A \$1,884,500,000(CP) open problem relating Schur-positivity and F-positivity

Sara Billey University of Washington http://www.math.washington.edu/~billey/colombia/

> Cuarto Encuentro Colombiano de Combinatoria ECCO 2014

> > June 11, 2014

"What problems have you worked on and failed to solve?"

Lenore Cowen (around 2000)

Review of SYM and QSYM notation

Open Problem: Plethysm of Schur Functions

Motivation: P vs NP

One New Approach using QSYM: Loehr-Warrington Theorem

Overview

SYM **QSYM** nice bases: e_{λ} , h_{λ} , m_{λ} , p_{λ} , s_{λ} nice bases: $M_{\alpha}, F_{\alpha}, \mathfrak{S}_{\alpha}^{*}, \mathcal{S}_{\alpha}, N_{\alpha}$ indexed by partitions indexed by compositions rep theory of S_n and GL_n rep theory of 0-Hecke algebra $m_{\lambda} = \sum_{sort(\alpha)=\lambda} M_{\alpha}$ $F_{\alpha} = \sum_{\beta \prec \alpha} M_{\beta}$ $s_{\lambda} = \sum_{\mu} K_{\lambda,\mu} m_{\mu}$ $s_{\lambda} = \sum_{T \in SYT(\lambda)} F_{D(T)}$

Background on Plethysm

Defn. Given two symmetric functions $f(x_1, x_2, ...)$ and $g(x_1, x_2, ...) = x^a + x^b + x^c + ...$ define the *plethysm* of f and g to be the function

$$f[g] = f(x^a, x^b, x^c, \dots).$$

Then, f[g] is again a symmetric function.

Example. Expand $h_2[e_2(X)]$ on $X = \{x_1, x_2, x_3\}$

$$h_2[e_2(x_1, x_2, x_3)] = h_2[x_1x_2 + x_1x_3 + x_2x_3]$$

= $h_2[x_1x_2, x_1x_3, x_2x_3]$

 $= (x_1x_2)^2 + (x_1x_3)^2 + (x_2x_3)^2 + x_1^2x_2x_3 + x_1x_2^2x_3 + x_1x_2x_3^2$

