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“Think deeply of simple things”

Arnold Ross
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Reduced words of permutations

Generators. Every permutation w ∈ S∞ = ∪n>0Sn can be
written as a finite product of adjacent transpositions si = (i , i + 1),
sometimes in many ways.

Example. My favorite permutation is

w = [2, 1, 5, 4, 3] = s1s3s4s3 = s1s4s3s4 = s4s1s3s4 = s3
4 s1s3s4

Relations.
I Involution:s2

i = 1 (identity permutation under multiplication)
I Commutation: si sj = sjsi provided |i − j | > 1,
I Braid: si si+1si = si+1si si+1.
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Reduced words of permutations

Generators. Every permutation w ∈ S∞ = ∪n>0Sn can be
written as a finite product of adjacent transpositions si = (i , i + 1),
sometimes in many ways.

Defn.
I A minimal length expression for w is said to be reduced . This

length `(w) = inv(w) = #{i < j : wi > wj}.
I If w = sa1 · · · sap is reduced, then we say sequence

a = (a1, . . . , ap) is a reduced word for w .
I Let R(w) be the set of all reduced words for w .

Example. If w = [2, 1, 5, 4, 3] then R(w) has 8 elements:

1343, 1434, 4134, 4314, 4341, 3431, 3413, 3143
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Reduced words of permutations

Main Questions Today.
1. How can one count the number of reduced words of a

permutation?

2. What sort of structure does this set have?

3. How does this relate to SYM and QSYM?



Reduced words of permutations

One approach to listing out all elements in R(w):

Tits’ Thm. The graph with vertices indexed by reduced words in
R(w) and edges connecting two words if they differ by a
commutation move or a braid move is connected.

Example. If w = [2, 1, 5, 4, 3] then R(w) has 8 elements arranged
in a cycle

1343− 1434− 4134− 4314− 4341− 3431− 3413− 3143− 1343

Example. How many reduced words does w = [7, 1, 2, 3, 4, 5, 6]
have?



Reduced words of permutations

A more efficient approach to counting R(w):

Recurrence. There is one reduced word for id = [1, 2, . . . , n].
For any other permutation w ,

#R(w) =
∑

i∈Des(w)
#R(wsi ).

Example. Compute #R([n, n − 1, . . . , 3, 2, 1]) for small n:

1, 1, 2, 16, 768, 292864, 1100742656, 48608795688960,
29258366996258488320, 273035280663535522487992320, . . .



Reduced words of Permutations

Stanley’s First Observation. #R([n, n − 1, . . . , 3, 2, 1]) for
small values of n is the same as the number of standard tableaux
of the staircase shape (n − 1, n − 2, . . . , 1) which is(

n
2

)
!

1n−13n−25n−3 · · · (2n − 3)1

by the hook length formula.

Question. How does
(

n
2

)
relate to w0 = [n, n − 1, . . . , 3, 2, 1]?



Compositions

Defn. A composition of a number p is a sequence of positive
integers

α = (α1, α2, . . . , αk)
such that p =

∑
αi = |α|.

Bijection: Set : {α � n} −→ {S ⊂ [p − 1]}

(α1, α2, . . . , αk) −→ {α1,

α1 + α2,

α1 + α2 + α3,

. . .

α1 + α2 + · · ·+ αk−1}
Examples.
Set(3, 2) = {3}
Set(1, 1, 4, 2) = {1, 2, 6}

Set−1({2, 4}) = ? Answer: Depends on p.
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Fundamental basis for QSYM

Defn. Let α be a composition of p and
A = Set(α) ⊂ [p − 1] = {1, 2, . . . , p − 1}.
The fundamental quasisymmetric function

Fα = F p
A(X ) =

∑
xi1 · · · xip

summed over all 1 ≤ i1 ≤ . . . ≤ ip such that ij < ij+1 whenever
j ∈ A.

Note: F p
A may be abreviated FA if the degree p is understood.

