|µ|

ci ,j,λqi t jSλ,

the coefficients ci ,j,λ are all non-negative integers.

=⇒ Macdonald polynomials are Schur positive,

Open I. Find a “nice” combinatorial algorithm to compute ci ,j,λ
showing these are non-negative integers.



Lascoux-Leclerc-Thibon Polynomials

Defn. Let µ̄ = (µ(1), µ(1), . . . , µ(k)) be a list of partitions.

LLTµ̄(X ; q) =
∑

qinvµ(T )FDes(w−1)

summed over all bijective fillings w of µ̄ where each µ(i) filled with
rows and columns increasing. Each w is recorded as the
permutation given by the content reading word of the filling.

Thm. For all µ̄ = (µ(1), µ(2), . . . , µ(k))
1. LLTµ̄(X ; q) is symmetric. (Lascoux-Leclerc-Thibon)



Lascoux-Leclerc-Thibon Polynomials

Open II. Find a “nice” combinatorial algorithm to compute the
expansion coefficients for LLT ’s to Schurs.

Known. Each H̃µ(X ; q, t) expands as a positive sum of LLT’s so
Open II implies Open I. (Haiman-Haglund-Loehr)



k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

S(k)
λ (X ; q) =

∑
S∗∈SST (µ,k)

qspin(S∗)FDes(S∗).

Nice Properties.: Consider {S(k)
λ (X ; q = 1)}

1. These are a Schubert basis for the homology ring of the affine
Grassmannian of type Ak . (Lam)

2. Structure constants are related to Gromov-Witten invariants
of flag manifolds (Lapointe-Morse,Peterson, Lam-Shimozono).

3. There exists a k-Schur analog the Murnaghan-Nakayma rule.
(Bandlow-Schilling-Zabrocki)



k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

S(k)
λ (X ; q) =

∑
S∗∈SST (µ,k)

qspin(S∗)FD(S∗).

Nice Conjectures.: Consider {S(k)
λ (X ; q)} with q an

indeterminate
1. Macdonald polynomials expand as a positive sum of k-Schurs.

(LLLMS)
2. LLT’s expand as a positive sum of k-Schurs (Assaf-Haiman)



Schur Positivity of k-Schurs

Theorem. (Lam-Lapointe-Morse-Shimozono, 2011) At q = 1,
{S(k)

λ (X ; 1)} is Schur positive. In fact, each k-Schur expands as a
positive sum of k + 1-Schurs.

Partial progress toward a positivity proof for indeterminate q in
(Assaf-Billey 2012) and (Benedetti-Bergeron 2012)

Open III. Find a “nice” combinatorial algorithm to compute the
expansion coefficients for k-Schurs to Schurs.
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