$$= s_{(2,2)}(x_1, x_2, x_3).$$

Computing Plethysm with Sage

0	Help		Proje	cts	Ø	Matri	ces	×																				
B	Files	0	Rece	nt	0	lew		Log	Q	×		sage.i	matrix	.pract	ice.sa	gews			ж									
ÞR	tun 🚺	Stop		Rest	art	Ð	0	Θ	5	C	7			Q	^	~	≓	₿	А	Α	4	₽		🖹 Save				
49 50 51 52 53 54 55	Sym = s = e = h = s[2] s[1]	= Sym.s Sym.s Sym.c Sym.c .plet , 1,	nmeti schui eleme compi thysr 1, 1	ricF r() enta: lete n(s[] L] +	unct ry() () 1,1] s[2	ions) , 2]	(QQ)																					
56 57 58	s[2] s[4	.plet , 2]	thysi + s	n(s[[6]	3])																							
60 61	s[2].plethysm(s[4]) s[4, 4] + s[6, 2] + s[8]																											
62 63 64	s[2] s[6	.plet , 4]	thysi + s	n(s[[8,]	5]) 2] +	s[1	0]																					
65 66 67	s[2] s[3	.plet , 3,	hysi 1, 1	n(s[] +	3,1] s[4) , 2,	2]	+ s[4, 3,	1] +	s[4	1, 4]	+ s	[5,	1, 1	, 1]	+ s	(5, 2	2, 1] +	s[6,	2]						
68 69																												
70	1ate: s_{3} 1} -{5, ,2,1 ,1,1 + (2,2) 1} 6,1	x(s[2 3,3,3 + 3s_ ,3,2, 1} + 1,1} 4s_{5} } + 8 + 17s ,1,1,	2,2] 3,3,2 4,4 2,2, 4s_ + 2s 5,5,5 8s_{6} 1}	.ple 2,2} 1,3, 1,1 (5,4 (5,4) 5,1} 5,3, ,4,4 + 9s	+ s 2,2, 3,1 5,2 + s 3,3, 2} {6,	m(s[_{4, l} + s_{5, ,1,1 _{6, l} + + 2s 5,2,	3,1] 3,3, 5s_ ,3,3 ,1} ,1,1 2,2, 6s_ _{6, 1,1}	<pre>)) 2,2, {4,4 ,1,1 + 14 } + 2,2, {6,4 5,1, + 1</pre>	1,1} + ,3,3,1 ,1,1,1 s_{5,4 9s_{5, 2} + s ,2,1,1 1,1,1, 2s {6,	+ s_{ 1,1} + 4,3,2 5,2, 5_{6, 1,1,1 1} + 6,2,	4,3, + 2s 3s_+ ,1,1 2,1, 3,2, } + 13s 2} +	,3,3, 5_{4, (5,3, 1} + ,1} + 1,1, 11s_ 5_{6, + 10s}	1,1, 4,3, 3,2, 10s_ 2s_ 1,1, {6,4 5,2, 5 {6,	1} + 3,2} 1,1, {5,4 {5,5 1} + ,2,2 1,1, 6,3,	2s_ + s 1} + ,3,2 ,2,2 3s_ ,1,1 1} + 1} +	{4,3, _{4,4,5s_{ ,2} + {6,3, } + 1 18s_ 6s {	,3,3 1,4, [5,3] + 12: + 6s ,2,2 [1]s_ _{6,5}	,2,1) 1,1,1, ,3,2, s_{5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	+ 2,1 4,3 5,3, 1} 2,2 2,1}	s_{4 + 2 } + ,3,1 1,1, + 4s ,2} + 2 {7,2	,3,3 s_{4 3s_{ } + 1} + _{6, + 17 5s_{ ,2,2	,3,3 ,4,4 5,3 7s_ 16s 3,2 s_{ 6,5 ,1,	3} + 4,2, ,3,3 (5,4 5,4 ,2,2 5,4, ,3,1 1,1}	s_{4 1,1} ,1,1] ,4,1, ,5,3, ,1} + 3,1,1 ,1} +	+,4,2 + 4s + 5 1,1} - 3s_ - 3s_ - 21s {7,2	,2,1, _{4,4 s_{5, + 13 + 9s {6,3, + 31s _{6,5} ,2,2,	1,1, ,4,2 3,3, 35_{5, 3,1, 5_{6, 5,3,2 2,1	,1} + 2,2} 3,2} 5,4,4 ,5,3, ,1,1, ,4,3,2 2} + + s

Open Problem

.

Fact. For any two partitions μ , ν , the plethysm $s_{\mu}[s_{\nu}]$ has a Schur positive expansion.

Reason. $s_{\mu}[s_{\nu}]$ is the Frobenius characteristic of an S_{ab} representation if $\mu \vdash a$ and $\nu \vdash b$.

Open Problem. Find a combinatorial/optimal formula for the coefficients $d_{\mu,\nu}^{\lambda}$ in the expansion

$$s_\mu[s_
u] = \sum_\lambda d^\lambda_{\mu,
u} s_\lambda$$

Special Case of Plethysm

Thm.(Thrall 1942) For $X = \{x_1, x_2, ...\}$

$$s_{(2)}[s_{(n)}(X)] = h_2[h_n(X)] = \sum_{k=0}^{\lfloor n/2 \rfloor} s_{(2n-2k,2k)}(X)$$

$$\begin{split} s_{(2)}[s_{(3)}] &= s_6 + s_{4,2} \\ s_{(2)}[s_{(4)}] &= s_8 + s_{6,2} + s_{4,4} \\ s_{(2)}[s_{(5)}] &= s_{10} + s_{8,2} + s_{6,4} \end{split}$$

 ${\bf P}=$ set of all "yes/no" questions which can be decided in polynomial time depending on the input size.

 ${\bf NP}=$ set of all "yes/no" questions for which one can test a proposed solution in polynomial time depending on the input size.

 $#\mathbf{P} = \text{set of all questions of the form "How many solutions does X have?" where X is in$ **NP**.

- 1. Does a graph G have a planar embedding? $\in \mathbf{P}$ (Kuratowski 1930, Hopcroft-Tarjan 1974)
- Does G have a 3-coloring? ∈ NP (Garey-Johnson-Stockmeyer 1976)
- 3. How many k-colorings does G have for $k = 1, 2, 3, \ldots$? $\in \#\mathbf{P}$
- 4. What are the coefficients of the chromatic polynomial? (Jaeger-Vertifan-Welsh 1990)

 ${\bf P}=$ set of all "yes/no" questions which can be decided in polynomial time depending on the input size.

