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Quote

“What problems have you worked on and failed to solve?”

Lenore Cowen (around 2000)



Outline

Review of SYM and QSYM notation

Open Problem: Plethysm of Schur Functions

Motivation: P vs NP

One New Approach using QSYM: Loehr-Warrington Theorem



Overview

SYM QSYM
nice bases:eλ, hλ,mλ, pλ, sλ nice bases:Mα,Fα,S∗α,Sα,Nα

indexed by partitions indexed by compositions

rep theory of Sn and GLn rep theory of 0-Hecke algebra

mλ =
∑

sort(α)=λ Mα Fα =
∑
β�α Mβ

sλ =
∑
µ Kλ,µmµ sλ =

∑
T∈SYT (λ) FD(T )



Background on Plethysm
Defn. Given two symmetric functions f (x1, x2, . . . ) and
g(x1, x2, . . . ) = xa + xb + x c + . . . define the plethysm of f and g
to be the function

f [g ] = f (xa, xb, x c , . . . ).

Then, f [g ] is again a symmetric function.

Example. Expand h2[e2(X )] on X = {x1, x2, x3}

h2[e2(x1, x2, x3)] = h2[x1x2 + x1x3 + x2x3]
= h2[x1x2, x1x3, x2x3]

= (x1x2)2 + (x1x3)2 + (x2x3)2 + x2
1 x2x3 + x1x2

2 x3 + x1x2x2
3

= s(2,2)(x1, x2, x3).



Computing Plethysm with Sage



Open Problem

Fact. For any two partitions µ, ν, the plethysm sµ[sν ] has a Schur
positive expansion.

Reason. sµ[sν ] is the Frobenius characteristic of an Sab
representation if µ ` a and ν ` b.

Open Problem. Find a combinatorial/optimal formula for the
coefficients dλµ,ν in the expansion

sµ[sν ] =
∑
λ

dλµ,νsλ

.



Special Case of Plethysm

Thm.(Thrall 1942) For X = {x1, x2, . . . }

s(2)[s(n)(X )] = h2[hn(X )] =
bn/2c∑
k=0

s(2n−2k,2k)(X )

Examples.
s(2)[s(3)] = s6 + s4,2
s(2)[s(4)] = s8 + s6,2 + s4,4
s(2)[s(5)] = s10 + s8,2 + s6,4



Motivation
P = set of all “yes/no” questions which can be decided in
polynomial time depending on the input size.

NP = set of all “yes/no” questions for which one can test a
proposed solution in polynomial time depending on the input size.

#P = set of all questions of the form “How many solutions does
X have?” where X is in NP.

Examples.
1. Does a graph G have a planar embedding? ∈ P

(Kuratowski 1930, Hopcroft-Tarjan 1974)
2. Does G have a 3-coloring? ∈ NP

(Garey-Johnson-Stockmeyer 1976)
3. How many k-colorings does G have for k = 1, 2, 3, . . . ? ∈ #P
4. What are the coefficients of the chromatic polynomial?

(Jaeger-Vertifan-Welsh 1990)



Motivation
P = set of all “yes/no” questions which can be decided in
polynomial time depending on the input size.

NP = set of all “yes/no” questions for which one can test a
proposed solution in polynomial time depending on the input size.

#P = set of all questions of the form “How many solutions does
X have?” where X is in NP.

Examples.
1. Does a permutation w ∈ Sn contain another v ∈ Sk?

(Bose-Buss-Lubiw, 1998)
2. How many instances of the permutation v ∈ Sk does w ∈ Sn

contain? (Bose-Buss-Lubiw, 1998)
3. Does a permutation w ∈ Sn contain a fixed v ∈ Sk

(Guillemot-Marx, 2013)



Motivation

P = set of all questions which can be decided in polynomial time
depending on the input size.

NP = set of all questions for which one can test a proposed
solution in polynomial time depending on the input size.

#P = set of all questions of the form “How many solutions does
X have?” where X is in NP.

Examples.
1. What is the determinant of an n × n matrix?

(Williams 2012, Cohn-Umans 2013)
2. What is the permanent of an n × n matrix? (Valiant 1979)



Motivation

P = set of all questions which can be decided in polynomial time
depending on the input size.

NP = set of all questions for which one can test a proposed
solution in polynomial time depending on the input size.

#P = set of all questions of the form “How many solutions does
X have?” where X is in NP.

Open. Does P = NP? Does NP = #P? Does P = #P?

