
HOPF ALGEBRAS IN COMBINATORICS

DARIJ GRINBERG AND VICTOR REINER

Abstract. Certain Hopf algebras arise in combinatorics because they have bases naturally parametrized
by combinatorial objects (partitions, compositions, permutations, tableaux, graphs, trees, posets, polytopes,
etc). The rigidity in the structure of a Hopf algebra can lead to enlightening proofs, and many interesting

invariants of combinatorial objects turn out to be evaluations of Hopf morphisms.
These are lecture notes for Fall 2012 Math 8680 Topics in Combinatorics at the University of Minnesota

taught by the second author. The course was an attempt to focus on examples that we find interesting, but
which are hard to find fully explained currently in books or in one paper. Be warned that these notes are
highly idiosyncratic in choice of topics, and they steal heavily from the sources in the bibliography.
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1. What is a Hopf algebra?

The standard references are Abe [1] and Sweedler [76], and some other good ones are [15, 19, 41, 56]. A
reference which we discovered late, having a great deal of overlap with these notes is Hazewinkel, Gubareni,
and Kirichenko [29].

Let’s build up the definition of Hopf algebra structure bit-by-bit, starting with the more familiar definition
of algebras.

Warnings: Unless otherwise specified ...

• k here usually denotes a field, but sometimes we’ll want to take k = Z,
• all maps between k-modules are k-linear,
• all tensor products are over k, and
• 1 will denote the multiplicative identity in some ring like k or in some k-algebra, but also denote
the identity map on various spaces.

• The symbols ⊂ (for “subset”) and < (for “subgroup”) don’t imply properness (so Z ⊂ Z and Z < Z).
• The product of permutations a ∈ Sn and b ∈ Sn is defined by (ab)(i) = a(b(i)) for all i.
• Words over (or in) an alphabet I simply mean finite tuples of elements of a set I. It is custom-
ary to write such a word (a1, a2, . . . , ak) as a1a2 . . . ak when this is not likely to be confused for
multiplication.

Hopefully context will resolve some of the ambiguities.

1.1. Algebras.

Definition 1.1. An associative k-algebra A is a k-vector space with an associative operation A ⊗ A
m→ A,

and a unit k
u→ A sending 1 in k to the two-sided multiplicative identity element 1 in A. One can rephrase

this by saying that these diagrams commute:
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(1.2) A⊗ k
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// k⊗A

u⊗1
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A⊗A

m // A A⊗A
moo

where the maps A→ A⊗ k and A→ k⊗A are the isomorphisms sending a 7→ a⊗ 1 and a 7→ 1⊗ a.

Well-known examples of k-algebras are tensor and symmetric algebras, which we can think of as algebras
of words and multisets, respectively.

Example 1.2. The tensor algebra T (V ) =
⊕

n≥0 V
⊗n on a k-vector space V , say with k-basis {xi}i∈I , is an

associative k-algebra with a k-basis of decomposable tensors xi1 · · ·xik := xi1 ⊗ · · · ⊗ xik indexed by words
(i1, . . . , ik) in the alphabet I, and multiplication defined k-linearly by concatenation of words:

m(xi1 · · ·xik ⊗ xj1 · · ·xjℓ) := xi1 · · ·xikxj1 · · ·xjℓ .
Recall that in an algebra A, when one has a two-sided ideal J ⊂ A, meaning a k-linear subspace with

m(J ⊗A),m(A⊗ J) ⊂ J , then one can form a quotient algebra A/J .

Example 1.3. The symmetric algebra Sym(V ) =
⊕

n≥0 Sym
n(V ) is the quotient of T (V ) by the two-sided

ideal generated by all elements xy− yx with x, y in V . It can be identified with a (commutative) polynomial
algebra k[xi]i∈I , having a k-basis of (commutative) monomials xi1 · · ·xik as (i1, . . . , ik) runs through all
finite multisubsets of I, and with multiplication defined k-linearly via multiset union.

Topology and group theory give more examples.

Example 1.4. The cohomology algebra H∗(X ;k) =
⊕

i≥0H
i(X ;k) with coefficients in k for a topological

space X has an associative cup product. Its unit k = H∗(pt;k)
u→ H∗(X ;k) is induced from the unique

(continuous) map X → pt, where pt is a one-point space.

Example 1.5. For a groupG, the group algebra kG has k-basis {tg}g∈G and multiplication defined k-linearly
by tgth = tgh, and unit defined by u(1) = te, where e is the identity element of G.

1.2. Coalgebras. If we are to think of the multiplication A⊗A→ A in an algebra as putting together two
basis elements of A to get a sum of basis elements of A, then coalgebra structure should be thought of as
taking basis elements apart.

Definition 1.6. A co-associative coalgebra C is a k-vector space C with a comultiplication, that is, a k-linear

map C
∆→ C ⊗ C, and a counit C

ǫ→ k making commutative the diagrams as in (1.1), (1.2) but with all
arrows reversed:

(1.3) C ⊗ C ⊗ C

C ⊗ C

∆⊗1
88qqqqqqqqqq

C ⊗ C

1⊗∆
ffMMMMMMMMMM

C

∆

88qqqqqqqqqqqq

∆

ffMMMMMMMMMMMM
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(1.4) C ⊗ k // C k⊗ Coo

C ⊗ C

1⊗ǫ

OO

C
∆
oo

1

OO

∆
// C ⊗ C

ǫ⊗1

OO

Here the maps C ⊗ k → C and k⊗ C → C are the isomorphisms sending c⊗ 1 7→ c and 1⊗ c 7→ c.

One often uses the Sweedler notation

∆(c) =
∑

(c)

c1 ⊗ c2 =
∑

c1 ⊗ c2

to abbreviate formulas involving ∆. For example, commutativity of the left square in (1.4) asserts that∑
(c) c1ǫ(c2) = c.

Example 1.7. The homology H∗(X ;k) =
⊕

i≥0Hi(X ;k) for a topological space X is naturally a coalgebra:

the (continuous) diagonal embedding X → X ×X sending x 7→ (x, x) induces a coassociative map

H∗(X ;k) → H∗(X ×X ;k) ∼= H∗(X ;k)⊗H∗(X ;k)

in which the last isomorphism comes from the Künneth theorem with field coefficients k. As before, the

unique (continuous) map X → pt induces the counit H∗(X ;k)
ǫ→ H∗(pt;k) ∼= k.

1.3. Morphisms, tensor products, and bialgebras.

Definition 1.8. A morphism of algebras A
ϕ→ B makes these diagrams commute:

(1.5) A
ϕ // B

A⊗A

mA

OO

ϕ⊗ϕ // B ⊗B

mB

OO A
ϕ // B

k

uA

__???????? uB

??��������

Here the subscripts on mA,mB, uA, uB indicate for which algebra they are part of the structure– we will
occasionally use such conventions from now on.

Similarly a morphism of coalgebras is a k-linear map C
ϕ→ D making the reverse diagrams commute:

(1.6) C

∆C

��

ϕ // D

∆D

��
C ⊗ C

ϕ⊗ϕ // D ⊗D

C

ǫC
��?

??
??

??
?

ϕ // D

ǫD
����
��
��
��

k

Example 1.9. Continuous maps X
f→ Y of topological spaces induce algebra morphisms H∗(Y ;k) →

H∗(X ;k), and coalgebra morphisms H∗(X ;k) → H∗(Y ;k).

Definition 1.10. Given two k-algebras A,B, their tensor product A⊗B also becomes a k-algebra defining
the multiplication bilinearly via

m((a⊗ b)⊗ (a′ ⊗ b′)) := aa′ ⊗ bb′

or in other words mA⊗B is the composite map

A⊗B ⊗ A⊗B
1⊗T⊗1−→ A⊗A⊗B ⊗B

mA⊗mB−→ A⊗B

where T is the twist map B ⊗A→ A⊗B that sends b⊗ a 7→ a⊗ b.
Here we are omitting the topologist’s sign in the twist map which should be present for graded algebras

and coalgebras that come from cohomology and homology: for homogeneous elements a and b the topologist’s
twist map sends

(1.7) b⊗ a 7−→ (−1)deg(a) deg(b)a⊗ b.
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This means that most of our examples which we later call graded should actually be considered to live in
only even degrees, e.g. by artificially doubling their grading. We will ignore this issue, and hope that it
causes no confusion later!

The unit element of A⊗B is 1A ⊗ 1B, meaning that the unit map k
uA⊗B→ A⊗B is the composite

k −→ k⊗ k
uA⊗uB→ A⊗B.

Similarly, given two coalgebras C,D, one can make C ⊗D a coalgebra in which the comultiplication and
counit maps are the composites of

C ⊗D
∆C⊗∆D−→ C ⊗ C ⊗D ⊗D

1⊗T⊗1−→ C ⊗D ⊗ C ⊗D

and

C ⊗D
ǫC⊗ǫD−→ k⊗ k −→ k.

One of the first signs that these definitions interact nicely is the following straightforward proposition.

Proposition 1.11. When A is both a k-algebra and a k-coalgebra, the following are equivalent:

• (∆, ǫ) are morphisms for the algebra structure (m,u).
• (m,u) are morphisms for the coalgebra structure (∆, ǫ).
• These four diagrams commute:

(1.8)
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∆⊗∆
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ooo

ooo
oo

m
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33
33

33
33

33
33

A⊗A⊗A⊗A

1⊗T⊗1

��

A

∆

����
��
��
��
��
��
��
�

A⊗A⊗A⊗A

m⊗m ''OO
OOO

OOO
OOO

A⊗A

A⊗A
ǫ⊗ǫ //

m

��

k⊗ k

m

��
A

ǫ
// k

k
u //

∆

��

A

∆

��
k⊗ k

u⊗u
// A⊗A

k

u
��?

??
??

??
1 // k

A

ǫ

??�������

Definition 1.12. Call the k-vector space A a k-bialgebra if it is a k-algebra and k-coalgebra satisfying the
three equivalent conditions in Proposition 1.11.

Example 1.13. For a groupG, one can make the group algebra kG a coalgebra with counit kG
ǫ→ kmapping

tg 7→ 1 for all g in G, and with comultiplication kG
∆→ kG ⊗ kG given by ∆(tg) := tg ⊗ tg. Checking the

various diagrams in (1.8) commute is easy. For example, one can check the pentagonal diagram on each
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basis element tg ⊗ th:

tg ⊗ th
∆⊗∆

vvnnn
nnn

nnn
nnn

m

��6
66

66
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66
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66
66

6

tg ⊗ tg ⊗ th ⊗ th

1⊗T⊗1

��

tgh

∆

����
��
��
��
��
��
��
��

tg ⊗ th ⊗ tg ⊗ th

m⊗m
((PP

PPP
PPP

PPP
P

tgh ⊗ tgh

Remark 1.14. In fact, one can think of adding a bialgebra structure to a k-algebra A as a way of making
A-modules M,N have an A-module structure on their tensor product M ⊗ N : the algebra A ⊗ A already
acts naturally on M ⊗N , so one can let a in A act via ∆(a) in A⊗A. In the theory of group representations
over k, that is, kG-modules M , this is how one defines the diagonal action of G on M ⊗N , namely tg acts
as tg ⊗ tg.

Definition 1.15. An element x in a coalgebra for which ∆(x) = x⊗ x and ǫ(x) = 1 is called group-like.
An element x in a bialgebra for which ∆(x) = 1⊗ x+ x⊗ 1 is called primitive.

Example 1.16. The tensor algebra T (V ) =
⊕

n≥0 V
⊗n is a coalgebra, with counit ǫ equal to the identity

on V ⊗0 = k and the zero map on V ⊗n for n > 0, and with comultiplication defined to make the elements x
in V ⊗1 = V all primitive:

∆(x) := 1⊗ x+ x⊗ 1 for x ∈ V ⊗1.

Since the elements of V generate T (V ) as a k-algebra, and since T (V )⊗T (V ) is also an associative k-algebra,
the universal property of T (V ) as the free associative k-algebra on the generators V allows one to define

T (V )
∆→ T (V )⊗ T (V ) arbitrarily on V , and extend it as an algebra morphism.

It may not be obvious that this ∆ is coassociative, but one can note that

((1⊗∆) ◦∆) (x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = ((∆⊗ 1) ◦∆) (x)

for every x in V . Hence the two maps (1 ⊗ ∆) ◦ ∆ and (∆ ⊗ 1) ◦ ∆, considered as algebra morphisms
T (V ) → T (V )⊗ T (V )⊗ T (V ), must coincide on every element of T (V ) since they coincide on V . We leave
it as an exercise to check the map ǫ defined as above satisfies the counit axioms (1.4).

Here is a sample calculation in T (V ) when V has basis {x, y, z}:
∆(xyz) = ∆(x)∆(y)∆(z)

= (1 ⊗ x+ x⊗ 1)(1 ⊗ y + y ⊗ 1)(1⊗ z + z ⊗ 1)

= (1 ⊗ xy + x⊗ y + y ⊗ x+ xy ⊗ 1)(1⊗ z + z ⊗ 1)

= 1⊗ xyz + x⊗ yz + y ⊗ xz + z ⊗ xy

+ xy ⊗ z + xz ⊗ y + yz ⊗ x+ xyz ⊗ 1

This illustrates the idea that comultiplication “takes basis elements apart”. Here for any v1, v2, . . . , vn in V
one has

∆ (v1v2 · · · vn) =
∑

vj1 · · · vjr ⊗ vk1 · · · vkn−r

where the sum is over ordered pairs (j1, j2, . . . , jr) , (k1, k2, . . . , kn−r) of complementary subwords of the word
(1, 2, . . . , n). 1

Recall one can quotient a k-algebra A by a two-sided ideal J to obtain a quotient algebra A/J .

1More formally speaking, the sum is over all permutations (j1, j2, . . . , jr, k1, k2, . . . , kn−r) of (1, 2, . . . , n) satisfying j1 <
j2 < · · · < jr and k1 < k2 < · · · < kn−r .
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Definition 1.17. In a coalgebra C, a two-sided coideal is a k-linear subspace J ⊂ C for which

∆(J) ⊂ J ⊗ C + C ⊗ J

ǫ(J) = 0

The quotient space C/J then inherits a coalgebra structure. Similarly, in a bialgebra A, a subset J ⊂ A
which is both a two-sided ideal and two-sided coideal gives rise to a quotient bialgebra A/J .

Example 1.18. The symmetric algebra Sym(V ) was the quotient of T (V ) by the two-sided ideal J generated
by all commutators [x, y] = xy − yx for x, y in V . Note that x, y are primitive elements in T (V ), and the
following very reusable calculation shows that the commutator of two primitives is primitive:

(1.9)

∆[x, y] = ∆(xy − yx)

= (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)− (1⊗ y + y ⊗ 1)(1⊗ x+ x⊗ 1)

= 1⊗ xy − 1⊗ yx+ xy ⊗ 1− yx⊗ 1

+ x⊗ y + y ⊗ x− x⊗ y − y ⊗ x

= 1⊗ (xy − yx) + (xy − yx)⊗ 1

= 1⊗ [x, y] + [x, y]⊗ 1.

In particular, the commutators [x, y] have ∆[x, y] in J⊗T (V )+T (V )⊗J . They also satisfy ǫ([x, y]) = 0. Since
they are generators for J as a two-sided ideal, it is not hard to see this implies ∆(J) ⊂ J ⊗T (V )+T (V )⊗J ,
and ǫ(J) = 0. Thus J is also a two-sided coideal, and Sym(V ) = T (V )/J inherits a bialgebra structure.

In fact we will see in Section 3.1 that symmetric algebras are the universal example of bialgebras which
are graded, connected, commutative, cocommutative. But first we should define some of these concepts.

Definition 1.19. A graded k-vector space V is one with a k-vector space direct sum decomposition V =⊕
n≥0 Vn. Elements x in Vn are called homogeneous of degree n, or deg(x) = n. When we are working with

k = Z, we will always assume that graded Z-modules V =
⊕

n≥0 Vn have each Vn a free Z-module.
One endows tensor products V ⊗W of graded vector spaces V,W with graded vector space structure in

which (V ⊗W )n :=
⊕

i+j=n Vi ⊗Wj .

A k-linear map V
ϕ→ W between two graded k-vector spaces is called graded if ϕ(Vn) ⊂ Wn for all n.

Say that a k-algebra (coalgebra, bialgebra) is graded if it is a graded k-vector space and all of the relevant
structure maps (u, ǫ,m,∆) are graded.

Say that a graded vector space V is connected if V0 ∼= k.