Examples.
F(1,2) = F 3

{1} = x1x2x2 + x1x2x3 + x1x3x3 + x2x3x3 + . . .
= M(1,2) + M(1,1,1).

F(1,2,1) = F 4
{1,3} = x1x2x2x3 + x1x2x2x4 + x1x2x3x4 + . . .

= M(1,2,1) + M(1,1,1,1).



Fundamental basis for QSYM

Poset on compositions. Given two compositions
α = (α1, . . . , αj) and β = (β1, . . . , βk) we say β refines alpha
provided there exists indices 1 ≤ a < b < . . . < c ≤ k such that
α1 = β1 + β2 + . . .+ βa and α2 = βa+1 + . . .+ βb, etc.

Write β � α if β refines alpha.

Question. How does refinement order compare to the Boolean
algebra on subsets?

Lemma. Fα =
∑
β�α Mβ.

Example. F(3,2) = M(3,2) + M(1,2,2) + M(2,1,2) + M(1,1,1,2) +
M(3,1,1) + M(1,2,1,1) + M(2,1,1,1) + M(1,1,1,1,1)
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Reduced words of Permutations

Defn. (Stanley 1984) For w ∈ Sn with p = inv(w), define

Gw (X ) =
∑

a∈R(w)
FDes(a)(X )

=
∑

a∈R(w)

∑
(i1···ip)∈C(a)

xi1xi2 · · · xip

where C(a) is the set of all weakly increasing sequences of positive
integers (i1 ≤ · · · ≤ ip) such that ij 6= ij+1 if aj > aj+1.

C(a) = compatible sequences



Reduced words of Permutations

Gw (X ) =
∑

a∈R(w)
FDes(a)(X ) =

∑
a∈R(w)

∑
(i1···ip)∈C(a)

xi1xi2 · · · xip

Examples.
1. For w = [7, 1, 2, 3, 4, 5, 6], R(w) = {654321} so

Gw (X ) = F{1,2,3,4,5}(X ) = F(16)(X ) = s(16)(X ).

2. For w = [2, 1, 5, 4, 3],

Gw =FD(1343) + FD(1434) + FD(4134)) + FD(4314)

+ FD(4341) + FD(3431) + FD(3413) + FD(3143) =
F(3,1)+F(2,2) + F(1,3) + F(1,1,2) + F(1,2,1) + F(2,1,1) + F(2,2) + F(1,2,1)

= s(3,1) + s(2,1,1) + s(2,2)
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Reduced words of Permutations

Stanley’s Second Observation. For many permutations w ,
Gw is a symmetric function and it has a Schur positive expansion.

The fact that Gw is symmetric is proved in (Stanley 1984) by
showing that every monomial xα that occurs has the same
coefficient as x sort(α) by constructing explicit bijections on reduced
words.

Schur positivity was originally more challenging.



Stanley symmetric functions

Thm.[Edelman-Greene 1987] Gw is symmetric and has Schur
positive expansion:

Gw =
∑

a∈R(w)
FDes(a) =

∑
λ

aλ,w sλ, aλ,w ∈ N.

Cor. |R(w)| =
∑
λ aλ,w f λ where f λ is the number of standard

tableaux of shape λ.

Nice cases.
1. If w = [n, n − 1, . . . , 1] = w0 then Gw = sδ where δ is the

staircase shape with n − 1 rows, hence #R(w0) = f δ.

2. Gw = sλ(w) iff w is 2143-avoiding iff w is vexillary .



Edelman-Greene Correspondence

Thm.[Edelman-Greene 1987] There exists an injective map from
R(w) to pairs of tableaux (P,Q) of the same shape where P is
row and column strict and Q is standard. For each P every single
standard tableaux of the same shape occurs as Q in the image.

Algorithm. Edelman-Greene insertion is a variation on RSK. The
only difference is when inserting i into a row with i and i + 1
already, skip that row and insert i + 1 into the next row.

Example. For 1343 ∈ R([2, 1, 5, 4, 3]),

1 → 1 3 → 1 3 4 → 4
1 3 4

.