 $\ensuremath{\textbf{NP}}\xspace =$ set of all "yes/no" questions for which one can test a proposed solution in polynomial time depending on the input size.

 $#\mathbf{P} = \text{set of all questions of the form "How many solutions does X have?" where X is in$ **NP**.

- 1. Does a permutation $w \in S_n$ contain another $v \in S_k$? (Bose-Buss-Lubiw, 1998)
- 2. How many instances of the permutation $v \in S_k$ does $w \in S_n$ contain? (Bose-Buss-Lubiw, 1998)
- 3. Does a permutation $w \in S_n$ contain a fixed $v \in S_k$ (Guillemot-Marx, 2013)

 ${\bf P}=$ set of all questions which can be decided in polynomial time depending on the input size.

NP = set of all questions for which one can test a proposed solution in polynomial time depending on the input size.

 $#\mathbf{P} = \text{set of all questions of the form "How many solutions does X have?" where X is in$ **NP**.

- 1. What is the determinant of an $n \times n$ matrix? (Williams 2012, Cohn-Umans 2013)
- 2. What is the permanent of an $n \times n$ matrix? (Valiant 1979)

 ${\bf P}=$ set of all questions which can be decided in polynomial time depending on the input size.

NP = set of all questions for which one can test a proposed solution in polynomial time depending on the input size.

 $#\mathbf{P} = \text{set of all questions of the form "How many solutions does X have?" where X is in$ **NP**.

Open. Does $\mathbf{P} = \mathbf{NP}$? Does $\mathbf{NP} = \#\mathbf{P}$? Does $\mathbf{P} = \#\mathbf{P}$?

Clay Millennium Prize:\$1,000,000 in US dollars for "P vs NP" problem.

Mulmuley-Sohoni (2001-present) approach to " $P \neq NP$ ":

- 1. Homogeneous degree n polynomials form a vector space of dimension N with a GL_N action, in addition to a GL_n action.
- 2. The determinant of an $n \times n$ matrix is a homogeneous polynomial of degree n^2 which is computable in $O(n^3)$ time, perhaps $O(n^{2+\epsilon})$ (Cohn-Kleinberg-Szegedy-Umans 2005)
- 3. The permanent of an $n \times n$ matrix is a homogeneous polynomial degree n^2 . Its computation is a #P-complete problem (Valiant, 1979a).
- 4. Every formula f of size u can be written as a determinant of some $k \times k$ matrix M_f with entries depending linearly on the original inputs where $k \leq 2u$. (Valiant, 1979b)
- 5. Use GL_N representation theory to study the orbit of the permanent vs determinant. In particular, they relate it to decomposing $V^{\mu}(V^{\nu})$ where V^{μ} , V^{ν} are irreducible GL_N reps.

Plethysm and QSYM

Thm.(Loehr-Warrington 2012) For any two partitions μ, ν

$$s_{\mu}[s_{\nu}(X)] = \sum_{A \in S_{a,b}(\mu,\nu)} F_{Des(rw(A)^{-1})}.$$

where $S_{a,b}(\mu,\nu)$ is a set of $a \times b$ -matrices with positive integer entries and $Des(rw(A)^{-1})$ is the descent set of a permutation associated to A.

$$s_{(2)}[s_{(3)}] = s_{(4,2)} + s_{(6)} = F_{[1,2,3]} + F_{[1,3,2]} + F_{[1,4,1]} + F_{[2,2,2]} + F_{[2,3,1]} + F_{[2,4]} + F_{[3,2,1]} + F_{[3,3]} + F_{[4,2]} + F_{[6]}$$

The plethysm $s_{\mu}[s_{\nu}]$ is the generating function for column strict tableaux with entries which are column strict tableaux.

For $\mu = (2,2)$ and $\nu = (3,2,1)$, such a tableau could be

The weight of such a tableau is the product of the weights of each entry. So $wt(V) = x^{5}x^{5}x^{7}x^{V} = x_{1}^{4}x_{2}^{8}x_{3}^{5}x_{4}^{4}x_{5}x_{6}x_{7}$.