Example 1.20. A path-connected space X has its homology and cohomology

H∗(X ;k) =
⊕

i≥0

Hi(X ;k)

H∗(X ;k) =
⊕

i≥0

Hi(X ;k)

carrying the structure of graded connected coalgebras and algebras, respectively. If in addition, X is a
topological group, or even less strongly, an H-space (e.g. the loop space ΩY on some other space Y ), the
continuous multiplication map X × X → X induces an algebra structure on H∗(X ;k) and a coalgebra
structure on H∗(X ;k), so that each become bialgebras (and these bialgebras are dual to each other in a
sense soon to be discussed). This was Hopf’s motivation: the (co-)homology of a compact Lie group carries
bialgebra structure that explains why it takes a certain form; see Cartier [14, §2].
Example 1.21. Tensor algebras T (V ) and symmetric algebras Sym(V ) are graded, once one picks a graded
vector space structure for V ; then

deg(xi1 · · ·xik) = deg(xi1 ) + · · ·+ deg(xik ).

Assuming that V0 = 0, the algebras T (V ) and Sym(V ) are connected. For example, we will often say that all
elements of V are homogeneous of degree 1, but at other times, it will make sense to have V live in different
(positive) degrees.
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Exercise 1.22. Check that for a graded connected k-bialgebra A, the gradedness of the unit u and counit
ǫ maps, along with commutativity of diagrams (1.2), (1.4), and (1.8) imply

(a) k lies in A0,

(b) u is an isomorphism k
u→ A0, while

(c) the two-sided ideal ker ǫ is the space of positive degree elements I =
⊕

n>0An.

(d) ǫ restricted to A0 is the inverse isomorphism A0
ǫ→ k to u, and

(e) every x in I has comultiplication of the form

∆(x) = 1⊗ x+ x⊗ 1 + ∆+(x)

where ∆+(x) lies in I ⊗ I.

1.4. Antipodes and Hopf algebras. There is one more piece of structure needed to make a bialgebra a
Hopf algebra, although it will come for free in the graded connected case.

Definition 1.23. For any coalgebra C and algebra A, one can endow the k-linear maps Hom(C,A) with
an associative algebra structure called the convolution algebra: send f, g in Hom(C,A) to f ⋆ g defined by
(f ⋆ g)(c) =

∑
f(c1)g(c2), using the Sweedler notation ∆(c) =

∑
c1⊗ c2. Equivalently, f ⋆ g is the composite

C
∆−→ C ⊗ C

f⊗g−→ A⊗A
m−→ A.

One sees that u ◦ ǫ is a two-sided identity element for ⋆, meaning that
∑

f(c1)ǫ(c2) = f(c) =
∑

ǫ(c1)f(c2)

by adding a top row to (1.4):

(1.10) A⊗ k // A k⊗Aoo

C ⊗ k

f⊗1

OO

// C

f

OO

k⊗ C

1⊗f

OO

oo

C ⊗ C

1⊗ǫ

OO

C
∆
oo

1

OO

∆
// C ⊗ C

ǫ⊗1

OO

In particular, when one has a bialgebra A, the convolution product ⋆ gives an associative algebra structure
on End(A) := Hom(A,A).

Definition 1.24. A bialgebra A is called a Hopf algebra if there is an element S (called an antipode for A) in
End(A) which is a 2-sided inverse under ⋆ for the identity map 1A. In other words, this diagram commutes:

(1.11) A⊗A
S⊗1A // A⊗A

m

""F
FF

FF
FF

FF

A

∆

<<xxxxxxxxx ǫ //

∆ ""F
FF

FF
FF

F k
u // A

A⊗A
1A⊗S

// A⊗A

m

<<xxxxxxxx

Or equivalently, if ∆(a) =
∑
a1 ⊗ a2, then

(1.12)
∑

(a)

S(a1)a2 = u(ǫ(a)) =
∑

(a)

a1S(a2).

Example 1.25. For a group algebra kG, one can define an antipode k-linearly via S(tg) = tg−1 . The top
pentagon in the above diagram commutes because

(S ⋆ 1)(tg) = m((S ⊗ 1)(tg ⊗ tg)) = S(tg)tg = tg−1tg = te = (u ◦ ǫ)(tg).
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Note that when it exists, the antipode S is unique, as with all 2-sided inverses in associative algebras: if
S, S′ are both 2-sided ⋆-inverses to 1A then

S′ = (u ◦ ǫ) ⋆ S′ = (S ⋆ 1A) ⋆ S
′ = S ⋆ (1A ⋆ S

′) = S ⋆ (u ◦ ǫ) = S.

On the other hand, the next property is not quite as obvious, but is useful when one wants to check that
a certain map is the antipode in a particular Hopf algebra, by checking it on an algebra generating set.

Proposition 1.26. The antipode S in a Hopf algebra A is an algebra anti-endomorphism: S(1) = 1, and
S(ab) = S(b)S(a) for all a, b in A.

Proof. (see [76, Chap. 4]) Since ∆ is an algebra map, one has ∆(1) = 1 ⊗ 1, and therefore 1 = uǫ(1) =
S(1) · 1 = S(1).

To show S(ab) = S(b)S(a), consider A⊗A as a coalgebra and A as an algebra. Then Hom(A⊗A,A) is an
associative algebra with a convolution product ⊛ (to be distinguished from the convolution ⋆ on End(A)),
having two-sided identity element uAǫA⊗A. We will show below that these three elements of Hom(A⊗A,A)

f(a⊗ b) = ab

g(a⊗ b) = S(b)S(a)

h(a⊗ b) = S(ab)

have the property that

(1.13) h⊛f = uAǫA⊗A = f⊛g

which would then show the desired equality h = g via associativity:

h = h⊛(uAǫA⊗A) = h⊛(f⊛g) = (h⊛f)⊛g = (uAǫA⊗A)⊛g = g.

So we evaluate the three elements in (1.13) on a⊗ b, assuming ∆(a) =
∑

(a) a1⊗ a2 and ∆(b) =
∑

(b) b1⊗ b2,

and hence ∆(ab) =
∑

(a),(b) a1b1 ⊗ a2b2. One has

(uAǫA⊗A)(a⊗ b) = uA(ǫA(a)ǫA(b)) = uA(ǫA(ab)).

(h⊛f)(a⊗ b) =
∑

(a),(b)

h(a1 ⊗ b1)f(a2 ⊗ b2)

=
∑

(a),(b)

S(a1b1)a2b2

= (S ⋆ 1A)(ab) = uA(ǫA(ab)).

(f⊛g)(a⊗ b) =
∑

(a),(b)

f(a1 ⊗ b1)g(a2 ⊗ b2)

=
∑

(a),(b)

a1b1S(b2)S(a2)

=
∑

(a)

a1 · (1A ⋆ S)(b) · S(a2)

= uA(ǫA(b))
∑

(a)

a1S(a2) = uA(ǫA(b))uA(ǫA(a)) = uA(ǫA(ab))

�

Remark 1.27. Recall from Remark 1.14 that the comultiplication on a bialgebra A allows one to define an A-
module structure on the tensor product M ⊗N of two A-modules M,N . Similarly, the anti-endomorphism
S in a Hopf algebra allows one to turn left A-modules into right A-modules, or vice-versa. E.g., left A-
modules M naturally have a right A-module structure on the dual space M∗ := Hom(M,k), defined via
(fa)(m) := f(am) for f inM∗ and a in A. The antipode S can be used to turn this back into a left A-module
M∗, via (af)(m) = f(S(a)m).
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For groups G and left kG-modules (group representations) M , this is how one defines the contragredient
action of G on M∗, namely tg acts as (tgf)(m) = f(tg−1m).

Along the same lines, we are supposed to think of the counit A
ǫ→ k as giving a way to make k into a

trivial A-module.

Corollary 1.28. Commutativity of A implies the antipode is an involution: S2 = 1A.

Proof. One checks that S2 = S ◦ S is a right ⋆-inverse to S, and hence S2 = 1A:

(S ⋆ S2)(a) =
∑

(a)

S(a1)S
2(a2)

= S



∑

(a)

S(a2)a1


 by Proposition 1.26

= S (u(ǫ(a)))

= u(ǫ(a)) since S(1) = 1 by Proposition 1.26.

�

Remark 1.29. We won’t need it, but it is easy to adapt the above proof to show that S2 = 1A also holds for
cocommutative Hopf algebras; see [56, Corollary 1.5.12] or [76, Chapter 4]. For a general Hopf algebra which
is not finite-dimensional over k, the antipode S may not even have finite order, even in the graded connected
setting. E.g., Aguiar and Sottile [6] show that the Malvenuto-Reutenauer Hopf algebra of permutations has
antipode of infinite order. In general, antipodes need not even be invertible [77].

In our frequent setting of graded connected bialgebras, antipodes come for free.

Proposition 1.30. A graded connected bialgebra A has a unique antipode S, which is a graded map A
S−→ A,

endowing it with a Hopf structure.

Proof. Let us try to define a (k-linear) left ⋆-inverse S to 1A on each homogeneous component An, via
induction on n.

In the base case n = 0, Proposition 1.26 and its proof show that one must define S(1) = 1 so S is the
identity on A0 = k.

In the inductive step, recall from Exercise 1.22 that a homogeneous element a of degree n > 0 has
∆(a) = a ⊗ 1 +

∑
a1 ⊗ a2, with each deg(a1) < n. Hence in order to have S ⋆ 1A = uǫ, one must define

S(a) in such a way that S(a) · 1 +
∑
S(a1)a2 = uǫ(a) = 0 and hence S(a) := −∑S(a1)a2, where S(a1)

have already been uniquely defined by induction. This does indeed define such a left ⋆-inverse S to 1A, by
induction. It is also a graded map by induction.

The same argument shows how to define a right ⋆-inverse S′ to 1A. Then S = S′ is a two-sided ⋆-inverse
to 1A by the associativity of ⋆. �

Here is another consequence of the fact that S(1) = 1.

Proposition 1.31. In bialgebras, primitive elements x have ǫ(x) = 0, and in Hopf algebras, they have
S(x) = −x.
Proof. In a bialgebra, ǫ(1) = 1. Hence ∆(x) = 1 ⊗ x + x ⊗ 1 implies via (1.4) that 1 · ǫ(x) + ǫ(1)x = x, so
ǫ(x) = 0. It also implies via (1.11) that S(x)1 + S(1)x = uǫ(x) = u(0) = 0, so S(x) = −x. �

Thus whenever A is a Hopf algebra generated as an algebra by its primitive elements, S is the unique
anti-endomorphism that negates all primitive elements.

Example 1.32. The tensor and symmetric algebras T (V ) and Sym(V ) are each generated by V , which
contains only primitive elements in either case. Hence one has in T (V ) that

(1.14) S(xi1xi2 · · ·xik) = (−xik) · · · (−xi2 )(−xi1) = (−1)kxik · · ·xi2xi1
for each word (i1, . . . , ik) in the alphabet I. The same holds in Sym(V ) for each multiset (i1, . . . , ik), recalling
that the monomials are now commutative. In other words, for a commutative polynomial f(x) in Sym(V ),
the antipode S sends f to f(−x), negating all the variables.
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The antipode for a graded connected Hopf algebra has an interesting formula due to Takeuchi [77],
reminiscent of P. Hall’s formula for the Möbius function of a poset2. For the sake of stating this, define the
k-fold tensor power A⊗k = A⊗ · · · ⊗A and define iterated multiplication and comultiplication maps

A⊗k m(k−1)

−→ A

A
∆(k−1)

−→ A⊗k

by m(−1) = u, ∆(−1) = ǫ, m(0) = ∆(0) = 1A, and

m(k) = m ◦ (1A ⊗m(k−1)) = m ◦ (m(k−1) ⊗ 1A)

∆(k) = (1A ⊗∆(k−1)) ◦∆ = (∆(k−1) ⊗ 1A) ◦∆
using associativity, coassociativity to show that these are well-defined. They are how one gives meaning to
the right sides of these equations:

m(k)(a(1) ⊗ · · · ⊗ a(k+1)) = a(1) · · ·a(k+1)

∆(k)(b) =
∑

b1 ⊗ · · · ⊗ bk+1 in Sweedler notation.

Proposition 1.33. In a graded connected Hopf algebra A, the antipode has formula

(1.15)

S =
∑

k≥0

(−1)km(k−1)f⊗k∆(k−1)

= uǫ− f +m ◦ f⊗2 ◦∆−m(2) ◦ f⊗3 ◦∆(2) + · · ·
where f := 1A − uǫ in End(A).

Proof. We argue as in [77, Lemma 14] or [6, §5]. For any f in End(A) one has this explicit formula for its
k-fold convolution power f⋆k := f ⋆ · · · ⋆ f in terms of its tensor powers f⊗k := f ⊗ · · · ⊗ f :

f⋆k = m(k−1) ◦ f⊗k ◦∆(k−1).

Therefore any f annihilating A0 will be locally ⋆-nilpotent on A, meaning that for each n one has that An
is annihilated by f⋆m for every m > n: homogeneity forces that for a in An, every summand of ∆(m−1)(a)
must contain among its m tensor factors at least one factor lying in A0, so each summand is annihilated by
f⊗m, and f⋆m(a) = 0.

In particular such f have the property that uǫ+ f has as two-sided ∗-inverse
(uǫ+ f)⋆(−1) = uǫ− f + f ⋆ f − f ⋆ f ⋆ f + · · ·

=
∑

k≥0

(−1)kf⋆k =
∑

k≥0

(−1)km(k−1) ◦ f⊗k ◦∆(k−1).

The proposition follows upon taking f := 1A − uǫ, which annihilates A0. �

Remark 1.34. In fact, one can see that Takeuchi’s formula applies more generally to define an antipode

A
S−→ A in any (not necessarily graded) bialgebra A where the map 1A − uǫ is locally ⋆-nilpotent.
It is also worth noting that the proof of Proposition 1.33 gives an alternate proof of Proposition 1.30

To finish our discussion of antipodes, we mention some properties (taken from [76, Chap. 4]) relat-
ing antipodes to convolutional inverses. It also shows that a bialgebra morphism between Hopf algebras
automatically respects the antipodes.

Proposition 1.35. Let H be a Hopf algebra with antipode S.

(a) For any algebra A and algebra morphism H
α→ A, one has α ◦ S = α⋆−1, the convolutional inverse

to α in Hom(H,A).

(b) For any coalgebra C and coalgebra morphism C
γ→ H, one has S ◦ γ = γ⋆−1, the convolutional

inverse to γ in Hom(C,H).

(c) If H1, H2 are Hopf algebras with antipodes S1, S2, then any bialgebra morphism H1
β→ H2 is a Hopf

morphism, that is, it commutes with the antipodes, since β ◦ S1
(a)
= β⋆−1 (b)

= S2 ◦ β.
2In fact, for incidence Hopf algebras, Takeuchi’s formula generalizes Hall’s formula– see Corollary 6.11.
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Proof. We prove (a); the proof of (b) is similar, and (c) follows immediately from (a),(b) as indicated in its

statement. Begin with the following: given an algebra morphism A
α→ A′ and coalgebra morphism C

γ→ C′,

the pre- and post-composition f 7−→ α◦f ◦γ is a convolution algebra morphism Hom(C′, A)
ϕ−→ Hom(C,A′),

as one can check that ϕ(uA ◦ ǫC′) = α ◦ uA ◦ ǫC′ ◦ γ = uA′ ◦ ǫC , and

(1.16)

ϕ(f ⋆ g) = α ◦ (f ⋆ g) ◦ γ
= α ◦m ◦ (f ⊗ g) ◦∆ ◦ γ
= m ◦ (α⊗ α) ◦ (f ⊗ g) ◦ (γ ⊗ γ) ◦∆
= m ◦ ((α ◦ f ◦ γ)⊗ (α ◦ g ◦ γ)) ◦∆
= ϕ(f) ⋆ ϕ(g).

For assertion (a), note that a special case of the above observation shows f 7−→ α ◦ f gives a convolution-

algebra morphism Hom(H,H)
ϕ→ Hom(H,A), and hence

α ◦ S = ϕ(S) = ϕ
(
(1H)⋆−1

)
= (ϕ(1H))

⋆−1
= (α ◦ 1H)

⋆−1
= α⋆−1.

�

1.5. Commutativity, cocommutativity.

Definition 1.36. Say that the k-algebra A is commutative if ab = ba, that is, this diagram commutes:

(1.17) A⊗A
T //

m

""F
FF

FF
FF

FF
A⊗A

m

||xx
xx
xx
xx
x

A

Say that the k-coalgebra C is cocommutative if this diagram commutes:

(1.18) C ⊗ C
T // C ⊗ C

C

∆

ccFFFFFFFFF ∆

;;xxxxxxxxx

Example 1.37. Group algebras kG are always cocommutative, but commutative if and only if G is abelian.
Tensor algebras T (V ) are always cocommutative, but commutative if and only if dimk V ≤ 1.
Symmetric algebras Sym(V ) are always cocommutative and commutative.
Homology and cohomology of H-spaces are always cocommutative and commutative in the topologist’s

sense where one reinterprets that twist map A⊗A
T→ A⊗A to have the extra sign as in (1.7).

Note how the cocommutative Hopf algebras T (V ), Sym(V ) have much of their structure controlled by
their subspace V of primitive elements. This is not far from the truth in general, and closely related to Lie
algebras.