Edelman-Greene Correspondence

word P Q Des(Q)
1343 4

1 3 4
4
1 2 3

{3}

1434 4
1 3 4

3
1 2 4

{2}

4134 4
1 3 4

2
1 3 4

{1}

3413 3 4
1 3

3 4
1 2

{2}

3143 3 4
1 3

2 4
1 3

{1, 3}



Edelman-Greene Correspondence

word P Q Des(Q)
4314 4

3
1 4

3
2
1 4

{1, 2}

4341 4
3
1 4

4
2
1 3

{1, 3}

3431 4
3
1 4

4
3
1 2

{2, 3}

Observe. If a maps to (P,Q) under Edelman-Greene insertion,
then Des(a) = Des(Q).
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3
2
1 4
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3
1 4

4
2
1 3
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3
1 4

4
3
1 2

{2, 3}
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Properties of the Edelman-Greene Correspondence

Defn. The Coxeter-Knuth graph for w has vertices R(w) and two
words a1 · · · ap and b1 · · · bp are connected by an i-edge if they
differ only in positions i − 1, i , i + 1 and on those positions they are
of one of three forms
I Witnessed Commutation: k i j ↔ i k j with i < j < k.
I Witnessed Commutation: j k i ↔ j i k with i < j < k.
I Braid: i (i + 1)i = (i + 1) i (i + 1).

Example. Consider the Coxeter-Knuth graph for [2, 1, 5, 4, 3]



Properties of the Edelman-Greene Correspondence

Outline of the proof that the Stanley symmetric functions are
Schur positive:

Thm.[Edelman-Greene 1987]

1. Two words a,b ∈ R(w) have the same P-tableau if and only if
they are in the same component of the Coxeter-Knuth graph
for w .

2. If EG(a) = (P,Q) and Q′ is another standard tableau of the
same shape as Q, then b = EG−1(P,Q′) is Coxeter-Knuth
equivalent to a.

3. If EG(a) = (P,Q), then Des(a) = Des(Q).



All Coxeter-Knuth Graphs for Length 6 Words



Coxeter-Knuth Graphs ≈ Dual Equivalence Graphs

Defn. The Coxeter-Knuth graph for w has V = R(w) and two
reduced words are connected by an edge labeled i if they agree in
all positions except for a single Coxeter-Knuth relation starting in
position i .

Defn. (Assaf, 2008) Dual equivalence graphs are graphs with
labeled edges whose connected components are isomorphic to the
graph on standard tableaux of a fixed partition shape with an edge
labeled i connecting any two vertices which differ by a
transposition (i,i+1) or (i+1,i+2) with the third number on a
diagonal in between the transposing pair.



Coxeter-Knuth Graphs and Dual Equivalence

Thm. The Coxeter-Knuth graphs in type A are dual equivalence
graphs and the isomorphism is given by the Q tableaux in
Edelman-Greene insertion. Furthermore, descent sets are preserved.

In type A, this is a nice corollary of (Roberts, 2014) +
(Hamaker-Young, 2014).

Thm.(Chmutov, 2013+) Stembridge’s A-molecules are dual
equivalence graphs and the edge labeling comes from labeling the
Coxeter graph’s edges consecutively.



Transition Equation

Notation. Let 1×w = [1,w1 + 1,w2 + 1, . . . ,wn + 1]. There is a
bijection from R(w) to R(1× w) that preserves descent sets, so
Gw = G1×w .

Thm.[Lascoux-Schützenberger] If w is vexillary, then Gw = sλ(w).
Otherwise, let (r < s) be the lexicographic largest pair of values
inverted in w , then

Gw =
∑

Gw ′

where the sum is over all w ′ such that inv(w) = inv(w ′) and
w ′ = tir trsw with 0 < i < r . Call this set T (w). In the case T (w)
is empty, replace w by 1× w .