 $SSYT(\nu) =$ set of column strict (SemiStandard Young) Tableaux of shape ν

If ν is a fixed partition shape, then we can identify $T \in SSYT(\nu)$ with its (Spanish) *reading word*.

$$T = \begin{bmatrix} 6 \\ 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \longrightarrow rw(T) = 623112$$

 $\mathcal{W}(\nu) = \{ \mathsf{rw}(T) \mid T \in \mathsf{SSYT}(\nu) \}$ ordered lexicographically

For
$$\mu = (2,2)$$
 and $\nu = (3,2,1)$,

maps to

 $SSYT_{\mathcal{W}(\nu)}(\mu) = \text{set of all } SSYT(\mu) \text{ with entries in } \mathcal{W}(\nu)$

For
$$\mu = (2, 2)$$
 and $\nu = (3, 2, 1)$,

maps to

maps to

$$V'' = \begin{pmatrix} 6 & 3 & 3 & 2 & 2 & 2 \\ 7 & 3 & 5 & 2 & 4 & 4 \\ 4 & 2 & 3 & 1 & 1 & 2 \\ 4 & 2 & 3 & 1 & 1 & 2 \end{pmatrix}$$

 $M(\mu, \nu) =$ matrices obtained from $SSYT(\mu)$ with entries in $\mathcal{W}(\nu)$.

Recap

 $M(\mu, \nu)$ = matrices obtained from $SSYT(\mu)$ with entries in $W(\nu)$.

Lemma. (L-W)
$$s_{\mu}[s_{
u}] = \sum_{A \in \mathcal{M}(\mu,
u)} wt(A)$$

where $wt(A) = \prod_{i,j} x_{A(i,j)}$.

That's a big sum of monomials! How do we collect terms?

Which basis would give us the most compression while being reasonably easy to prove?

False Start. Standardize each matrix in $M(\mu, \nu)$ by standardizing the reading word of the matrix in the usual Spanish reading order.

If
$$\mu = (2)$$
 and $\nu = (2, 1)$,

$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 211 & 211 \\ 211 & 211 \end{bmatrix} \longrightarrow \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 5 & 1 & 2 \\ 6 & 3 & 4 \end{pmatrix}$$
 If $\mu = (1, 1)$ and $\nu = (2, 1)$,

False Start. Standardize each matrix in $M(\mu, \nu)$ by standardizing the reading word of the matrix in the usual Spanish reading order.

Problem. That does not preserve the column strict property on tableaux containing tableaux.

Try again. What should happen on small cases ? $\begin{bmatrix}
2 & 1 & 2 \\
1 & 1 & 1
\end{bmatrix} \longrightarrow \begin{pmatrix}
2 & 1 & 1 \\
2 & 1 & 1
\end{pmatrix} \longrightarrow \begin{pmatrix}
5 & * & * \\
6 & * & *
\end{pmatrix} \longrightarrow \begin{bmatrix}
5 & 6 \\
* & *
\end{bmatrix}$

 $M_{a,b} = \text{all } a \times b \text{ matrices with entries in } \mathbb{P} = \text{positive matrices}$ $S_{a,b} \subset M_{a,b}$, entries are exactly $\{1, 2, \dots, ab\} = \text{standard matrices}$

Given a matrix $A \in S_{a,b}$, define the *reading word* rw(A) in a new way: read down the last column, this becomes the last *a* letters of the word. Next read the second to last column, in the order given by the last column, this becomes the second to last *a* letters of the word, etc.

$$A = \begin{pmatrix} 8 & 7 & 2 & \underline{10} \\ 6 & 1 & 9 & 4 \\ \underline{12} & 5 & \underline{11} & 3 \end{pmatrix} \in S_{3,4} \quad rw(A) = 6\,\underline{12}\,8.7\,1\,5.\,\underline{11}\,9\,2.\,\underline{10}\,4\,3$$

If $rw(B) = 4 \ \underline{12} \ 8. \ 6 \ 9 \ \underline{10}$. 5 2 7. 3 $\underline{11} \ 1$, what is $B \in S_{3,4}$?

Given a matrix $M \in M_{a,b}$, define the *standardization* to be S(M) = (std(M), sort(M)) where std(M) is given by the algorithm:

▶ For
$$k \ge 0$$
, let $N(k) = \#\{M_{i,j} \le k\}$. $N(0) = 0$, $N(\infty) = ab$.