Exercise 1.38. Recall that a Lie algebra over k is a k-vector space g with a k-bilinear map [·, ·] that satisfies
[x, x] = 0 for x in g, and the Jacobi identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]], or equivalently

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

(a) Check that any associative algebra A gives rise to a Lie algebra by means of the commutator operation
[a, b] := ab− ba.
(b) If A is also a bialgebra, show that the k-subspace of primitive elements p ⊂ A is closed under the Lie
bracket, that is, [p, p] ⊂ p, and hence forms a Lie subalgebra.

Conversely, given a Lie algebra p, one constructs the universal enveloping algebra U(p) := T (p)/J as the
quotient of the tensor algebra T (p) by the two-sided ideal J generated by all elements xy − yx − [x, y] for
x, y in p.
(c) Show that J is also a two-sided coideal in T (p) for its usual coalgebra structure, and hence the quotient
U(p) inherits the structure of a cocommutative bialgebra.
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(d) Show that the antipode S on T (p) preserves J , meaning that S(J) ⊂ J , and hence U(p) inherits the
structure of a (cocommutative) Hopf algebra.

There are theorems, discussed in [14, §3.8], [56, Chap. 5], giving various mild hypotheses in addition to
cocommutativity which imply that the inclusion of the space p of primitives in a Hopf algebra A extends to
a Hopf isomorphism U(p) ∼= A.

1.6. Duals. Recall that for finite dimensional k-vector spaces V , taking the dual space V ∗ := Hom(V,k)

reverses k-linear maps. That is, V
ϕ→W induces W ∗ ϕ∗

→ V ∗ defined uniquely by

(f, ϕ(v)) = (ϕ∗(f), v)

in which (f, v) is the bilinear pairing V ∗ × V → k sending (f, v) 7→ f(v). When ϕ is expressed in terms of a
basis {vi}i∈I for V , the map ϕ∗ is expressed by the transpose matrix in terms of the dual basis {fi}i∈I for
V ∗ that satisfies (fi, vj) = δi,j , where δi,j is the Kronecker delta: δi,j = 1 if i = j and 0 else.

When discussing graded vector spaces V =
⊕

n≥0 Vn of finite type, meaning that each Vn is finite-
dimensional, note that V ∗ can contain functionals f supported on infinitely many Vn. Instead we will
consider the subspace V o :=

⊕
n≥0(Vn)

∗ ⊂ V ∗, sometimes called the restricted dual, consisting of the
functions f that vanish on all but finitely many Vn, which is again a graded vector space of finite type.

Reversing the diagrams should then make it clear that, in the finite-dimensional or finite-type situation,
duals of algebras are coalgebras, and vice-versa, and duals of bialgebras or Hopf algebras are bialgebras or
Hopf algebras. For example, the product in a Hopf algebra A uniquely defines the coproduct of Ao via
adjointness:

(∆Ao(f), a⊗ b)A⊗A = (f, ab)A.

Thus if A has a basis {ai}i∈I with product structure constants {cij,k}, meaning

ajak =
∑

i∈I
cij,kai,

then the dual basis {fi}i∈I has the same {cij,k} as its coproduct structure constants:

∆Ao(fi) =
∑

(j,k)∈I×I
cij,kfj ⊗ fk.

Another example of a Hopf algebra is provided by the so-called shuffle algebra. Before we introduce it,
let us define the shuffles of two words:

Definition 1.39. Given two words a = (a1, a2, ..., an) and b = (b1, b2, ..., bm), the multiset of shuffles of a
and b is defined as the multiset

{(
cw(1), cw(2), ..., cw(n+m)

)
| w ∈ Shn,m

}
multiset

,

where (c1, c2, ..., cn+m) is the concatenation a·b = (a1, a2, ..., an, b1, b2, ..., bm), and where Shn+m is the subset
{
w ∈ Sn+m | w−1 (1) < w−1 (2) < · · · < w−1 (n) ; w−1 (n+ 1) < w−1 (n+ 2) < · · · < w−1 (n+m)

}

of the symmetric group Sn+m. Informally speaking, the shuffles of the two words a and b are the words
obtained by overlaying the words a and b, after first moving their letters apart so that no letters get
superimposed when the words are overlayed. In particular, any shuffle of a and b contains a and b as
subsequences. The multiset of shuffles of a and b has

(
m+n
n

)
elements (counted with multiplicity) and is

denoted by a � b. For instance, the shuffles of (1, 2, 1) and (3, 2) are

(1, 2, 1, 3, 2) , (1, 2, 3, 1, 2) , (1, 2, 3, 2, 1) , (1, 3, 2, 1, 2) , (1, 3, 2, 2, 1) ,

(1, 3, 2, 2, 1) , (3, 1, 2, 1, 2) , (3, 1, 2, 2, 1) , (3, 1, 2, 2, 1) , (3, 2, 1, 2, 1) ,

listed here with the multiplicities with which they appear in the multiset (1, 2, 1) � (3, 2). Here we have
underlined the letters taken from a – that is, the letters at positions w−1 (1), w−1 (2), . . ., w−1 (n).
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Example 1.40. When A = T (V ) is the tensor algebra for a finite-dimensional k-vector space V , having
k-basis {xi}i∈I , its restricted dual Ao is another Hopf algebra whose basis {y(i1,...,iℓ)} is indexed by words
in the alphabet I, called the shuffle algebra of V ∗. Duality shows that the cut coproduct in Ao is defined by

∆y(i1,...,iℓ) =

ℓ∑

j=0

y(i1,...,ij) ⊗ y(ij+1,ij+2,...,iℓ).

For example,

∆yabcb = y∅ ⊗ yabcb + ya ⊗ ybcb + yab ⊗ ycb + yabc ⊗ yb + yabcb ⊗ y∅

Duality also shows that the shuffle product in Ao will be given by

y(i1,...,iℓ)y(j1,...,jm) =
∑

k=(k1,...,kℓ+m)∈i� j

y(k1,...,kℓ+m)

where i � j (as in Definition 1.39) denotes the multiset of the
(
ℓ+m
ℓ

)
words obtained as shuffles of the two

words i = (i1, . . . , iℓ) and j = (j1, . . . , jm). For example,

yabycb = yabcb + yacbb + ycabb + ycabb + yacbb + ycbab

= yabcb + 2yacbb + 2ycabb + ycbab

Equivalently, one has

y(i1,i2,...,iℓ)y(iℓ+1,iℓ+2,...,iℓ+m) =
∑

w∈Sℓ+m:
w(1)<···<w(ℓ),

w(ℓ+1)<···<w(ℓ+m)

y(i
w−1(1),iw−1(2),...,iw−1(ℓ+m))

.

Lastly, the antipode S of Ao is the adjoint of the antipode of A = T (V ) described in (1.14):

Sy(i1,i2,...,iℓ) = (−1)ℓy(iℓ,...,i2,i1).

Exercise 1.41. Let V be a 1-dimensional vector space with basis element x, so Sym(V ) ∼= k[x], with k-basis
{1 = x0, x1, x2, . . .}.
(a) Check that the powers xi satisfy

xi · xj = xi+j

∆(xn) =
∑

i+j=n

(
n

i

)
xi ⊗ xj

S(xn) = (−1)nxn

(b) Check that the dual basis elements {f (0), f (1), f (2), . . .} for Sym(V )o, defined by f (i)(xj) = δi,j , satisfy

f (i)f (j) =

(
i+ j

i

)
f (i+j)

∆(f (n)) =
∑

i+j=n

f (i) ⊗ f (j)

S(f (n)) = (−1)nf (n)

(c) Show that if k has characteristic zero, then the map Sym(V )o → Sym(V ) sending f (n) 7→ xn

n! is a graded
Hopf isomorphism.

For this reason, the Hopf structure on Sym(V )o is called a divided power algebra.
(d) Show that when k has characteristic p > 0, one has (f (1))p = 0, and hence why there can be no Hopf
isomorphism Sym(V )o → Sym(V ).

Exercise 1.42. Let V have k-basis {x1, . . . , xn}, and let V ⊕V have k-basis {x1, . . . , xn, y1, . . . , yn}, so that
one has isomorphisms

Sym(V ⊕ V ) ∼= k[x,y] ∼= k[x] ⊗ k[y] ∼= Sym(V )⊗ Sym(V ).



HOPF ALGEBRAS IN COMBINATORICS 15

(a) Show that our usual coproduct on Sym(V ) can be re-expressed as follows:

Sym(V ) Sym(V )⊗ Sym(V )
‖ ‖

k[x]
∆−→ k[x,y]

f(x1, . . . , xn) 7−→ f(x1 + y1, . . . , xn + yn)

In other words, it is induced from the diagonal map

(1.19)
V −→ V ⊕ V
xi 7−→ xi + yi

(b) One can similarly define a coproduct on the exterior algebra ∧V , which is the quotient T (V )/J where
J is the two-sided ideal generated by the elements {x2(= x ⊗ x)}x∈V in T 2(V ). This becomes a graded
commutative algebra

∧V =

n⊕

d=0

∧dV
(
=

∞⊕

d=0

∧dV
)
,

if one views the elements of V = ∧1V as having odd degree, and uses the topologist’s sign conventions (as in
(1.7)). One again has ∧(V ⊕ V ) = ∧V ⊗ ∧V as graded algebras. Show that one can again let the diagonal
map (1.19) induce a map

∧(V )
∆−→ ∧V ⊗ ∧V

f(x1, . . . , xn) 7−→ f(x1 + y1, . . . , xn + yn)
‖ ‖∑

ci1,...,id · xi1 ∧ · · · ∧ xid
∑
ci1,...,id · (xi1 + yi1) ∧ · · · ∧ (xid + yid)

which makes ∧V into a graded connected Hopf algebra.
(c) Show that in the tensor algebra T (V ), if one views the elements of V = V ⊗1 as having odd degree, then
for any x in V one has ∆(x2) = 1⊗ x2 + x2 ⊗ 1.
(Hint: Make sure you use the convention (1.7) in the twist map!)
(d) Use part (d) to show that the two-sided ideal J ⊂ T (V ) generated by {x2}x∈V is also a two-sided coideal,
and hence the quotient ∧V = T (V )/J inherits the structure of a bialgebra. Check that the coproduct on
∧V inherited from T (V ) is the same as the one defined in part (b).
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2. Review of symmetric functions Λ as Hopf algebra

Here we review the ring of symmetric functions, borrowing heavily from standard treatments, such as
Macdonald [49, Chap. I], Sagan [62, Chap. 4], and Stanley [72, Chap. 7], but emphasizing the Hopf
structure early on.

2.1. Definition of Λ. As before, k here could either be a field or the integers Z. Given an infinite variable set
x = (x1, x2, . . .), a monomial xα := xα1

1 xα2
2 · · · is indexed by an element α = (α1, α2, . . .) in N∞ having finite

support; such α are called weak compositions. The nonzero ones among the integers α1, α2, . . . are called the
parts of the weak composition α. We will consider the ring R(x) of formal power series f(x) =

∑
α cαx

α with
cα in k of bounded degree, that is, where there exists some bound d = d(f) for which deg(xα) :=

∑
i αi > d

implies cα = 0. It is easy to see that the product of two such power series is well-defined, and also has
bounded degree.

The symmetric group Sn permuting the first n variables x1, . . . , xn acts as a group of automorphisms
on R(x), as does the union S(∞) =

⋃
n≥1 Sn of the infinite ascending chain S1 ⊂ S2 ⊂ · · · of symmetric

groups.

Definition 2.1. The ring of symmetric functions in x with coefficients in k, denoted Λ = Λk = Λ(x) =
Λk(x), is the S(∞)-invariant subalgebra R(x)

S(∞) of R(x):

Λ :=

{
f =

∑

α

cαx
α ∈ R(x) : cα = cβ if α, β lie in the same S(∞)-orbit

}
.

Note that Λ is a graded k-algebra, since Λ =
⊕

n≥0 Λn where Λn are the symmetric functions f =
∑

α cαx
α

which are homogeneous of degree n, meaning deg(xα) = n for all cα 6= 0.

Definition 2.2. A partition λ = (λ1, λ2, . . . , λℓ, 0, 0, . . .) is a weak composition whose parts weakly decrease:
λ1 ≥ · · · ≥ λℓ > 0. One sometimes omits trailing zeroes from a partition. The (uniquely defined) ℓ is said to
be the length of the partition λ. The sum λ1 + λ2 + · · · + λℓ = λ1 + λ2 + · · · of all parts of λ is called the
size of λ and denoted by |λ|; for a given integer n, the partitions of size n are referred to as the partitions of
n. The empty partition () is denoted by ∅.

Every weak composition α lies in the S(∞)-orbit of a unique partition λ = (λ1, λ2, . . . , λℓ, 0, 0, . . .) with
λ1 ≥ · · · ≥ λℓ > 0. For any partition λ, define the monomial symmetric function

(2.1) mλ :=
∑

α∈S(∞)λ

xα.

Letting λ run through the set Par of all partitions, this gives the monomial k-basis {mλ} of Λ. Letting λ
run only through the set Parn of partitions of n gives the monomial k-basis for Λn.

Example 2.3. For n = 3, one has

m(3) = x31 + x32 + x33 + · · ·
m(2,1) = x21x2 + x1x

2
2 + x21x3 + x1x

2
3 + · · ·

m(1,1,1) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2x5 + · · ·

Remark 2.4. It is sometimes convenient to work with finite variable sets x1, . . . , xn, which one justifies as
follows. Note that the algebra homomorphism

R(x) → R(x1, . . . , xn) = k[x1, . . . , xn]

which sends xn+1, xn+2, . . . to 0 restricts to an algebra homomorphism

Λk(x) → Λk(x1, . . . , xn) = k[x1, . . . , xn]
Sn .

Furthermore, this last homomorphism is a k-linear isomorphism when restricted to Λi for 0 ≤ i ≤ n, since
it sends the monomial basis elements mλ(x) to the monomial basis elements mλ(x1, . . . , xn). Thus when
one proves identities in Λk(x1, . . . , xn) for all n, they are valid in Λ, that is, Λ is the inverse limit of the
Λ(x1, . . . , xn) in the category of graded k-algebras.
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One can also define a comultiplication on Λ as follows. Note that when one decomposes the variables into
two sets (x,y) = (x1, x2, . . . , y1, y2, . . .), one has a ring homomorphism

R(x) ⊗R(x) −→ R(x,y)
f(x)⊗ g(x) 7−→ f(x)g(y).

This restricts to an isomorphism

(2.2) Λ⊗ Λ = R(x)S(∞) ⊗R(x)S(∞) −→ R(x,y)S(∞)×S(∞)

where S(∞) ×S(∞) denotes permutations of (finite subsets of) the x and separate permutations of (finite

subsets of) the y, because R(x,y)S(∞)×S(∞) has Z-basis {mλ(x)mµ(y)}λ,µ∈Par. As S(∞) × S(∞) is a
subgroup of the group S(∞) acting on all of (x,y), one gets an inclusion of rings

Λ(x,y) = R(x,y)S(∞) →֒ R(x,y)S(∞)×S(∞) ∼= Λ⊗ Λ

where the last isomorphism is the inverse of the one in (2.2). This gives a comultiplication

Λ = Λ(x)
∆−→ Λ(x,y) →֒ Λ⊗ Λ

f(x) = f(x1, x2, . . .) 7−→ f(x,y) = f(x1, x2, . . . , y1, y2, . . .).

Example 2.5. One has

∆m(2,1) = m(2,1)(x1, x2, . . . , y1, y2, . . .)

= x21x2 + x1x
2
2 + · · ·

+ x21y1 + x21y2 + · · ·
+ x1y

2
1 + x1y

2
2 + · · ·

+ y21y2 + y1y
2
2 + · · ·

= m(2,1)(x) +m(2)(x)m(1)(y) +m(1)(x)m(2)(y) +m(2,1)(y)

= m(2,1) ⊗ 1 +m(2) ⊗m(1) +m(1) ⊗m(2) + 1⊗m(2,1).

This example generalizes easily to the following formula

(2.3) ∆mλ =
∑

(µ,ν):
µ⊔ν=λ

mµ ⊗mν .

in which µ ⊔ ν is the partition obtained by taking the multiset union of the parts of µ and ν, and then
reordering them to make them weakly decreasing.

Checking that ∆ is coassociative amounts to checking that

(∆⊗ 1) ◦∆f = f(x,y, z) = (1⊗∆) ◦∆f

inside Λ(x,y, z) as a subring of Λ ⊗ Λ ⊗ Λ. The counit Λ
ǫ→ k is defined in the usual fashion for graded

connected coalgebras, namely ǫ annihilates I =
⊕

n>0 Λn, and ǫ is the identity on Λ0 = k; alternatively ǫ
sends a symmetric function f(x) to its constant term f(0, 0, . . .).