Clay Millennium Prize:$1,000,000 in US dollars for “P vs NP”
problem.



Motivation
Mulmuley-Sohoni (2001-present) approach to “P 6= NP”:

1. Homogeneous degree n polynomials form a vector space of
dimension N with a GLN action, in addition to a GLn action.

2. The determinant of an n × n matrix is a homogeneous
polynomial of degree n2 which is computable in O(n3) time,
perhaps O(n2+ε) (Cohn-Kleinberg-Szegedy-Umans 2005)

3. The permanent of an n × n matrix is a homogeneous
polynomial degree n2. Its computation is a #P-complete
problem (Valiant, 1979a).

4. Every formula f of size u can be written as a determinant of
some k × k matrix Mf with entries depending linearly on the
original inputs where k ≤ 2u. (Valiant, 1979b)

5. Use GLN representation theory to study the orbit of the
permanent vs determinant. In particular, they relate it to
decomposing V µ(V ν) where V µ,V ν are irreducible GLN reps.



Plethysm and QSYM

Thm.(Loehr-Warrington 2012) For any two partitions µ, ν

sµ[sν(X )] =
∑

A∈Sa,b(µ,ν)
FDes(rw(A)−1).

where Sa,b(µ, ν) is a set of a × b-matrices with positive integer
entries and Des(rw(A)−1) is the descent set of a permutation
associated to A.

Example.

s(2)[s(3)] = s(4,2) + s(6) =F[1,2,3] + F[1,3,2] + F[1,4,1] + F[2,2,2] + F[2,3,1]

+ F[2,4] + F[3,2,1] + F[3,3] + F[4,2] + F[6]



Concrete Notation

The plethysm sµ[sν ] is the generating function for column strict
tableaux with entries which are column strict tableaux.

For µ = (2, 2) and ν = (3, 2, 1), such a tableau could be

V =

T = 6
3 3
2 2 2

U = 7
3 5
2 4 4

S = 4
2 3
1 1 2

S = 4
2 3
1 1 2

The weight of such a tableau is the product of the weights of each
entry. So wt(V ) = xSxSxT xV = x4

1 x8
2 x5

3 x4
4 x5x6x7.



Concrete Notation

SSYT (ν) = set of column strict (SemiStandard Young) Tableaux
of shape ν

If ν is a fixed partition shape, then we can identify T ∈ SSYT (ν)
with its (Spanish) reading word .

T = 6
2 3
1 1 2

−→ rw(T ) = 623112

W(ν) = {rw(T ) | T ∈ SSYT (ν)} ordered lexicographically



Concrete Notation

For µ = (2, 2) and ν = (3, 2, 1),

V =

T = 6
3 3
2 2 2

U = 7
3 5
2 4 4

S = 4
2 3
1 1 2

S = 4
2 3
1 1 2

maps to

V ′ = 633222 735244
423112 423112

SSYTW(ν)(µ) = set of all SSYT (µ) with entries in W(ν)



Concrete Notation
For µ = (2, 2) and ν = (3, 2, 1),

V =

T = 6
3 3
2 2 2

U = 7
3 5
2 4 4

S = 4
2 3
1 1 2

S = 4
2 3
1 1 2

maps to

V ′ = 633222 735244
423112 423112

maps to

V ′′ =


6 3 3 2 2 2
7 3 5 2 4 4
4 2 3 1 1 2
4 2 3 1 1 2


M(µ, ν) = matrices obtained from SSYT (µ) with entries in W(ν).



Recap

M(µ, ν) = matrices obtained from SSYT (µ) with entries in W(ν).

Lemma. (L-W)
sµ[sν ] =

∑
A∈M(µ,ν)

wt(A)

where wt(A) =
∏

i ,j xA(i ,j).

That’s a big sum of monomials! How do we collect terms?

Which basis would give us the most compression while being
reasonably easy to prove?



Standardization of integer matrices

False Start. Standardize each matrix in M(µ, ν) by standardizing
the reading word of the matrix in the usual Spanish reading order.

If µ = (2) and ν = (2, 1),

2
1 1

2
1 1 −→ 211 211 −→

(
2 1 1
2 1 1

)
−→

(
5 1 2
6 3 4

)

If µ = (1, 1) and ν = (2, 1),

2
1 2
2
1 1

−→ 212
211 −→

(
2 1 2
2 1 1

)
−→

(
4 1 5
6 2 3

)
6∈ M(µ, ν)



Standardization of integer matrices
False Start. Standardize each matrix in M(µ, ν) by standardizing
the reading word of the matrix in the usual Spanish reading order.