Example. If w = [6, 3, 2, 7, 4, 5, 1], then r = 5, s = 7

G[6,3,2,7,4,5,1] = G[6,3,5,2,4,7,1] + G[6,5,2,3,4,7,1]

So, T (w) = {[6, 3, 5, 2, 4, 7, 1], [6, 5, 2, 3, 4, 7, 1]}.
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Transition Tree

We can make a tree starting with w as the root and the children of
a node v will be the permutations in T (v) or the empty set if v is
vexillary (could keep going until v−1 has only 1 descent).

Example.
[3, 2, 1, 4, 6, 5]

|

[3, 2, 1, 5, 4, 6]

/ | \

[3, 2, 4, 1, 5, 6] [3, 4, 1, 2, 5, 6] [4, 2, 1, 3, 5, 6]



Transition Equation

Thm.[Lascoux-Schützenberger 1982] If w is vexillary, then
Gw = sλ(w). Otherwise,

Gw =
∑

Gw ′

where the sum is over all w ′ such that l(w) = l(w ′) and
w ′ = tir trsw with 0 < i < r . Call this set T (w). In the case T (w)
is empty, replace w by 1× w . This algorithm terminates.

Cor. If w is vexillary, #R(w) = f λ(w), otherwise

#R(w) =
∑

w ′∈T (w)
#R(w ′)



Transition Equation

Question. Is there a bijection from R(w) to ∪w ′∈T (w)R(w ′)
which preserves the descent set, Coxeter-Knuth classes and the Q
tableau of each reduced word?

A bijection preserving descent sets alone would prove the Stanley
symmetric functions are Schur positive provided we can show this
holds for vexillary permutations.



Little’s Bijection

Question. Is there a bijection from R(w) to ∪w ′∈T (w)R(w ′)
which preserves the descent set, Coxeter-Knuth classes and the Q
tableau?

Answer. Yes! It’s called Little’s bijection named for David Little
(Little, 2003) + (Hamaker-Young, 2014).

Thomas Lam’s Conjecture.(proved by Hamaker-Young, 2014)
Every reduced word for any permutation with the same Q tableau
is connected via Little bumps. Every communication class under
Little bumps contains a unique reduced word for a unique minimal
inverse Grassmannian permutation.



The Little Bump Algorithm

Given a reduced word, there is an associated reduced wiring
diagram. If removing a crossing leaves another reduced wiring
diagram, that crossing is a candidate to initiate a Little bump by
pushing it down. Pushing down means reduce the corresponding
letter in the word by 1.
I Check if the resulting word is reduced. If so, stop and return

the new word.
I Otherwise, find the other point where the same two wires

cross, and push that crossing down in the same direction.
Repeat previous step.

Little Bijection. Initiate a Little bump at the crossing (r , s)
corresponding to the lex largest inversion.



The Algorithm in Pictures
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Reduced words of permutations

Review of Main Questions Today.
1. How can one count the number of reduced words of a

permutation?

2. What sort of structure does this set have?

3. How does this relate to SYM and QSYM?



Review Reduced words of permutations

Main Questions Today.
1. How can one count the number of reduced words of a

permutation? Answer: Three ways: partition words by last
letter, use Edelman-Greene tableaux, use the transition
equations.

2. What sort of structure does this set have? Answer:
Coxeter-Knuth graphs, Edelman-Greene correspondance, Little
bumps and bijections.

3. How does this relate to SYM and QSYM? Answer: Stanley
symmetric functions.



Curious Application of the Little Bijection

Thm.(Macdonald 1991, Fomin-Stanley 1994, Young 2014) For
w0 = [n, n − 1, . . . , 2, 1],

∑
a1...ap∈R(w0)

a1a2 · · · ap =
(

n
2

)
!

Thm.(Young 2014) There exists an algorithm based on the Little
bijection to choose a reduced word a = a1 . . . ap ∈ R(w0) with
probability distribution

P(a) = a1 · · · a2 · · · ap(
n
2

)
!

Compare to “Random Sorting Networks” by
Angel-Holroyd-Romik-Virag 2007.