Note that ∆ is an algebra morphism Λ → Λ⊗Λ because it is a composition of maps which are all algebra
morphisms. As the unit and counit axioms are easily checked, Λ becomes a graded connected k-bialgebra of
finite type, and hence also a Hopf algebra by Proposition 1.30. We will identify its antipode more explicitly
in Section 2.4 below.

2.2. Other Bases. We introduce the usual other bases of Λ, and explain their significance later.

Definition 2.6. Define the families of power sum symmetric functions pn, elementary symmetric functions
en, and complete homogeneous symmetric functions hn, for n = 1, 2, 3, . . . by

pn := xn1 + xn2 + · · · = m(n)

en :=
∑

i1<···<in xi1 · · ·xin = m(1n)

hn :=
∑

i1≤···≤in xi1 · · ·xin =
∑
λ∈Parn

mλ
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where (1n) = (1, 1, . . . , 1), using a multiplicative notation λ = (1m12m2 · · · ) if the multiplicity of the part i
in λ is mi. By convention, also define h0 = e0 = 1, and hn = en = 0 if n < 0. Extend these multiplicatively
to partitions λ = (λ1, λ2, . . . , λℓ) with λ1 ≥ · · · ≥ λℓ > 0:

pλ := pλ1pλ2 · · · pλℓ

eλ := eλ1eλ2 · · · eλℓ

hλ := hλ1hλ2 · · ·hλℓ

Also define the Schur function

(2.4) sλ :=
∑

T

xcont(T )

where T runs through all column-strict tableaux of shape λ, that is, T is an assignment of entries in {1, 2, 3, . . .}
to the cells of the Ferrers diagram for λ, weakly increasing left-to-right in rows, and strictly increasing top-

to-bottom in columns. Here xcont(T ) =
∏
i x

|T−1(i)|
i . For example,

T =

1 1 1 4 7
2 3 3
4 4 6
6 7

is a column-strict tableau of shape λ = (5, 3, 3, 2) with xcont(T ) = x31x
1
2x

2
3x

3
4x

0
5x

2
6x

2
7.

Example 2.7. One has

m(1) = p(1) = e(1) = h(1) = s(1) = x1 + x2 + x3 + · · ·
s(n) = hn

s(1n) = en

Example 2.8. One has for λ = (2, 1) that

p(2,1) = p2p1 = (x21 + x22 + · · · )(x1 + x2 + · · · )
= m(2,1) +m(3)

e(2,1) = e2e1 = (x1x2 + x1x3 + · · · )(x1 + x2 + · · · )
= m(2,1) + 3m(1,1,1)

h(2,1) = h2h1 = (x21 + x22 + · · ·+ x1x2 + x1x3 + · · · )(x1 + x2 + · · · )
= m(3) + 2m(2,1) + 3m(1,1,1)

and
s(2,1) = x21x2 +x21x3 +x1x

2
2 +x1x

2
3 +x1x2x3 +x1x2x3 +x1x2x4 + · · ·

11 11 12 13 12 13 12
2 3 2 3 3 2 4

= m(2,1) + 2m(1,1,1)

In fact, one has these transition matrices for n = 3 expressing elements in terms of the monomial basis mλ:




p(3) p(2,1) p(1,1,1)
m(3) 1 1 1
m(2,1) 0 1 3
m(1,1,1) 0 0 6







e(3) e(2,1) e(1,1,1)
m(3) 0 0 1
m(2,1) 0 1 3
m(1,1,1) 1 3 6







h(3) h(2,1) h(1,1,1)
m(3) 1 1 1
m(2,1) 1 2 3
m(1,1,1) 1 3 6







s(3) s(2,1) s(1,1,1)
m(3) 1 0 0
m(2,1) 1 1 0
m(1,1,1) 1 2 1




Our next goal is to show that pλ, eλ, sλ, hλ all give bases for Λ. However at the moment it is not yet even
clear that sλ are symmetric!
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Proposition 2.9. Schur functions sλ are symmetric, that is, they lie in Λ.

Proof. It suffices to show sλ is symmetric under swapping the variables xi, xi+1, by providing an involution
ι on the set of all column-strict tableaux T of shape λ which switches the cont(T ) for (i, i + 1) cont(T ).
Restrict attention to the entries i, i+ 1 in T , which must look something like this:

i i i i i+ 1 i+ 1
i i i i i i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

i+ 1 i+ 1 i+ 1

One finds several vertically aligned pairs
i

i+ 1
. If one were to remove all such pairs, the remaining entries

would be a sequence of rows, each looking like this:

(2.5) i, i, . . . , i︸ ︷︷ ︸
r occurrences

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
s occurrences

An involution due to Bender and Knuth tells us to leave fixed all the vertically aligned pairs
i

i+ 1
, but

change each sequence as in (2.5) to this:

i, i, . . . , i︸ ︷︷ ︸
s occurrences

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
r occurrences

For example, the above configuration in T would change to

i i i i i i+ 1
i i i i i+ 1 i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

i i+ 1 i+ 1

It is easily checked that this map is an involution, and that it has the effect of swapping (i, i + 1) in
cont(T ). �

Remark 2.10. The symmetry of Schur functions allows one to reformulate them via column-strict tableaux
defined with respect to any total ordering L on the positive integers, rather than the usual 1 < 2 < 3 < · · · .
For example, one can use the reverse order3 · · · < 3 < 2 < 1, or even more exotic orders, such as

1 < 3 < 5 < 7 < · · · < 2 < 4 < 6 < 8 < · · · .
Say that an assignment T of entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ is an L-column-
strict tableau if it is weakly L-increasing left-to-right in rows, and strictly L-increasing top-to-bottom in
columns.

Proposition 2.11. For any total order L on the positive integers,

(2.6) sλ =
∑

T

xcont(T )

as T runs through all L-column-strict tableaux of shape λ.

Proof. Given a weak composition α = (α1, α2, . . .) with αn+1 = αn+2 = · · · = 0, assume that the integers
1, 2, . . . , n are totally ordered by L as w(1) <L · · · <L w(n) for some w in Sn. Then the coefficient of

xα = xα1
1 · · ·xαn

n on the right side of (2.6) is the same as the coefficient of xw
−1(α) on the right side of (2.4)

defining sλ, which by symmetry of sλ is the same as the coefficient of xα on the right side of (2.4). �

It is now not hard to show that pλ, eλ, sλ give bases by a triangularity argument. For this purpose, let us
introduce a useful partial order on partitions.

Definition 2.12. The dominance or majorization partial order on Parn, written λ ⊲ µ, is defined by

λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for k = 1, 2, . . . , n.

3This reverse order is what one uses when one defines a Schur function as a generating function for reverse semistandard
tableaux or column-strict plane partitions; see Stanley [72, Proposition 7.10.4].



20 DARIJ GRINBERG AND VICTOR REINER

Definition 2.13. For a partition λ, its conjugate or transpose partition λt, is the one whose Ferrers diagram
is obtained from that of λ by exchanging rows for columns. Alternatively, one has this formula for its ith

part:
(λt)i := |{j : λj ≥ i}|.

It is an interesting (and useful) exercise to check that λ ⊲ µ if and only if µt ⊲ λt.

Proposition 2.14. The sets {eλ}, {sλ} as λ runs through all partitions give k-bases for Λk for any field k
or k = Z. The same holds for {pλ} when k is a field of characteristic zero.

Proof. One can restrict attention to each homogeneous component Λn and partitions λ of n. We check that
in each case, the proposed basis expands triangularly in the {mλ} with some choice of orderings on Parn
indexing the rows and columns, as illustrated in Example 2.8.

One has sλ =
∑

µKλ,µmµ where the coefficient Kλ,µ is the Kostka number counting the column-strict

tableaux T of shape λ having cont(T ) = µ; this follows because both sides are symmetric functions, and
Kλ,µ is the coefficient of xµ on both sides. Since for each positive integer k, the entries 1, 2, . . . , k in T must
all lie within the first k rows of λ, one has that λ1 + λ2 + · · · + λk ≥ µ1 + µ2 + · · · + µk, that is, λ ⊲ µ, so
sλ =

∑
µ:λ⊲µKλ,µmµ. One can also check that Kλ,λ = 1, so this expansion is unitriangular with appropriate

ordering of rows and columns.
One has eλ =

∑
µ aλ,µmµ where aλ,µ counts matrices with {0, 1} entries having row sum λ and column-

sum µ: when one expands eλ1eλ2 · · · , choosing the monomial xj1 . . . xjλi
in the eλi

factor corresponds to

putting 1’s in the ith row and columns j1, . . . , jλi
of the {0, 1}-matrix. It is not hard to check4 that aλ,µ

vanishes unless λt ⊲ µ. One can also check that aλ,λt = 1, so this expansion is again unitriangular with
appropriate ordering of rows and columns.

Assume now that k is a field of characteristic 0. One has pλ =
∑

µ bλ,µmµ where bλ,µ counts the ways
to partition the nonzero parts λ1, . . . , λℓ into blocks such that the sums of the blocks give µ; more formally,
bλ,µ is the number of maps ϕ : {1, 2, . . . , ℓ} → {1, 2, 3, . . .} having µj =

∑
i:ϕ(i)=j λi for j = 1, 2, . . .. Again it

is not hard to check that bλ,µ vanishes unless λ ⊳ µ, and hence this expansion is triangular, for appropriate
ordering of rows and columns (but not unitriangular, as bλ,λ 6= 1 in general). The diagonal entries bλ,λ are
positive integers and thus invertible in k, so {pλ} is a basis. �

Remark 2.15. When k is not a field of characteristic 0, the family {pλ} is not (in general) a basis of Λk; for
instance, e2 = 1

2 (p11 − p2) ∈ ΛQ is not in the Z-span of this family. However, if we define bλ,µ as in the above
proof, then the Z-linear span of all pλ equals the Z-linear span of all bλ,λmλ. Indeed, if µ = (µ1, µ2, . . . , µk)
with k = ℓ(µ), then bµ,µ is the size of the subgroup of Sk consisting of all permutations σ ∈ Sk having each
i satisfy µσ(i) = µi. As a consequence, bµ,µ | bλ,µ for every partition µ of the same size as λ (because this

group acts5 freely on the set which is enumerated by bλ,µ), so that by rescaling mλ with the factor bλ,λ we
obtain a unitriangular integer transition matrix.

2.3. Comultiplications. Thinking about comultiplication Λ
∆→ Λ ⊗ Λ on Schur functions forces us to

immediately confront the following.

Definition 2.16. For partitions µ, λ say that µ ⊆ λ if µi ≤ λi for i = 1, 2, . . ., so the Ferrers diagram for µ
is a subset of the cells for the Ferrers diagram of λ. In this case, define the skew (Ferrers) diagram λ/µ to
be their set difference.

Then define the skew Schur function sλ/µ(x) to be the sum sλ/µ :=
∑

T xcont(T ), where the sum ranges
over all column-strict tableaux T of shape λ/µ, that is, assignments of a value in {1, 2, 3, . . .} to each cell of
λ/µ, weakly increasing left-to-right in rows, and strictly increasing top-to-bottom in columns.

Example 2.17.

T =

· · · 2 5
· 1 1
2 2 4
4 5

is a column-strict tableau of shape λ/µ = (5, 3, 3, 2)/(3, 1, 0, 0) and it has xcont(T ) = x21x
3
2x

0
3x

2
4x

2
5.

4This is the easy implication in the Gale-Ryser Theorem.
5Specifically, an element σ of the group takes ϕ : {1, 2, . . . , ℓ} → {1, 2, 3, . . .} to σ ◦ ϕ.
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Proposition 2.18. The comultiplication Λ
∆→ Λ ⊗ Λ has the following effect on the symmetric functions

discussed so far6:

(i) ∆pn = 1⊗ pn + pn ⊗ 1, that is, the power sums pn are primitive.
(ii) ∆en =

∑
i+j=n ei ⊗ ej

(iii) ∆hn =
∑
i+j=n hi ⊗ hj

(iv) ∆sλ =
∑

µ⊆λ sµ ⊗ sλ/µ

Proof. Recall that ∆ sends f(x) 7→ f(x,y), and one can easily check that

(i) pn(x,y) =
∑

i x
n
i +

∑
i y
n
i = pn(x) · 1 + 1 · pn(y)

(ii) en(x,y) =
∑
i+j=n ei(x)ej(y)

(iii) hn(x,y) =
∑

i+j=n hi(x)hj(y)

For assertion (iv), note that by Remark 2.6, one has

sλ(x,y) =
∑

T

(x,y)cont(T )

where the sum is over column-strict tableaux T of shape λ having entries in the linearly ordered alphabet

(2.7) x1 < x2 < · · · < y1 < y2 < · · · .
For example,

T =

x1 x1 x1 y2 y5
x2 y1 y1
y2 y2 y4
y4 y5

is such a tableau of shape λ = (5, 3, 3, 2). Note that the restriction of T to the alphabet x gives a column-
strict tableau Tx of some shape µ ⊆ λ, and the restriction of T to the alphabet y gives a column-strict
tableau Ty of shape λ/µ (e.g. for T in the example above, the tableau Ty appeared in Example 2.17).
Consequently, one has

sλ(x,y) =
∑

T

xcont(Tx) · ycont(Ty)

=
∑

µ⊆λ

(
∑

Tx

xcont(Tx)

)
∑

Ty

ycont(Ty)


 =

∑

µ⊆λ
sµ(x)sλ/µ(y).

�

2.4. The antipode, the involution ω, and algebra generators. Since Λ is a graded connected k-

bialgebra, it will have an antipode Λ
S→ Λ making it a Hopf algebra by Proposition 1.30. However, several

issues will be resolved by identifying S more explicitly now.

Proposition 2.19. Each of {en}n=1,2,..., {hn}n=1,2,... are algebraically independent, and generate Λk as a
polynomial algebra for any field k or k = Z. The same holds for {pn}n=1,2,... when k is a field of characteristic
zero.

Furthermore, the antipode S acts as follows:

(i) S(pn) = −pn
(ii) S(en) = (−1)nhn
(iii) S(hn) = (−1)nen

6 The abbreviated summation indexing
∑

i+j=n ti,j used here is intended to mean

∑

(i,j):
0≤i,j≤n,
i+j=n

ti,j .
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Proof. The assertions that {en}, {pn} are algebraically independent and generate Λ are equivalent to Propo-
sition 2.14 asserting {eλ}, {pλ} give bases for Λ. The assertion S(pn) = −pn follows from Proposition 1.31
since pn is primitive by Proposition 2.18(i).

For the remaining assertions, start with the easy generating function identities

H(t) :=
∞∏

i=1

(1− xit)
−1 = 1 + h1(x)t + h2(x)t

2 + · · · =
∑

n≥0

hn(x)t
n(2.8)

E(t) :=

∞∏

i=1

(1 + xit) = 1 + e1(x)t+ e2(x)t
2 + · · · =

∑

n≥0

en(x)t
n(2.9)

which shows that

(2.10) 1 = E(−t)H(t) =



∑

n≥0

en(x)(−t)n




∑

n≥0

hn(x)t
n




and hence, equating coefficients of powers of t, that for n = 0, 1, 2, . . . one has

(2.11)
∑

i+j=n

(−1)ieihj = δ0,n.

This lets one recursively express the en in terms of hn and vice-versa:

(2.12)

e0 := 1 =: h0

en = en−1h1 − en−2h2 + en−3h3 − · · ·
hn = hn−1e1 − hn−2e2 + hn−3e3 − · · ·

for n = 1, 2, . . . Thus if one uses the algebraic independence of the generators {en} for Λ to define an algebra
endomorphism as follows

(2.13)
Λ

ω→ Λ
en 7−→ hn,

then the identical form of the two recursions in (2.12) shows that ω also sends hn 7→ en. Therefore ω is an
involutive automorphism of Λ, and the {hn} are another algebraically independent generating set for Λ.

For the assertion about the antipode S applied to en or hn, note that the coproduct formulas for en, hn
in Proposition 2.18(ii),(iii) show that the defining relations for their antipodes (1.12) will in this case be

∑

i+j=n

S(ei)ej = δ0,n =
∑

i+j=n

eiS(ej)

∑

i+j=n

S(hi)hj = δ0,n =
∑

i+j=n

hiS(hj)

because uǫ(en) = uǫ(hn) = δ0,n. Comparing these to (2.11), one concludes via induction on n that S(en) =
(−1)nhn and S(hn) = (−1)nen. �

Proposition 2.19 shows that the antipode S on Λ is, up to sign, the same as the fundamental involution
ω: one has

(2.14) S(f) = (−1)nω(f) for f ∈ Λn

since this formula holds for all elements of the generating set {en} (or {hn}).
Remark 2.20. Up to now we have not yet derived how the involution ω and the antipode S act on (skew)
Schur functions, which is quite beautiful:

(2.15)
ω(sλ/µ) = sλt/µt

S(sλ/µ) = (−1)|λ/µ|sλt/µt

where recall that λt is the transpose or conjugate partition to λ, and |λ/µ| is the number of squares in the
skew diagram λ/µ, that is, |λ/µ| = n− k if λ, µ lie in Parn,Park respectively.