▶ For each i > 0, $L_i = \{N(i-1) + 1, N(i-1) + 2, ..., N(i)\}$.

Step 1: Scan the rightmost column of M from bottom to top, replace each i as it is encountered by the largest unused value in L_i .

Step j: For each j from b - 1 down to 1, scan column j in the reverse order determined by the values in column j + 1 of std(M), replace each i as it is encountered by the largest unused value in L_i .

$$M = \begin{pmatrix} 1 & 1 & 3 & 3 & 5 \\ 1 & 2 & 2 & 2 & 4 \\ 2 & 2 & 3 & 3 & 3 \end{pmatrix} \quad std(M) = \begin{pmatrix} 1 & 3 & 10 & 12 & 15 \\ 2 & 5 & 7 & 8 & 14 \\ 4 & 6 & 9 & 11 & 13 \end{pmatrix},$$

sort(M) = 11122223333345.

Plethysm and QSYM

Thm.(Loehr-Warrington 2012) For any two partitions μ, ν

$$s_{\mu}[s_{\nu}(X)] = \sum_{A \in \mathcal{M}(\mu,\nu)} wt(A) = \sum_{A \in S_{a,b}(\mu,\nu)} F_{Des(rw(A)^{-1})}(X)$$

where $S_{a,b}(\mu,\nu)$ is the set of standard $a \times b$ -matrices which respect the conditions determined by $SSYT_{W(\nu)}(\mu)$ and $Des(rw(A)^{-1})$ is the descent set of the reading word permutation associated to A.

Bijective Proof. Three things to check:

- The map S taking M ∈ M_{a,b} to (std(M), sort(M)) is invertible.
- The sequence sort(M) is compatible with Des(rw(std(M))⁻¹).
- 3. The map std on $M_{a,b}$ maps $M(\mu, \nu)$ into $S_{a,b}(\mu, \nu)$.

Plethysm and QSYM

Thm.(Loehr-Warrington 2012) For any two partitions μ, ν $s_{\mu}[s_{\nu}(X)] = \sum_{A \in S_{a,b}(\mu,\nu)} F_{Des(rw(A)^{-1})}.$

Example.

$$s_{(2)}[s_{(3)}] = F_{[3,3]} + F_{[2,2,2]} + F_{[2,4]} + F_{[2,3,1]} + F_{[4,2]} + F_{[6]} + F_{[3,2,1]} + F_{[1,2,3]} + F_{[1,4,1]} + F_{[1,3,2]}$$

A	$\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$	$\begin{bmatrix}1&2&4\\&3&5&6\end{bmatrix}$	$\begin{bmatrix}125\\346\end{bmatrix}$	$\begin{bmatrix} 1 \ 2 \ 6 \\ 3 \ 4 \ 5 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 6 \end{bmatrix}$
rw(A)	142536	132546 222	$132456 \\ 24$	134265 231	$123546 \\ 42$
A	$\begin{bmatrix} 1 3 5 \\ 2 4 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 & 6 \\ 2 & 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 4 5 \\ 2 3 6 \end{bmatrix}$	$\begin{bmatrix} 1 4 6 \\ 2 3 5 \end{bmatrix}$	$\begin{bmatrix} 1 5 6 \\ 2 3 4 \end{bmatrix}$
$\operatorname{rw}(A)$	$123456 \\ 6$	$124365 \\ 321$	$214356 \\ 123$	$213465 \\ 141$	$213564 \\ 132$

Open Problem. Expand $s_{\mu}[s_{\nu}(X)]$ in Schur basis and relate back to "P vs NP".

Schur positive expansions

Recently Established Methods.

- 1. Use Dual Equivalence Graphs. (Assaf '08-'13, Roberts '13-'14)
- 2. Flip F_{α} to s_{α} . (Egge-Loehr-Warrington 2010)
- 3. Find a quasi-Schur expansion: $s_{\lambda} = \sum_{\alpha:sort(\alpha)=\lambda} S_{\alpha}$. (Haglund-Luoto-Mason-vanWilligenburg 2011, book 2013)

High level goals

- 1. Develop intuition for some of the tools in algebraic combinatorics.
- 2. Build up vocabulary to introduce some important open problems and approaches to attack them.
- 3. Inspire you to learn more about quasisymmetric functions and find more applications.

¡Muchas Gracias!