PRACTICE PROBLEMS

SARA C. BILLEY

(1) If $w=[6,3,1,7,5,2,4]$, what is w^{-1} ? How would you denote these two permutations in each of the different ways to see a permutation?
(2) Recall the (Rothe) diagram of a permutation $w \in S_{n}$ is defined to be $D^{*}(w)=$ $\left\{(i, j): i<w(j)\right.$ and $\left.w^{-1}(i)>j\right\} \subset[n] \times[n]$ drawn in matrix coordinates. Define the code of w to be $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ where c_{j} is the number of elements in $D^{*}(w)$ in column j. List out the permutations in S_{n} in lexicographic order. Let $N(w)$ be the position of w in this list. Then

$$
N(w)=c_{1}(n-1)!+c_{2}(n-2)!+\ldots+c_{n-1} 1!.
$$

(3) Prove $\prod_{k=1}^{n-1}\left(1+x+x^{2}+\cdots+x^{k}\right)=\sum_{w \in S_{n}} x^{i n v(w)}$ where $\operatorname{inv}(w)$ is the number of inversions of w, or equivalently pairs $i<j$ such that $w_{i}>w_{j}$.
(4) Prove $\prod_{k=1}^{n-1}\left(1+x+x^{2}+\cdots+x^{k}\right)=\sum_{w \in S_{n}} x^{\operatorname{maj}(w)}$ where $\operatorname{maj}(w)$ is the sum of the number of the descents for w. For example $w=[6,3,1,7,5,2,4]$ has descent set $\{1,2,4\}$ so $\operatorname{maj}(w)=1+2+4=7$.
(5) If $\pi \in S_{n}$ maps to (P, Q) under RSK, then $\operatorname{Des}(\pi)=\operatorname{Des}(Q)$.
(6) Write out $s_{\mu}\left(x_{1}, x_{2}, x_{3}\right)$ for all partitions μ of size 4 and 5.
(7) Compute the number of standard tableaux of shape $(k, k-1, k-2, \ldots, 1)$ for some small values of k.
(8) Let T be a tree with n vertices. What is the coefficient of $m_{(2,1,1, \ldots, 1)}$ in the expansion of the chromatic symmetric function X_{T} ?
(9) Expand $s_{(4,2)}$ in fundamental quasisymmetric functions.
(10) Find a rule to multiply monomial quasisymmetric functions $M_{\alpha} M_{\beta}$ and expand in the basis of monomial quasi's again.
(11) Find a rule to multiply monomial quasisymmetric functions $F_{\alpha} F_{\beta}$ and expand in the basis of fundamental quasi's again.
(12) Expand the chromatic symmetric function of a graph G into fundamental quasisymmetric functions using acyclic orientations.

Author's address: University of Washington, Math Department, Box 354350, SeatTLE, WA 98195

E-mail address: billey@uw.edu