We will deduce this later in two ways, once as an exercise using skewing operators in Exercise 2.49, and
for the second time from the action of the antipode in QSym on P -partition enumerators in Corollary 5.24.
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However, one could also deduce it immediately from our knowledge of the action of ω and S on en, hn, if we
were to prove the following famous Jacobi-Trudi and dual Jacobi-Trudi formulas.

Theorem 2.21. Skew Schur functions are the following polynomials in {hn}, {en}:
sλ/µ = det(hλi−µj−i+j)i,j=1,2,...,ℓ

sλt/µt = det(eλi−µj−i+j)i,j=1,2,...,ℓ

if λ has at most ℓ nonzero parts.

Since we appear not to need these formulas in the sequel, we will omit the proofs. Various proofs are
well-explained in [49, §I.5], [62, §4.5], [72, §7.16]. An elegant treatment of Schur polynomials taking the
Jacobi-Trudi formula as the definition of sλ is given by Tamvakis [78].

2.5. Cauchy product, Hall inner product, self-duality. The Schur functions, although a bit unmo-
tivated right now, have special properties with regard to the Hopf structure. One property is intimately
connected with the following Cauchy identity.

Theorem 2.22. One has the following Schur function expansion for the Cauchy product/Cauchy kernel

(2.16)

∞∏

i,j=1

(1 − xiyj)
−1 =

∑

λ∈Par

sλ(x)sλ(y).

Remark 2.23. Some readers may be bothered by the ambient ring in which this expansion takes place, which
is a certain completion of R(x) ⊗ R(y). One simple way to understand it is to replace each xi by xit, and
write the equivalent identity in the power series ring R(x)⊗R(y)[[t]]

(2.17)

∞∏

i,j=1

(1− txiyj)
−1 =

∑

λ∈Par

t|λ|sλ(x)sλ(y).

(Recall that |λ| = λ1 + λ2 + · · ·+ λℓ for any partition λ = (λ1, λ2, . . . , λℓ).)

Proof. We follow the standard combinatorial proof (see [62, §4.8],[72, §7.11,7.12]), which rewrites the left
and right sides of (2.17), and then compares them with the Robinson-Schensted-Knuth (RSK) bijection. On
the left side, expanding out each geometric series

(1− txiyj)
−1 = 1 + txiyj + (txiyj)

2 + (txiyj)
3 + · · ·

and thinking of (xiyj)
m asm occurrences of a biletter

(
i
j

)
, one can think of the left side as a sum over multisets

of biletters
(
i1
j1

)
, . . . ,

(
iℓ
jℓ

)
. Order the biletters in such a multiset in a lexicographic order ≤lex that first checks

if i1 ≤ i2 and then if i1 = i2 checks if j1 ≤ j2. Defining a biword to be an array
(
i
j

)
=
(
i1···iℓ
j1···jℓ

)
in which the

biletters are ordered
(
i1
j1

)
≤lex · · · ≤lex

(
iℓ
jℓ

)
, then the left side of (2.17) is the sum

∑
tℓxcont(i)ycont(j) over

all biwords
(
i
j

)
, where ℓ stands for the number of biletters in the biword. On the right side, expanding out

the Schur functions as sums of tableaux gives
∑

(P,Q) t
ℓxcont(Q)ycont(P ) in which the sum is over all ordered

pairs (P,Q) of column-strict tableaux having the same shape, with ℓ cells.

The Robinson-Schensted-Knuth insertion algorithm gives us a bijection between the biwords
(
i

j

)
and the

tableau pairs (P,Q), with the property that

cont(i) = cont(Q),

cont(j) = cont(P ).

Starting with the pair (P0, Q0) = (∅,∅) and m = 0, it inserts one at a time the next biletter
(
im+1

jm+1

)
of the

biword into the pair of tableaux (Pm, Qm) already built; see Example 2.24 below. The bottom letter jm+1

tries to insert itself into the first row of Pm by either bumping out the leftmost letter in the first row strictly
larger than jm+1, or else placing itself at the right end of the row if no such larger letter exists. If a letter was
bumped from the first row, it follows the same rules to insert itself into the second row, and so on. At the
end of the bumping, the tableau Pm+1 created has an extra corner cell not present in Pm, and one creates
Qm+1 from Qm by adding the top letter im+1 of

(
im+1

jm+1

)
to Qm in this extra corner cell location. After all of

the biletters have been inserted, the result is (Pℓ, Qℓ) =: (P,Q).
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Example 2.24. The term in the expansion of the left side of (2.16) corresponding to

(x1y2)
1(x1y4)

1(x2y1)
1(x4y1)

1(x4y3)
2(x5y2)

1

is the biword
(
i
j

)
=
(
1124445
2411332

)
, whose RSK insertion goes as follows:

P0 = ∅ Q0 = ∅

P1 = 2 Q1 = 1

P2 = 2 4 Q2 = 1 1

P3 =
1 4
2

Q3 =
1 1
2

P4 =
1 1
2 4

Q4 =
1 1
2 4

P5 =
1 1 3
2 4

Q5 =
1 1 4
2 4

P6 =
1 1 3 3
2 4

Q6 =
1 1 4 4
2 4

P := P7 =
1 1 2 3
2 3
4

Q := Q7 =
1 1 4 4
2 4
5

It requires some thought, but is not too hard, to see that the bumping rule maintains the property that
Pm is a column-strict tableau of some Ferrers shape throughout. It should be clear that (Pm, Qm) have the
same shape at each stage. Also, the construction of Qm shows that it is at least weakly increasing in rows and
weakly increasing in columns throughout. What is perhaps least clear is that Qm remains strictly increasing
down columns. That is, when one has a string of equal letters on top im = im+1 = · · · = im+r, so that on
bottom one bumps in jm ≤ jm+1 ≤ · · · ≤ jm+r, one needs to know that the new cells form a horizontal strip,
that is, no two of them lie in the same column. This follows once one observes that when one bumps in
two letters j ≤ j′, with j bumped in first, the bumping path for j′ (the cells into which letters bump) stays
strictly to the right, within each row, of the bumping path for j. As an example, when jm+1 = 1 is inserted
into the tableau Pm shown below, the result Pm+1 is shown with bumping path entries underlined:

Pm =

1 1 2 2 3
2 2 4 4
3 4 5
4 6 6

insert7−→
jm+1=1

Pm+1 =

1 1 1 2 3
2 2 2 4
3 4 4
4 5 6
6

To see that the map is a bijection, we show how to recover
(
i

j

)
from (P,Q). This is done by reverse

bumping from (Pm+1, Qm+1) to recover both the biletter
(
im+1

jm+1

)
and the tableaux (Pm, Qm), as follows.

Firstly, im+1 is the maximum entry of Qm+1, and Qm is obtained by removing the rightmost occurrence
of this letter im+1 from Qm+1.

7 To produce Pm and jm+1, find the position of the rightmost occurrence
of im+1 in Qm+1, and start reverse bumping in Pm+1 from the entry in this same position, where reverse
bumping an entry means inserting it into one row higher by having it bump out the rightmost entry which
is strictly smaller. The entry bumped out of the first row is jm+1, and the resulting tableau is Pm.

Finally, to see that the RSK map is surjective, one needs to show that the reverse bumping procedure can
be applied to any pair (P,Q) of column-strict tableaux of the same shape, and will result in a (lexicograph-

ically ordered) biword
(
i
j

)
. We leave this verification to the reader. �

7It necessarily has to be the rightmost occurrence, since (by our previous observation on bumping paths) the cell into which
im+1 was filled at the step from Qm to Qm+1 lies further right than any existing cell of Qm containing the letter im+1.
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Corollary 2.25. In the Schur function basis {sλ} for Λ, the structure constants for multiplication and
comultiplication are the same, that is, if one defines cλµ,ν , ĉ

λ
µ,ν via the unique expansions

(2.18)

sµsν =
∑

λ

cλµ,νsλ

∆(sλ) =
∑

µ,ν

ĉλµ,νsµ ⊗ sν

then cλµ,ν = ĉλµ,ν .

Proof. The identity (2.16) lets one interpret both cλµ,ν , ĉ
λ
µ,ν as the coefficient of sµ(x)sν(y)sλ(z) in the product

∞∏

i,j=1

(1− xizj)
−1

∞∏

i,j=1

(1− yizj)
−1 =

(
∑

µ

sµ(x)sµ(z)

)(
∑

ν

sν(y)sν (z)

)

=
∑

µ,ν

sµ(x)sν(y) · sµ(z)sν(z)

=
∑

µ,ν

sµ(x)sν(y)

(
∑

λ

cλµ,νsλ(z)

)

since, regarding x1, x2, . . . , y1, y2, . . . as lying in a single variable set (x,y), separate from the variables z,
the Cauchy identity (2.16) expands the same product as

∞∏

i,j=1

(1− xizj)
−1

∞∏

i,j=1

(1− yizj)
−1 =

∑

λ

sλ(x,y)sλ(z)

=
∑

λ

(
∑

µ,ν

ĉλµ,νsµ(x)sν(y)

)
sλ(z).

�

Definition 2.26. The coefficients cλµ,ν = ĉλµ,ν appearing in the expansions (2.18) are called Littlewood-
Richardson coefficients.

Remark 2.27. Noting on one hand the expansion

sλ(x,y) = ∆(sλ) =
∑

µ,ν

cλµ,νsµ(x)sν (y)

and on the other hand
sλ(x,y) =

∑

µ⊆λ
sµ(x)sλ/µ(y)

one concludes another standard interpretation for cλµ,ν :

sλ/µ =
∑

ν

cλµ,νsν .

In particular, cλµ,ν vanishes unless µ, ν ⊆ λ and |µ|+ |ν| = |λ|. Note also that cλµ,ν = cλν,µ. We will interpret

cλµ,ν combinatorially in Section 2.6.

Definition 2.28. Define the Hall inner product on Λ to be the k-bilinear form (·, ·) which makes {sλ} an
orthonormal basis, that is, (sλ, sν) = δλ,ν .

Corollary 2.29. The isomorphism Λo ∼= Λ induced by the Hall inner product is an isomorphism of Hopf
algebras.

Proof. We have seen that the orthonormal basis {sλ} of Schur functions is self-dual, in the sense that its
multiplication and comultiplication structure constants are the same. Thus the isomorphism Λo ∼= Λ induced
by the Hall inner product is an isomorphism of bialgebras, and hence also a Hopf algebra isomorphism by
Proposition 1.35(c). �

We next identify two other dual pairs of bases, by expanding the Cauchy product in two other ways.
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Proposition 2.30. One can also expand

(2.19)
∞∏

i,j=1

(1− xiyj)
−1 =

∑

λ∈Par

hλ(x)mλ(y) =
∑

λ∈Par

z−1
λ pλ(x)pλ(y)

where zλ := m1! · 1m1 ·m2! · 2m2 · · · if λ = (1m1 , 2m2 , . . .) with multiplicity mi for the part i.

Remark 2.31. It is relevant later (and explains the notation) that zλ is the size of the Sn-centralizer subgroup
for a permutation having cycle type λ with |λ| = n.

Proof. For the first expansion, note that (2.8) shows
∞∏

i,j=1

(1 − xiyj)
−1 =

∞∏

j=1

∑

n≥0

hn(x)y
n
j

=
∑

weak
compositions
(n1,n2,...)

(hn1(x)hn2(x) · · · )(yn1
1 yn2

2 · · · )

=
∑

λ∈Par

hλ(x)mλ(y).

For the second expansion (and for later use in the proof of Theorem 4.35) note that

logH(t) = log

∞∏

i=1

(1− xit)
−1 =

∞∑

i=1

− log(1 − xit) =

∞∑

i=1

∞∑

m=1

(xit)
m

m
=

∞∑

m=1

1

m
pm(x)tm

so that taking d
dt then shows that

(2.20) P (t) :=
∑

m≥0

pm+1t
m =

H ′(t)

H(t)
= H ′(t)E(−t).

A similar calculation shows that

log

∞∏

i,j=1

(1− xiyj)
−1 =

∞∑

m=1

1

m
pm(x)pm(y)

and hence

∞∏

i,j=1

(1− xiyj)
−1 = exp

( ∞∑

m=1

1

m
pm(x)pm(y)

)
=

∞∑

k=0

1

k!

( ∞∑

m=1

1

m
pm(x)pm(y)

)k

=

∞∑

k=0

1

k!

∑

(m1,m2,...)∈N∞:
m1+m2+···=k

(
k

m1,m2, . . .

)(
p1(x)p1(y)

1

)m1
(
p2(x)p2(y)

2

)m2

· · ·

=
∑

weak
compositions
(m1,m2,...)

(p1(x)p1(y))
m1

1m1m1!
· (p2(x)p2(y))

m2

2m2m2!
· · · =

∑

λ∈Par

pλ(x)pλ(y)

zλ
.

�

Corollary 2.32. With respect to the Hall inner product on Λ, one also has dual bases {hλ} and {mλ}, as
well as another orthonormal basis { pλ√

zλ
}.

Proof. Since (2.16) and (2.19) showed
∞∏

i,j=1

(1− xiyj)
−1 =

∑

λ∈Par

sλ(x)sλ(y) =
∑

λ∈Par

hλ(x)mλ(y) =
∑

λ∈Par

pλ(x)√
zλ

pλ(y)√
zλ

it suffices to show that any pair of bases {uλ}, {vλ} having
∑

λ∈Par

sλ(x)sλ(y) =
∑

λ∈Par

uλ(x)vλ(y)



HOPF ALGEBRAS IN COMBINATORICS 27

will be dual with respect to (·, ·). Write transition matrices A = (aν,λ), B = (bν,λ) uniquely expressing

uλ =
∑

ν

aν,λsν ,

vλ =
∑

ν

bν,λsν .

Then orthonormality of the sλ gives (uα, vβ) =
∑

ν aν,αbν,β , and hence we want AtB = I, that is, B−1 = At.
On the other hand, one has

∑

λ

sλ(x)sλ(y) =
∑

λ

uλ(x)vλ(y) =
∑

λ

∑

ν

aν,λsν(x)
∑

ρ

bρ,λsρ(y).

Comparing coefficients of sν(x)sρ(y) forces
∑

λ aν,λbρ,λ = δν,ρ, or in other words, ABt = I. Since A and
Bt are block-diagonal matrices with each block having finite size (as Λ is graded), this yields BtA = I, and
hence AtB = I, as desired. �

2.6. Bialternants, Littlewood-Richardson: Stembridge’s concise proof. There is a more natural
way in which Schur functions arise as a k-basis for Λ, coming from consideration of polynomials in a finite
variable set, and the relation between those which are symmetric and those which are alternating.

For the remainder of this section, fix a positive integer n, and let x = (x1, . . . , xn) be a finite variable set.
This means that sλ/µ = sλ/µ(x) =

∑
T xcont(T ) is a generating function for column-strict tableaux T as in

Definition 2.16, but with the extra condition that T have entries in {1, 2, . . . , n}. We will assume without
further mention that all partitions appearing in the section have at most n parts. Lastly, we also take
k = Z or a field of characteristic not equal to 2, to avoid certain annoyances in the discussion of alternating
polynomials in characteristic 2.

Definition 2.33. Say that a polynomial f(x) = f(x1, . . . , xn) is alternating if for every permutation w in
Sn one has that

(wf)(x) = f(xw(1), . . . , xw(n)) = sgn(w)f(x).

Let Λsgn ⊂ k[x1, . . . , xn] denote the subset of alternating polynomials8.

As with Λ and its monomial basis {mλ}, there is an obvious k-basis for Λsgn, coming from the fact that
a polynomial f =

∑
α cαx

α is alternating if and only if cw(α) = sgn(w)cα for every w in Sn and every weak
composition α. This means that every alternating f is a k-linear combination of the following elements.

Definition 2.34. For α = (α1, . . . , αn) in Nn, define the alternant

aα :=
∑

w∈Sn

sgn(w)w(xα) = det




xα1
1 · · · xαn

1

xα1
2 · · · xαn

2
...

. . .
...

xα1
n · · · xαn

n


 .

Example 2.35. One has

a(1,5,0) = x11x
5
2x

0
3 − x51x

1
2x

0
3 − x11x

0
2x

5
3 − x01x

5
2x

1
3 + x01x

1
2x

5
3 + x51x

0
2x

1
3 = −a(5,1,0).

Meanwhile, a(5,2,2) = 0 since the transposition t =
(
123
132

)
fixes (5, 2, 2) and hence

a(5,2,2) = t(a(5,2,2)) = sgn(t)a(5,2,2) = −a(5,2,2).
Alternatively, a(5,2,2) = 0 as it is a determinant of a matrix with two equal columns.