Open Problem

Thm.(Macdonald 1991, Fomin-Stanley 1994) For any
permutation w of length p∑

a1...ap∈R(w)
a1a2 · · · ap = p! ·Sw (1, 1, . . . , 1)

where Sw (x1, . . . , xn) is the Schubert polynomial for w .

Open Problem. Find a bijective proof.



Vexillary Permutations

Def. A permutation is vexillary iff Gw = sλ(w) iff w is
2143-avoiding.

Properties.
I Schubert polynomial is a flagged Schur function (Wachs).
I Kazhdan-Lusztig polynomials have a combinatorial formula

(Lascoux-Schützenberger).
I Nice enumeration, the same as 1234-avoiding permutations

(Gessel,West).
I Easy to find a uniformly random reduced expression using

Edelman-Greene correspondence and the hook-walk algorithm
(Greene-Nijenhuis-Wilf).



Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff Gw =
∑

aλ,w sλ and∑
aλ,w ≤ k.

Example. G[2,1,4,3,6,5] = S(3) + 2S(2,1) + S(1,1,1)
so [2, 1, 4, 3, 6, 5] is 4-vexillary, but not 3-vexillary.



Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff Gw =
∑

aλ,w sλ and∑
aλ,w ≤ k.

Thm. (Billey-Pawlowski) A permutation w is k-vexillary iff w
avoids a finite set of patterns Vk for all k ∈ N.

k = 1 V1 = {2143},
k = 2 |V2| = 35, all in S5 ∪ S6 ∪ S7 ∪ S8
k = 3 |V3| = 91, all in S5 ∪ S6 ∪ S7 ∪ S8
k = 4 |V4| = 2346, all in S5 ∪ · · · ∪ S12
(k = 4 case required help from Michael Albert)



Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff Gw =
∑

aλ,w sλ and∑
aλ,w ≤ k.

Properties.
I 2-vex perms have easy expansion: Gw = sλ(w) + sλ(w−1)′ .
I 3-vex perms are multiplicity free: Gw = sλ(w) + sµ + sλ(w−1)′

for some µ between first and second shape in dominance
order.

I 3-vex perms have a nice essential set.



Outline of Proof

Thm. (Billey-Pawlowski) A permutation w is k-vexillary iff w
avoids a finite set of patterns Vk for all k ∈ N.

Proof.
1. (James-Peel) Use generalized Specht modules SD for

D ∈ N× N.
2. (Kraśkiewicz, Reiner-Shimozono) For D(w)=diagram of

permutation w ,
SD(w) =

⊕
(Sλ)aλ,w .

3. Compare Lascoux-Schützenberger transition tree and
James-Peel moves.

4. If w contains v as a pattern, then the James-Peel moves used
to expand SD(v) into irreducibles will also apply to D(w) in a
way that respects shape inclusion and multiplicity.



Another permutation filtration

Def. A permutation w is multiplicity free if Gw has a multiplicity
free Schur expansion.

Def. A permutation w is k-multiplicity bounded if 〈Gw , Sλ〉 ≤ k
for all partitions λ.

Cor. If w is k-multiplicity bounded and w contains v as a pattern,
then v is k-multiplicity bounded for all k.



Motivation

Let D ⊂ N× N. Let SD =
⊕

(Sλ)cλ,D expanded into irreducibles.

In the Grassmannian Gr(k, n), consider the row spans of the
matrices

{(Ik |A) : A ∈ Mk×(n−k),Aij = 0 if (i , j) ∈ D}.

Let ΩD be the closure of this set in Gr(k, n). Let σD be the
cohomology class associated to this variety.

Liu’s Conjecture. The Schur expansion of σD =
∑

cλ,DSλ.

True for “forests” (Liu 2009), not true for permutation diagrams
(Pawlowski 2014).



Future Work

Conjecture.(Billey-Pawlowski) The multiplicity free permutations
are characterized by 198 patterns up through S11.

Question. What other properties of Stanley symmetric functions
are characterized by permutation pattern avoidance?
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