Problem. That does not preserve the column strict property on
tableaux containing tableaux.

Try again. What should happen on small cases ?

2
1 1

2
1 1 −→

(
2 1 1
2 1 1

)
−→

(
5 ∗ ∗
6 ∗ ∗

)
−→ 5

∗ ∗
6
∗ ∗

2
1 2
2
1 1

−→
(

2 1 2
2 1 1

)
−→

(
5 ∗ 6
4 ∗ ∗

)
−→

5
∗ 6
4
∗ ∗

∗ = 2, 3



Standardization of integer matrices

Ma,b = all a × b matrices with entries in P= positive matrices
Sa,b ⊂ Ma,b, entries are exactly {1, 2, . . . , ab}=standard matrices

Given a matrix A ∈ Sa,b, define the reading word rw(A) in a new
way: read down the last column, this becomes the last a letters of
the word. Next read the second to last column, in the order given
by the last column, this becomes the second to last a letters of the
word, etc.

A =

 8 7 2 10
6 1 9 4

12 5 11 3

 ∈ S3,4 rw(A) = 6 12 8 . 7 1 5 . 11 9 2 . 10 4 3

If rw(B) = 4 12 8. 6 9 10. 5 2 7. 3 11 1, what is B ∈ S3,4?



Standardization of integer matrices
Given a matrix M ∈ Ma,b, define the standardization to be
S(M) = (std(M), sort(M)) where std(M) is given by the
algorithm:

I For k ≥ 0, let N(k) = #{Mi ,j ≤ k}. N(0) = 0, N(∞) = ab.
I For each i > 0, Li = {N(i − 1) + 1,N(i − 1) + 2, . . . ,N(i)}.

Step 1: Scan the rightmost column of M from bottom to top,
replace each i as it is encountered by the largest unused value in Li .

Step j: For each j from b − 1 down to 1, scan column j in the
reverse order determined by the values in column j + 1 of std(M),
replace each i as it is encountered by the largest unused value in Li .

M =

1 1 3 3 5
1 2 2 2 4
2 2 3 3 3

 std(M) =

1 3 10 12 15
2 5 7 8 14
4 6 9 11 13

 ,
sort(M) = 111222223333345.



Plethysm and QSYM

Thm.(Loehr-Warrington 2012) For any two partitions µ, ν

sµ[sν(X )] =
∑

A∈M(µ,ν)
wt(A) =

∑
A∈Sa,b(µ,ν)

FDes(rw(A)−1)(X )

where Sa,b(µ, ν) is the set of standard a× b-matrices which respect
the conditions determined by SSYTW(ν)(µ) and Des(rw(A)−1) is
the descent set of the reading word permutation associated to A.

Bijective Proof. Three things to check:
1. The map S taking M ∈ Ma,b to (std(M), sort(M)) is

invertible.
2. The sequence sort(M) is compatible with

Des(rw(std(M))−1).
3. The map std on Ma,b maps M(µ, ν) into Sa,b(µ, ν).



Plethysm and QSYM
Thm.(Loehr-Warrington 2012) For any two partitions µ, ν

sµ[sν(X )] =
∑

A∈Sa,b(µ,ν)
FDes(rw(A)−1).

Example.

s(2)[s(3)] =F[3,3] + F[2,2,2] + F[2,4] + F[2,3,1] + F[4,2]

+ F[6] + F[3,2,1] + F[1,2,3] + F[1,4,1] + F[1,3,2]

Open Problem. Expand sµ[sν(X )] in Schur basis and relate
back to “P vs NP”.



Schur positive expansions

Recently Established Methods.
1. Use Dual Equivalence Graphs.

(Assaf ’08-’13, Roberts ’13-’14)
2. Flip Fα to sα.

(Egge-Loehr-Warrington 2010)
3. Find a quasi-Schur expansion: sλ =

∑
α:sort(α)=λ Sα.

(Haglund-Luoto-Mason-vanWilligenburg 2011, book 2013)



High level goals

1. Develop intuition for some of the tools in algebraic
combinatorics.

2. Build up vocabulary to introduce some important open
problems and approaches to attack them.

3. Inspire you to learn more about quasisymmetric functions and
find more applications.

¡Muchas Gracias!
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