This example illustrates that, for a k-basis for Λsgn, one can restrict attention to alternants aα in which α is
a strict partition, i.e., in which α satisfies α1 > α2 > · · · > αn. One can therefore uniquely express α = λ+ρ,
where λ is a (weak) partition λ1 ≥ · · · ≥ λn ≥ 0 and where ρ := (n− 1, n− 2, . . . , 2, 1, 0) is sometimes called
the staircase partition due to its Ferrers shape. For example α = (5, 1, 0) = (3, 0, 0) + (2, 1, 0) = λ+ ρ.

8When k has characteristic 2, it is probably best to define the alternating polynomials Λsgn
k

as the subspace Λsgn ⊗Z k ⊂

Z[x1, . . . , xn]⊗Z k ∼= k[x1, . . . , xn]
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Proposition 2.36. The alternants {aλ+ρ} as λ runs through the partitions with at most n parts form a
k-basis for Λsgn. In addition, the bialternants {aλ+ρ

aρ
} as λ runs through the same set form a k-basis for

Λ(x1, . . . , xn) = k[x1, . . . , xn]
Sn .

Proof. The first assertion should be clear from our previous discussion: the alternants {aλ+ρ} span Λsgn by
definition, and they are k-linearly independent because they are supported on disjoint sets of monomials xα.

The second assertion follows from the first, after proving the following Claim: f(x) lies in Λsgn if and
only if f(x) = aρ · g(x) where g(x) lies in k[x]Sn and where

aρ = det(xn−ji )i,j=1,2,...,n =
∏

1≤i<j≤n
(xi − xj)

is the Vandermonde determinant/product. In other words

Λsgn = aρ · k[x]Sn

is a free k[x]Sn -module of rank one, with aρ as its k[x]Sn -basis element.
To see the Claim, first note the inclusion

Λsgn ⊃ aρ · k[x]Sn

since the product of a symmetric polynomial and an alternating polynomial is an alternating polynomial. For
the reverse inclusion, note that since an alternating polynomial f(x) changes sign whenever one exchanges
two distinct variables xi, xj , it must vanish upon setting xi = xj , and therefore be divisible by xi − xj , so

divisible by the entire product
∏

1≤i<j≤n(xi − xj) = aρ. But then the quotient g(x) = f(x)
aρ

is symmetric, as

it is a quotient of two alternating polynomials. �

Our goal is to show that the mysterious bialternant basis {aλ+ρ

aρ
} are actually the Schur functions {sλ(x)}.

Stembridge [75] noted that one could give a remarkably concise proof of an even stronger assertion, which
simultaneously gives one of the standard combinatorial interpretations for the Littlewood-Richardson coeffi-
cients cλµ,ν . For the purposes of stating it, we introduce for a tableau T the notation T |cols≥j (resp. T |cols≤j)
to indicate the subtableau which is the restriction of T to the union of its columns j, j + 1, j + 2, . . . (resp.
columns 1, 2, . . . , j).

Theorem 2.37. For partitions λ, µ, ν with µ ⊆ λ, one has

aν+ρsλ/µ =
∑

T

aν+cont(T )+ρ

where T runs through all column-strict tableaux with entries in {1, 2, . . . , n} of shape λ/µ with the property
that for all j = 1, 2, . . . one has ν + cont(T |cols≥j) a partition.

Before proving Theorem 2.37, let us see some of its consequences.

Corollary 2.38.

sλ(x) =
aλ+ρ
aρ

.

Proof. Take ν = µ = ∅ in Theorem 2.37. Note that for any λ, there is only one column-strict tableau T of
shape λ having each cont(T |cols≥j) a partition, namely the one having every entry in row i equal to i:

1 1 1 1 1
2 2 2
3 3 3
4 4

Furthermore, this T has cont(T ) = λ, so the theorem says aρsλ = aλ+ρ. �
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Example 2.39. For n = 2, so that ρ = (1, 0), if we take λ = (4, 2), then one has

aλ+ρ
aρ

=
a(4,2)+(1,0)

a(1,0)
=
a(5,2)
a(1,0)

=
x51x

2
2 − x21x

5
2

x1 − x2

= x41x
2
2 + x31x

3
2 + x21x

4
2

= x
cont





1111
22





+ x
cont





1112
22





+ x
cont





1122
22





= s(4,2) = sλ.

Next divide through by aρ on both sides of the theorem to give the following.

Corollary 2.40. For partitions λ, µ, ν having at most n parts, one has

sνsλ/µ =
∑

T

sν+cont(T )

where T runs through the same set as in Theorem 2.37. In particular, taking ν = ∅,

sλ/µ =
∑

T

scont(T )

where in the sum T runs through all column-strict tableaux of shape λ/µ for which each cont(T |cols≥j) is a
partition.

By taking the number of variables n sufficiently large, one deduces from this last assertion the following
version of the Littlewood-Richardson rule.

Corollary 2.41. For partitions λ, µ, ν (of any lengths), the Littlewood-Richardson coefficient cλµ,ν counts
column-strict tableaux T of shape λ/µ with cont(T ) = ν having the property that each cont(T |cols≥j) is a
partition.

Proof of Theorem 2.37. Start by rewriting the left side of the theorem, and using the fact that w(sλ/µ) = sλ/µ
for any w in Sn:

aν+ρsλ/µ =
∑

w∈Sn

sgn(w)xw(ν+ρ)w(sλ/µ)

=
∑

w∈Sn

sgn(w)xw(ν+ρ)
∑

column-strict T
of shape λ/µ

xw(cont(T ))

=
∑

column-strict T
of shape λ/µ

∑

w∈Sn

sgn(w)xw(ν+cont(T )+ρ)

=
∑

column-strict T
of shape λ/µ

aν+cont(T )+ρ

We wish to cancel out all the summands indexed by column-strict tableaux T which fail any of the conditions
that ν + cont(T |cols≥j) be a partition. Given such a T , find the maximal j for which it fails this condition,
and then find the minimal k for which

νk + contk(T |cols≥j) < νk+1 + contk+1(T |cols≥j).
Maximality of j forces

νk + contk(T |cols≥j+1) ≥ νk+1 + contk+1(T |cols≥j+1).

Since column-strictness implies that column j of T can contain at most one occurrence of k or of k + 1 (or
neither or both), the previous two inequalities imply that column j must contain an occurrence of k+1 and
no occurrence of k, so that

νk + contk(T |cols≥j) + 1 = νk+1 + contk+1(T |cols≥j).
This implies that the adjacent transposition tk,k+1 swapping k and k+1 fixes the vector ν+cont(T |cols≥j)+ρ.
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Now create a new tableau T ∗ from T by applying the Bender-Knuth involution (from the proof of Propo-
sition 2.9) on letters k, k + 1, but only to columns 1, 2, . . . , j − 1 of T , leaving columns j, j + 1, j + 2, . . .
unchanged. One should check that T ∗ is still column-strict, but this holds because column j of T has no
occurrences of letter k. Note that

tk,k+1 cont(T |cols≤j−1) = cont(T ∗|cols≤j−1)

and hence
tk,k+1(ν + cont(T ) + ρ) = ν + cont(T ∗) + ρ

so that aν+cont(T )+ρ = −aν+cont(T∗)+ρ.
Because T, T ∗ have exactly the same columns j, j + 1, j + 2, . . ., the tableau T ∗ is also a violator of at

least one of the conditions that ν + cont(T ∗|cols≥j) be a partition, and has the same choice of maximal j
and minimal k as did T . Hence the map T 7→ T ∗ is an involution on the violators that lets one cancel their
summands aν+cont(T )+ρ and aν+cont(T∗)+ρ in pairs. �

2.7. The Pieri and Assaf-McNamara skew Pieri rule. The classical Pieri rule refers to two special
cases of the Littlewood-Richardson rule. To state them, recall that a skew shape with n cells is called a
horizontal (resp. vertical) n-strip if no two of its cells lie in the same column (resp. row).

Theorem 2.42.
sλhn =

∑

λ+:λ+/λ is a
horizontal n-strip

sλ+

sλen =
∑

λ+:λ+/λ is a
vertical n-strip

sλ+

Example 2.43.
s
� � �

� �

� �

•
h
� �

=

s
� � �

� �

� �

� �

+

s
� � �

� � �

� �

�

+

s
� � � �

� �

� �

�

+

s
� � � �

� � �

� �

+

s
� � � � �

� �

� �

Proof. For the first Pieri formula involving hn, as hn = s(n) one has

sλhn =
∑

λ+

cλ
+

λ,(n)sλ+ .

Corollary 2.41 says cλ
+

λ,(n) counts column-strict tableaux T of shape λ+/λ having cont(T ) = (n) (i.e. all

entries of T are 1’s), with an extra condition. Since its entries are all equal, such a T must certainly have
shape being a horizontal strip. Conversely for any horizontal strip, there is a unique such filling, and it will

trivially satisfy the extra condition that cont(T |cols≥j) is a partition for each j. Hence cλ
+

λ,(n) is 1 if λ+/λ is

a horizontal n-strip, and 0 else.
For the second Pieri formula involving en, using en = s(n) one has

sλen =
∑

λ+

cλ
+

λ,(1n)sλ+ .
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Corollary 2.41 says cλ
+

λ,(1n) counts column-strict tableaux T of shape λ+/λ having cont(T ) = (1n), so its

entries are 1, 2, . . . , n each occurring once, with the extra condition that 1, 2, . . . , n appear from right-to-left.
Together with the tableau condition, this forces at most one entry in each row, that is λ+/λ is a vertical

strip, and then there is a unique way to fill it maintaining column-strictness. Thus cλ
+

λ,(1n) is 1 if λ+/λ is a

vertical n-strip, and 0 else. �

Assaf and McNamara [7] recently proved an elegant generalization.

Theorem 2.44.
sλ/µhn =

∑

λ+,µ−:

λ+/λ a horizontal strip

µ/µ− a vertical strip

|λ+/λ|+|µ/µ−|=n

(−1)|µ/µ
−|sλ+/µ−

sλ/µen =
∑

λ+,µ−:
λ+/λ a vertical strip

µ/µ− a horizontal strip

|λ+/λ|+|µ/µ−|=n

(−1)|µ/µ
−|sλ+/µ−

Example 2.45.
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Theorem 2.44 is proven in the next section, using an important Hopf algebra tool.

2.8. Skewing and Lam’s proof of the skew Pieri rule. We codify here the operation s⊥µ of skewing by
sµ, acting on Schur functions via

s⊥µ (sλ) = sλ/µ

where one defines sλ/µ = 0 if µ 6⊆ λ. These operations play a crucial role
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• in Lam’s proof of the skew Pieri rule,
• in Lam, Lauve, and Sottile’s proof [42] of a more general skew Littlewood-Richardson rule that had
been conjectured by Assaf and McNamara, and

• in Zelevinsky’s structure theory of PSH-algebras to be developed in the next chapter.

Definition 2.46. Given a Hopf algebra A of finite type, and its (restricted) dual Ao, let (·, ·) = (·, ·)A be the

pairing (f, a) := f(a) for f in Ao and a in A. Then define for each f in Ao an operator A
f⊥

→ A as follows9:
for a in A with ∆(a) =

∑
a1 ⊗ a2, let

f⊥(a) =
∑

(f, a1)a2.

Note that when one takes A = Λ = Ao, the element a = sλ has ∆sλ =
∑
µ sµ ⊗ sλ/µ. Hence if f = sµ, then

one has f⊥(a) = sλ/µ = s⊥µ (sλ) as desired.

Proposition 2.47. The f⊥ operators A→ A have the following properties.

(i) f⊥ is adjoint to left multiplication Ao
f ·→ Ao in the sense that

(g, f⊥(a)) = (fg, a).

(ii) (fg)⊥(a) = g⊥(f⊥(a)), that is, A becomes a right Ao-module via the f⊥ action.
(iii) If ∆(f) =

∑
f1 ⊗ f2, then

f⊥(ab) =
∑

f⊥
1 (a)f⊥

2 (b).

In particular, if f is primitive in Ao, so that ∆(f) = f ⊗ 1 + 1⊗ f , then f⊥ is a derivation:

f⊥(ab) = f⊥(a) · b+ a · f⊥(b).

Proof. For (i), note that

(g, f⊥(a)) =
∑

(f, a1)(g, a2) = (f ⊗ g,∆A(a)) = (mAo(f ⊗ g), a) = (fg, a).

For (ii), using (i) and considering any h in Ao, one has that

(h, (fg)⊥(a)) = (fgh, a) = (gh, f⊥(a)) = (h, g⊥(f⊥(a))).

For (iii), noting that

∆(ab) = ∆(a)∆(b) =



∑

(a)

a1 ⊗ a2





∑

(b)

b1 ⊗ b2


 =

∑

(a),(b)

a1b1 ⊗ a2b2,

one has that

f⊥(ab) =
∑

(a),(b)

(f, a1b1)A a2b2 =
∑

(a),(b)

(∆(f), a1 ⊗ b1)A⊗A a2b2

=
∑

(f),(a),(b)

(f1, a1)A(f2, b1)A a2b2

=
∑

(f)



∑

(a)

(f1, a1)Aa2





∑

(b)

(f2, b1)Ab2


 =

∑

(f)

f⊥
1 (a)f⊥

2 (b).

�

The following interaction between multiplication and h⊥ is the key to deducing the skew Pieri formula from
the usual Pieri formulas.

Lemma 2.48. For any f, g in Λ, one has

f · h⊥n (g) =
n∑

k=0

(−1)kh⊥n−k(e
⊥
k (f) · g).

9This f⊥(a) is called a ↼ f in Montgomery [56, Example 1.6.5]
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Proof. Starting with the right side, first apply Proposition 2.47(iii):
n∑

k=0

(−1)kh⊥n−k(e
⊥
k (f) · g)

=

n∑

k=0

(−1)k
n−k∑

j=0

h⊥j (e
⊥
k (f)) · h⊥n−k−j(g)

=

n∑

i=0

(−1)n−i



n−i∑

j=0

(−1)jh⊥j (e
⊥
n−i−j(f))


 · h⊥i (g) ( reindexing i := n− k − j )

=

n∑

i=0

(−1)n−i



n−i∑

j=0

(−1)jen−i−jhj




⊥

(f) · h⊥i (g) ( by Proposition 2.47(ii) )

= 1⊥(f) · h⊥n (g) = f · h⊥n (g)
where the second-to-last equality used (2.11). �

Proof of Theorem 2.44. We prove the first skew Pieri rule; the second is analogous, swapping hi ↔ ei and
swapping the words “vertical” ↔ “horizontal”. Symmetry of (·, ·)Λ, commutativity of Λ, and Proposi-
tion 2.47(i) imply for f in Λ,

(2.21)
(
sλ/µ, f

)
=
(
s⊥µ (sλ), f

)
= (sλ, sµf)

Hence for any g in Λ, one can compute that

(2.22)

(hnsλ/µ , g)
Prop.
=

2.47(i)
(sλ/µ , h

⊥
n g)

(2.21)
= (sλ , sµ · h⊥n g)

Lemma
=

2.48

n∑

k=0

(−1)k(sλ , h
⊥
n−k(e

⊥
k (sµ) · g))

Prop.
=

2.47(i)

n∑

k=0

(−1)k(hn−ksλ , e
⊥
k (sµ) · g)

The first Pieri rule in Theorem 2.42 lets one rewrite hn−ksλ =
∑

λ+ sλ+ , with the sum running through
λ+ for which λ+/λ is a horizontal (n − k)-strip. The second Pieri rule in Theorem 2.42 lets one rewrite
e⊥k sµ =

∑
µ− sµ− , with the sum running through µ− for which µ/µ− is a vertical k-strip, since (sµ− , e⊥k sµ) =

(eksµ− , sµ). Thus the last line of (2.22) becomes

n∑

k=0

(−1)k



∑

λ+

sλ+ ,
∑

µ−

sµ− · g


 (2.21)

=




n∑

k=0

(−1)k
∑

(λ+,µ−)

sλ+/µ− , g




where the sum is over the pairs (λ+, µ−) for which λ+/λ is a horizontal (n− k)-strip and µ/µ− is a vertical
k-strip. �

Exercise 2.49. The goal of this exercise is to prove (2.15) using the skewing operators that we have
developed. Recall the involution ω : Λ → Λ defined in (2.13).

(a) Show that ω (pλ) = (−1)
|λ|−ℓ(λ)

pλ for any λ ∈ Par, where ℓ (λ) denotes the length of the partition λ.
(b) Show that ω is an isometry.
(c) Show that this same map ω : Λ → Λ is a Hopf automorphism.

(d) Prove that ω
(
a⊥b

)
= (ω (a))

⊥
(ω (b)) for every a ∈ Λ and b ∈ Λ.

(e) For any partition λ = (λ1, . . . , λℓ) with length ℓ(λ) = ℓ, prove that

e⊥ℓ sλ = s(λ1−1,λ2−1,...,λℓ−1).

(f) For any partition λ = (λ1, λ2, . . .) , prove that

h⊥λ1
sλ = s(λ2,λ3,λ4,...).

(g) Prove (2.15).
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3. Zelevinsky’s structure theory of positive self-dual Hopf algebras

Section 2 showed that, as a Z-basis for the Hopf algebra Λ = ΛZ, the Schur functions {sλ} have two special
properties: they have the same structure constants cλµ,ν for their multiplication as for their comultiplication
(Corollary 2.25), and these structure constants are all nonnegative integers (Corollary 2.41). Zelevinsky [81,
§2,3] isolated these two properties as crucial.

Definition 3.1. Say that a graded connected Hopf algebra A over k = Z with a distinguished Z-basis {σλ}
consisting of homogeneous elements is a positive self-dual Hopf algebra (or PSH) if it satisfies the two further
axioms

• (self-duality) The same structure constants aλµ,ν appear for the product σµσν =
∑

λ a
λ
µ,νσλ and

the coproduct ∆σλ =
∑
µ,ν a

λ
µ,νσµ ⊗ σν .

• (positivity) The aλµ,ν are all nonnegative (integers).

Call {σλ} the PSH-basis of A.

He then developed a beautiful structure theory for PSH-algebras, explaining how they can be uniquely
expressed as tensor products of copies of PSH’s each isomorphic to Λ after rescaling their grading. The next
few sections explain this, following his exposition closely.

3.1. Self-duality implies polynomiality. We begin with a property that forces a Hopf algebra to have
algebra structure which is a polynomial algebra, specifically the symmetric algebra Sym(p), where p is the
subspace of primitive elements.

Recall from Exercise 1.22 that for a graded connected Hopf algebraA =
⊕∞

n=0An, every x in the two-sided
ideal I := ker ǫ =

⊕
n>0An has the property that its comultiplication takes the form

∆(x) = 1⊗ x+ x⊗ 1 + ∆+(x)

where ∆+(x) lies in I ⊗ I. Recall also that the elements x for which ∆+(x) = 0 are called the primitives.
Denote by p the Z-submodule of primitive elements inside A.

Given a Hopf algebra A over k = Z with a PSH-basis {σλ}, we identify Ao with A via the bilinear form
(·, ·)A on A that makes this basis orthonormal. Similarly, the elements {σλ ⊗ σµ} give an orthonormal basis
for a form (·, ·)A⊗A on A⊗A. This is an instance of the following notion of self-duality.

Definition 3.2. Say that a bialgebra A is self-dual with respect to a given symmetric bilinear form (·, ·)
if one has (a,m(b ⊗ c))A = (∆(a), b ⊗ c) and (1A, a) = ǫ(a) for a, b, c in A. If A is a graded Hopf algebra
of finite type then this is equivalent to the k-module map A → Ao induced by (·, ·)A giving a Hopf algebra
isomorphism.

Proposition 3.3. Let A be a Hopf algebra over k = Z or k = Q which is graded, connected, and self-dual
with respect to a positive definite graded10 bilinear form. Then within the ideal I, the subspace of primitives
p is the orthogonal complement to the subspace I2. In particular, p ∩ I2 = 0, and when k = Q, one has
I = p⊕ I2.

Proof. Note that I2 = m(I ⊗ I). Hence an element x in I lies in the perpendicular space to I2 if and only
if one has for all y in I ⊗ I that

0 = (x,m(y))A = (∆(x), y)A⊗A = (∆+(x), y)A⊗A

where the second equality uses self-duality, while the third equality uses the fact that y lies in I ⊗ I and the
form (·, ·)A⊗A makes distinct homogeneous components orthogonal. Since y was arbitrary, this means x is
perpendicular to I2 if and only if ∆+(x) = 0, that is, x lies in p. �

Remark 3.4. One might wonder why we didn’t just say I = p ⊕ I2 even when k = Z in Proposition 3.3.
However, this is false even for A = ΛZ: the second homogeneous component (p⊕I2)2 is the index 2 sublattice
of Λ2 which is Z-spanned by {p2, e21}, containing 2e2, but not containing e2 itself.

Already the fact that p ∩ I2 = 0 has a strong implication.

Lemma 3.5. A graded connected Hopf algebra A over any ring k having p ∩ I2 = 0 has algebra structure
which is commutative.

10That is, (Ai, Aj) = 0 for i 6= j.
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Proof. The component A0 = k commutes with all of A. This forms the base case for an induction on i + j
in which one shows that any elements x in Ai and y in Aj with i, j > 0 will have [x, y] := xy− yx = 0. Since
[x, y] lies in I2, it suffices to show that [x, y] also lies in p:

∆[x, y] = [∆(x),∆(y)]

= [1⊗ x+ x⊗ 1 + ∆+(x), 1 ⊗ y + y ⊗ 1 + ∆+(y)]

= [1⊗ x+ x⊗ 1, 1⊗ y + y ⊗ 1]

+ [1⊗ x+ x⊗ 1,∆+(y)] + [∆+(x), 1 ⊗ y + y ⊗ 1] + [∆+(x),∆+(y)]

= [1⊗ x+ x⊗ 1, 1⊗ y + y ⊗ 1]

= 1⊗ [x, y] + [x, y]⊗ 1

showing that [x, y] lies in p. Here the second-to-last equality used the inductive hypotheses: homogeneity
implies that ∆+(x) is a sum of homogeneous tensors of the form z1 ⊗ z2 satisfying deg(z1), deg(z2) < i,
so that by induction they will commute with 1 ⊗ y, y ⊗ 1, thus proving that [∆+(x), 1 ⊗ y + y ⊗ 1] = 0; a
symmetric argument shows [1 ⊗ x+ x ⊗ 1,∆+(y)] = 0, and, a similar argument shows [∆+(x),∆+(y)] = 0.
The last equality is an easy calculation, and was done already in (1.9). �

Remark 3.6. Zelevinsky actually shows [81, Proof of A.1.3, p. 150] that the self-duality assumption (along
with hypotheses of unit, counit, graded, connected, and ∆ being a morphism for multiplication) already
implies the associativity of the multiplication in A ! One shows by induction on i+ j + k that any x, y, z in
Ai, Aj , Ak with i, j, k > 0 have vanishing associator assoc(x, y, z) := x(yz)−(xy)z. In the inductive step, one
first notes that assoc(x, y, z) lies in I2, and then checks that assoc(x, y, z) also lies in p, by a calculation very
similar to the one above, repeatedly using the fact that assoc(x, y, z) is multilinear in its three arguments.

This leads to a general structure theorem.

Theorem 3.7. If a graded, connected Hopf algebra A over a field k of characteristic zero has I = p ⊕ I2,
then the inclusion p →֒ A extends to a Hopf algebra isomorphism from the symmetric algebra Symk(p) → A.
In particular, A is both commutative and cocommutative.

Note that these hypotheses are valid, using Proposition 3.3, whenever A is obtained from a PSH (over Z)
by tensoring with Q.

Proof. Since Lemma 3.5 implies that A is commutative, the universal property of Symk(p) as a free com-
mutative algebra on generators p shows that the inclusion p →֒ A at least extends to an algebra morphism

Symk(p)
ϕ→ A. Since the Hopf structure on Symk(p) makes the elements of p primitive (see Example 1.18),

this ϕ is actually a coalgebra morphism (since ∆ ◦ϕ = (ϕ⊗ϕ) ◦∆ and ǫ ◦ϕ = ǫ need only to be checked on
algebra generators), hence a bialgebra morphism, hence a Hopf algebra morphism (by Proposition 1.35 (c)).
It remains to show that ϕ is surjective, and injective.

For the surjectivity of ϕ, note that the hypothesis I = p ⊕ I2 implies that the composite p →֒ I → I/I2

gives a k-vector space isomorphism. What follows is a standard argument to deduce that p generates A as
a commutative graded k-algebra. One shows by induction on n that any homogeneous element a in An lies
in the k-subalgebra generated by p. The base case n = 0 is trivial as a lies in k. In the inductive step where
a lies in I, write a ≡ p mod I2 for some p in p. Thus a = p+

∑
i bici, where bi, ci lie in I but have strictly

smaller degree, so that by induction they lie in the subalgebra generated by p, and hence so does a.
Note that the surjectivity argument did not use the assumption that k has characteristic zero, but we will

now use it in the injectivity argument for ϕ, to establish the following

(3.1) Claim: Every primitive element of Sym(p) lies in p = Sym1(p).

Note that this claim fails in positive characteristic, e.g. if k has characteristic 2 then x2 lies in Sym2(p),
however

∆(x2) = 1⊗ x2 + 2x⊗ x+ x2 ⊗ 1 = 1⊗ x2 + x2 ⊗ 1.

To see the claim, assume not, so that by gradedness, there must exist some primitive element y 6= 0 lying in
some Symn(p) with n ≥ 2. This would mean that the composite map f that follows the coproduct with a
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component projection

Symn(p)
∆−→

⊕

i+j=n

Symi(p)⊗ Symj(p) −→ Sym1(p)⊗ Symn−1(p)

has f(y) = 0. However, one can check on a basis that the multiplication backward Sym1(p)⊗ Symn−1(p)
m→

Symn(p) has the property that m ◦ f = n · 1Symn(p):

(m ◦ f)(x1 · · ·xn) = m




n∑

j=1

xj ⊗ x1 · · · x̂j · · ·xn


 = n · x1 · · ·xn

for x1, . . . , xn in p. Then n · y = m(f(y)) = m(0) = 0 leads to the contradiction that y = 0, since k has
characteristic zero.

Now one can argue the injectivity of the (graded) map11 ϕ by assuming that one has a nonzero homoge-
neous element u in ker(ϕ) of minimum degree. In particular, deg(u) ≥ 1. Also since p →֒ A, one has that u
is not in Sym1(p) = p, and hence u is not primitive by the previous Claim. Consequently ∆+(u) 6= 0, and
one can find a nonzero component u(i,j) of ∆+(u) lying in Sym(p)i ⊗ Sym(p)j for some i, j > 0. Since this
forces i, j < deg(u), one has that ϕ maps both Sym(p)i, Sym(p)j injectively into Ai, Aj . Hence the tensor
product map

Sym(p)i ⊗ Sym(p)j
ϕ⊗ϕ−→ Ai ⊗Aj

is also injective12. This implies (ϕ⊗ ϕ)(u(i,j)) 6= 0, giving the contradiction that

0 = ∆A
+(0) = ∆A

+(ϕ(u)) = (ϕ⊗ ϕ)(∆
Sym(p)
+ (u))

contains the nonzero Ai ⊗Aj-component (ϕ⊗ ϕ)(u(i,j)). �

Before closing this section, we mention one nonobvious corollary of the Claim (3.1), when applied to the
ring of symmetric functions ΛQ with Q-coefficients, since Proposition 2.19 says that ΛQ = Q[p1, p2, . . .] =
Sym(V ) where V = Q{p1, p2, . . .}.

Corollary 3.8. The subspace p of primitives in ΛQ is one-dimensional in each degree n = 1, 2, . . ., and
spanned by {p1, p2, . . .}.

3.2. The decomposition theorem. Our goal here is Zelevinsky’s theorem [81, Theorem 2.2] giving a
canonical decomposition of any PSH as a tensor product into PSH’s that each have only one primitive
element in their PSH-basis. For the sake of stating it, we introduce some notation.

Definition 3.9. Given A a PSH with PSH-basis Σ, let C := Σ ∩ p be the primitive elements in Σ. For each
ρ in C, let A(ρ) ⊂ A be the Z-span of

Σ(ρ) := {σ ∈ Σ : there exists n ≥ 0 with (σ, ρn) 6= 0}.

Theorem 3.10. Any PSH A has a canonical tensor product decomposition

A =
⊗

ρ∈C
A(ρ)

with A(ρ) a PSH, and ρ the only primitive element in its PSH-basis Σ(ρ).

11The grading on Sym(p) is induced from the grading on p, a homogeneous subspace of I ⊂ A as it is the kernel of the

graded map I
∆+
−→ A⊗ A.

12One needs to know that for two injective maps Vi
ϕi→ Wi of k-vector spaces Vi,Wi with i = 1, 2, the tensor product ϕ1⊗ϕ2

is also injective. Factoring it as ϕ1⊗ϕ2 = (1⊗ ϕ2)◦(ϕ1 ⊗ 1) , one sees that it suffices to show that for an injective map V
ϕ
→֒ W

of free k-modules, and any free k-module U , the map V ⊗U
ϕ⊗1
−→ W ⊗U is also injective. Since tensor products commute with

direct sums, and U is (isomorphic to) a direct sum of copies of k, this reduces to the easy-to-check case where U = k.

Note that some kind of freeness or flatness hypothesis on U is needed here since, e.g. the injective Z-module maps Z
ϕ1=(·×2)

−→ Z

and Z/2Z
ϕ2=1
−→ Z/2Z have ϕ1 ⊗ ϕ2 = 0 on Z⊗Z Z/2Z ∼= Z/2Z 6= 0.
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Although in all the applications, C will be finite, when C is infinite one should interpret the tensor product
in the theorem as the inductive limit of tensor products over finite subsets of C, that is, linear combinations
of basic tensors

⊗
ρ aρ in which there are only finitely many factors aρ 6= 1.

The first step toward the theorem uses a certain unique factorization property.

Lemma 3.11. Given P a set of pairwise orthogonal primitives in a PSH A,

(ρ1 · · · ρr, π1 · · ·πs) = 0

for ρi, πj in P unless r = s and one can reindex so that ρi = πi.

Proof. Induct on min(r, s). One has

(ρ1 · · · ρr, π1 · · ·πs) = (ρ2 · · · ρr, ρ⊥1 (π1 · · ·πs))

= (ρ2 · · · ρr,
s∑

j=1

(π1 · · ·πj−1 · ρ⊥1 (πj) · πj+1 · · ·πs))

from Proposition 2.47(iii) because ρ1 is primitive. On the other hand, since each πj is primitive, one has
ρ⊥1 (πj) = (ρ1, 1) · πj + (ρ1, πj) · 1 = (ρ1, πj) which vanishes unless ρ1 = πj . Hence (ρ1 · · · ρr, π1 · · ·πs) = 0
unless ρ1 ∈ {π1, . . . , πs}, in which case after reindexing so that π1 = ρ1, it equals

n · (ρ1, ρ1) · (ρ2 · · · ρr, π2 · · ·πs)
if there are exactly n occurrences of ρ1 among π1, . . . , πs. Now apply induction. �

So far the positivity hypothesis for a PSH has played little role. Now we use it to introduce a certain
partial order on the PSH A, and then a semigroup grading.

Definition 3.12. Let N := {0, 1, 2, . . .}, and for a subset S of an abelian group, let ZS (resp. NS) denote
the subgroup of Z-linear combinations (resp. subsemigroup of N-linear combinations) of the elements of S.

In a PSH A with PSH-basis Σ, the subset NΣ forms a subsemigroup, and lets one define a partial order
on A via a ≤ b if b− a lies in NΣ.

We note a few trivial properties of this partial order:

• The positivity hypothesis implies that NΣ · NΣ ⊂ NΣ.
• Hence multiplication by an element c ≥ 0 (meaning c lies in NΣ) preserves the order: a ≤ b implies
ac ≤ bc since (b− a)c lies in NΣ.

• Thus 0 ≤ c ≤ d and 0 ≤ a ≤ b implies ac ≤ bc ≤ bd.

This allows one to introduce a semigroup grading on A.

Definition 3.13. Let NC
fin denote the additive subsemigroup of NC consisting of those α = (αρ)ρ∈C with

finite support.
Note that for any α in NC

fin, one has that the product
∏
ρ∈C ρ

αρ ≥ 0. Define

Σ(α) := {σ ∈ Σ : σ ≤
∏

ρ∈C
ραρ},

that is, the subset of Σ on which
∏
ρ∈C ρ

αρ has support. Also define

A(α) := ZΣ(α) ⊂ A.

Proposition 3.14. The PSH A has an NC
fin-semigroup-grading: one has an orthogonal direct sum decompo-

sition

A =
⊕

α∈NC
fin

A(α)

for which

A(α)A(β) ⊂ A(α+β)(3.2)

∆A(α) ⊂
⊕

α=β+γ

A(β) ⊗A(γ).(3.3)
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Proof. We will make free use of the fact that a PSH A is commutative, since it embeds in A⊗Z Q, which is
commutative by Theorem 3.7.

Note that the orthogonality
(
A(α), A(β)

)
= 0 for α 6= β is equivalent to the assertion that

(∏
ρ∈C ρ

αρ ,
∏
ρ∈C ρ

βρ

)
=

0, which follows from Lemma 3.11.
Next let us deal with the assertion (3.2). It suffices to check that when τ, ω in Σ lie in A(α), A(β),

respectively, then τω lies in A(α+β). But note that any σ in Σ having σ ≤ τω will then have

σ ≤ τω ≤
∏

ρ∈C
ραρ ·

∏

ρ∈C
ρβρ =

∏

ρ∈C
ραρ+βρ

so that σ lies in A(α+β). This means that τω lies in A(α+β).
This lets us check that

⊕
α∈NC

fin
A(α) exhaust A. It suffices to check that any σ in Σ lies in some A(α).

Proceed by induction on deg(σ), with the case σ = 1 being trivial; the element 1 always lies in Σ, and hence
lies in A(α) for α = 0. For σ lying in I, by Proposition 3.3, one either has (σ, a) 6= 0 for some a in I2, or

else σ lies in (I2)⊥ = p, so that σ is in C and we are done. If (σ, a) 6= 0 with a in I2, then σ appears in the
support of some Z-linear combination of elements τω where τ, ω lie in Σ and have strictly smaller degree.
There exists at least one such pair τ, ω for which (σ, τω) 6= 0, and therefore σ ≤ τω. Then by induction τ, ω
lie in some A(α), A(β), respectively, so τω lies in A(α+β), and hence σ lies in A(α+β) also.

Self-duality shows that (3.2) implies (3.3): if a, b, c lie in A(α), A(β), A(γ), respectively, then (∆a, b ⊗
c)A⊗A = (a, bc)A = 0 unless α = β + γ. �

Proposition 3.15. For α, β in NC
fin with disjoint support, one has a bijection

Σ(α)× Σ(β) −→ Σ(α+ β)
(σ, τ) 7−→ στ.

Thus, the multiplication map A(α) ⊗A(β) → A(α+β) is an isomorphism.

Proof. We first check that for σ1, σ2 in Σ(α) and τ1, τ2 in Σ(β), one has

(3.4) (σ1τ1, σ2τ2) = δ(σ1,τ1),(σ2,τ2).

Note that this is equivalent to showing both

• that στ lie in Σ(α+ β) so that the map is well-defined, since it shows (στ, στ) = 1, and
• that the map is injective.

One calculates
(σ1τ1, σ2τ2)A = (σ1τ1,m(σ2 ⊗ τ2))A

= (∆(σ1τ1), σ2 ⊗ τ2)A⊗A

= (∆(σ1)∆(τ1), σ2 ⊗ τ2)A⊗A

Note that due to (3.3), ∆(σ1)∆(τ1) lies in
∑
A(α′+β′) ⊗A(α′′+β′′) where

α′ + α′′ = α

β′ + β′′ = β.

Since σ2 ⊗ τ2 lies in A(α) ⊗A(β), the only nonvanishing terms in the inner product come from those with

α′ + β′ = α

α′′ + β′′ = β.

As α, β have disjoint support, this can only happen if

α′ = α, α′′ = 0, β′ = 0, β′′ = β,

that is, the only nonvanishing term comes from (σ1 ⊗ 1)(1⊗ τ1) = σ1 ⊗ τ1. Hence

(σ1τ1, σ2τ2)A = (σ1 ⊗ τ1, σ2 ⊗ τ2)A⊗A = δ(σ1,τ1),(σ2,τ2).
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To see that the map is surjective, express
∏

ρ∈C
ραρ =

∑

i

σi

∏

ρ∈C
ρβρ =

∑

j

τj

with σi ∈ Σ(α) and τj in Σ(β). Then each product σiτj is in Σ(α+ β) by (3.4), and
∏

ρ∈C
ραρ+βρ =

∑

i,j

σiτj

shows that {σiτj} exhausts Σ(α+ β). This gives surjectivity. �

Proof of Theorem 3.10. Recall from Definition 3.9 that for each ρ in C, one defines A(ρ) ⊂ A to be the
Z-span of

Σ(ρ) := {σ ∈ Σ : there exists n ≥ 0 with (σ, ρn) 6= 0}.
In other words, A(ρ) :=

⊕
n≥0A(n·eρ) where eρ in NC

fin is the standard basis element indexed by ρ. Propo-

sition 3.14 then shows that A(ρ) is a subHopf algebra of A. Since every α in NC
fin can be expressed as the

(finite) sum
∑

ρ αρeρ, and the eρ have disjoint support, iterating Proposition 3.15 shows that A =
⊗

ρ∈C A(ρ).
Lastly, Σ(ρ) is clearly a PSH-basis for A(ρ), and if σ is any primitive element in Σ(ρ) then (σ, ρn) 6= 0 lets
one conclude via Lemma 3.11 that σ = ρ (and n = 1). �

3.3. Λ is the unique indecomposable PSH. The goal here is to prove the rest of Zelevinsky’s structure
theory for PSH’s. Namely, if A has only one primitive element ρ in its PSH-basis Σ, then A must be
isomorphic as a PSH to the ring of symmetric functions Λ, after one rescales the grading of A. Note that
every σ in Σ has σ ≤ ρn for some n, and hence has degree divisible by the degree of ρ. Thus one can divide
all degrees by that of ρ and assume ρ has degree 1.

The idea is to find within A and Σ a set of elements that play the role of

{hn = s(n)}n=0,1,2,..., {en = s(1n)}n=0,1,2,...

within A = Λ and its PSH-basis of Schur functions Σ = {sλ}. Zelevinsky’s argument does this by isolating
some properties that turn out to characterize these elements:

(a) h0 = e0 = 1, and h1 = e1 =: ρ has ρ2 a sum of two elements of Σ, namely

ρ2 = h2 + e2.

(b) For all n = 0, 1, 2, . . ., there exist unique elements hn, en in An ∩ Σ that satisfy

h⊥2 en = 0,

e⊥2 hn = 0

with h2, e2 being the two elements of Σ introduced in (a).
(c) For k = 0, 1, 2, . . . , n one has

h⊥k hn = hn−k and σ⊥hn = 0 for σ ∈ Σ \ {h0, h1, . . . , hn}
e⊥k en = en−k and σ⊥en = 0 for σ ∈ Σ \ {e0, e1, . . . , en}.

In particular, e⊥k hn = 0 = h⊥k en for k ≥ 2.
(d) Their coproducts are

∆(hn) =
∑

i+j=n

hi ⊗ hj ,

∆(en) =
∑

i+j=n

ei ⊗ ej.

We will prove Zelevinsky’s result [81, Theorem 3.1] as a combination of the following two theorems.

Theorem 3.16. Let A be a PSH with PSH-basis Σ containing only one primitive ρ, and assume that the
grading has been rescaled so that ρ has degree 1. Then, after renaming ρ = e1 = h1, one can find unique
sequences {hn}n=0,1,2,..., {en}n=0,1,2,... of elements of Σ having properties (a),(b),(c),(d) listed above.
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The second theorem uses the following notion.

Definition 3.17. A PSH-morphism A
ϕ→ A′ between two PSH’s A,A′ having PSH-bases Σ,Σ′ is a graded

Hopf algebra morphism for which ϕ(NΣ) ⊂ NΣ′. If A = A′ and Σ = Σ′ it will be called a PSH-endomorphism.
If ϕ is an isomorphism and restricts to a bijection Σ → Σ′, it will be called a PSH-isomorphism; if it is both
an isomorphism and an endomorphism, it is a PSH-automorphism.

Theorem 3.18. The elements {hn}n=0,1,2,..., {en}n=0,1,2,... in Theorem 3.16 also satisfy the following.

(e) The elements hn, en in A satisfy the same relation (2.11)
∑

i+j=n

(−1)ieihj = δ0,n.

as their counterparts in Λ, along with the property that

A = Z[h1, h2, . . .] = Z[e1, e2, . . .].

(f) There is exactly one nontrivial automorphism A
ω→ A as a PSH, swapping hn ↔ en.

(g) There are exactly two PSH-isomorphisms A→ Λ,
• one sending hn to the complete homogeneous symmetric functions hn(x), while sending en to
the elementary symmetric functions en(x),

• the second one (obtained by composing the first with ω) sending hn 7→ en(x) and en 7→ hn(x).

Before embarking on the proof, we mention one more bit of convenient terminology: say that an element
σ in Σ is a constituent of a in NΣ when σ ≤ a, that is, σ appears with nonzero coefficient cσ in the unique
expansion a =

∑
τ∈Σ cτ τ .

Proof of Theorem 3.16. One fact that occurs frequently is this:

(3.5) Every σ in Σ ∩An is a constituent of ρn.

This follows from Theorem 3.10, since ρ is the only primitive element of Σ: one has A = A(ρ) and Σ = Σ(ρ),
so that σ is a constituent of some ρm, and homogeneity considerations force m = n.

Assertion (a). Note that

(ρ2, ρ2) = (ρ⊥(ρ2), ρ) = (2ρ, ρ) = 2

using the fact that ρ⊥ is a derivation since ρ is primitive (Proposition 2.47(iii)). On the other hand, expressing
ρ2 =

∑
σ∈Σ cσσ with cσ in N, one has (ρ2, ρ2) =

∑
σ c

2
σ. Hence exactly two of the cσ = 1, so ρ2 has exactly

two distinct constituents. Denote them by h2 and e2. One concludes that Σ ∩ A2 = {h2, e2} from (3.5).
Note also that the same argument shows Σ∩A1 = {ρ}, so that A1 = Zρ. Since ρ⊥h2 lies in A1 = Zρ and

(ρ⊥h2, ρ) = (h2, ρ
2) = 1, we have ρ⊥h2 = ρ. Similarly ρ⊥e2 = ρ.

Assertion (b). We will show via induction on n the following three assertions for n ≥ 1:

(3.6)

• There exists an element hn in Σ ∩ An with e⊥2 hn = 0.

• This element hn is unique.

• Furthermore ρ⊥hn = hn−1.

In the base cases n = 1, 2, it is not hard to check that our previously labelled elements, h1, h2 (namely
h1 := ρ, and h2 as named in part (a)) really are the unique elements satisfying these hypotheses.

In the inductive step, it turns out that we will find hn as a constituent of ρhn−1. Thus we again use the
derivation property of ρ⊥ to compute that ρhn−1 has exactly two constituents:

(ρhn−1, ρhn−1) = (ρ⊥(ρhn−1), hn−1)

= (hn−1 + ρ · ρ⊥hn−1, hn−1)

= (hn−1 + ρhn−2, hn−1)

= 1 + (hn−2, ρ
⊥hn−1)

= 1 + (hn−2, hn−2) = 1 + 1 = 2
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where the inductive hypothesis ρ⊥hn−1 = hn−2 was used twice. We next show that exactly one of the two
constituents of ρhn−1 is annihilated by e⊥2 . Note that since e2 lies in A2, and A1 has Z-basis element ρ,
there is a constant c in Z such that

(3.7) ∆(e2) = e2 ⊗ 1 + cρ⊗ ρ+ 1⊗ e2.

On the other hand, (a) showed

1 = (e2, ρ
2)A = (∆(e2), ρ⊗ ρ)A⊗A

so one must have c = 1. Therefore by Proposition 2.47(iii) again,

(3.8)
e⊥2 (ρhn−1) = e⊥2 (ρ)hn−1 + ρ⊥(ρ)ρ⊥(hn−1) + ρe⊥2 (hn−1)

= 0 + hn−2 + 0
= hn−2 .

where the first term vanished due to degree considerations and the last term vanished by the inductive
hypothesis. Bearing in mind that ρhn−1 lies in NΣ, and in a PSH with PSH-basis Σ, any skewing operator
σ⊥ for σ in Σ will preserve NΣ, one concludes from (3.8) that

• one of the two distinct constituents of the element ρhn−1 must be sent by e⊥2 to hn−2, and
• the other constituent of ρhn−1 must be annihilated by e⊥2 ; call this second constituent hn.

Lastly, to see that this hn is unique, it suffices to show that any element σ of Σ∩An which is killed by e⊥2
must be a constituent of ρhn−1. This holds for the following reason. We know σ ≤ ρn by (3.5), and hence
0 6= (ρn, σ) = (ρn−1, ρ⊥σ), implying that ρ⊥σ 6= 0. On the other hand, since 0 = ρ⊥e⊥2 σ = e⊥2 ρ

⊥σ, one has
that ρ⊥σ is annihilated by e⊥2 , and hence ρ⊥σ must be a (positive) multiple of hn−1 by part of our inductive
hypothesis. Therefore (σ, ρhn−1) = (ρ⊥σ, hn−1) is positive, that is, σ is a constituent of ρhn−1.

The preceding argument, applied to σ = hn, shows that ρ⊥hn = chn−1 for some c in {1, 2, . . .}. Since
(ρ⊥hn, hn−1) = (hn, ρhn−1) = 1, this c must be 1, so that ρ⊥hn = hn−1. This completes the induction step
in the proof of (3.6).

One can then argue, swapping the roles of en, hn in the above argument, the existence and uniqueness of
a sequence {en}∞n=0 in Σ satisfying the properties analogous to (3.6), with e0 := 1, e1 := ρ.

Assertion (c). Iterating the property from (b) that ρ⊥hn = hn−1 shows that (ρk)⊥hn = hn−k for 0 ≤ k ≤ n.
However one also has an expansion

ρk = chk +
∑

σ∈Σ∩Ak:
σ 6=hk

cσσ

for some integers c, cσ > 0, since every σ in Σ ∩ Ak is a constituent of ρk. Hence

1 = (hn−k, hn−k) = ((ρk)⊥hn, (ρ
k)⊥hn) ≥ c2(h⊥k hn, h

⊥
k hn)

using Proposition 2.47(ii). Hence if we knew that h⊥k hn 6= 0 this would force

h⊥k hn = (ρk)⊥hn = hn−k

as well as σ⊥hn = 0 for all σ 6∈ {h0, h1, . . . , hn}. But
(ρn−k)⊥h⊥k hn = h⊥k (ρ

n−k)⊥hn = h⊥k hk = 1 6= 0

so h⊥k hn 6= 0, as desired. The argument for e⊥k en = en−k is symmetric.
The last assertion in (c) follows if one checks that en 6= hn for each n ≥ 2, but this holds since e⊥2 (hn) = 0

but e⊥2 (en) = en−2.

Assertion (d). Part (c) implies that

(∆hn, σ ⊗ τ)A⊗A = (hn, στ)A = (σ⊥hn, τ)A = 0

unless σ = hk for some k = 0, 1, 2, . . . , n and τ = hn−k. Also one can compute

(∆hn, hk ⊗ hn−k) = (hn, hkhn−k) = (h⊥k hn, hn−k)
(c)
= (hn−k, hn−k) = 1.

This is equivalent to the assertion for ∆hn in (d). The argument for ∆en is symmetric. �
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Before proving Theorem 3.18, we note some consequences of Theorem 3.16. Define for each partition
λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ) the elements of A

hλ = hλ1hλ2 · · · ,
eλ = eλ1eλ2 · · · .

Also, define the lexicographic order on Parn by saying λ <lex µ if λ 6= µ and the smallest index i for which
λi 6= µi has λi < µi. Recall also that λt denotes the conjugate or transpose partition to λ, obtained by
swapping rows and columns in the Ferrers diagram.

The following unitriangularity lemma will play a role in the proof of Theorem 3.18(e).

Lemma 3.19. Under the hypotheses of Theorem 3.16, for λ, µ in Parn, one has

e⊥µ hλ =

{
1 if µ = λt

0 if µ >lex λ
t.

Consequently

det [(eµt , hλ)]λ,µ∈Parn
= ±1.

Proof. Induct on the length of µ. If λ has length ℓ, so that λt1 = ℓ, then

e⊥µ hλ = e⊥(µ2,µ3,...)

(
e⊥µ1

(hλ1 · · ·hλℓ
)
)

= e⊥(µ2,µ3,...)

∑

i1+...+iℓ=µ1

e⊥i1(hλ1) · · · e⊥iℓ(hλℓ
)

=

{
0 if µ1 > ℓ = λt1
e⊥(µ2,µ3,...)

h(λ1−1,...,λℓ−1) if µ1 = ℓ = λt1

where the second-to-last equality used Proposition 2.47(iii) along with (the iterates of) the coproduct formula
for ∆(en) in Theorem 3.16(d), and the last equality used

e⊥k (hn) =

{
hn−1 if k = 1,

0 if k ≥ 2

Now apply induction, since (λ1 − 1, . . . , λℓ − 1)t = (λt2, λ
t
3, . . .).

For the last assertion, note (eµt , hλ) = (e⊥µt(hλ), 1) = e⊥µt(hλ) for λ, µ in Parn. �

The following proposition will be the crux of the proof of Theorem 3.18(f) and (g), and turns out to be
closely related to Kerov’s asymptotic theory of characters of the symmetric groups [39].

Proposition 3.20. Given a PSH A with PSH-basis Σ containing only one primitive ρ, the two maps A→ Z

defined on A =
⊕

n≥0An via

δh =
⊕

n

h⊥n ,

δe =
⊕

n

e⊥n

are characterized as the only two Z-linear maps A
δ→ Z with the three properties of being

• positive: δ(NΣ) ⊂ N,
• multiplicative: δ(a1a2) = δ(a1)δ(a2), and
• normalized: δ(ρ) = 1.

Proof. It should be clear from their definitions that δh, δe are Z-linear, positive and normalized. To see that
δh is multiplicative, by Z-linearity, it suffices to check that for a1, a2 in An1 , An2 with n1 + n2 = n, one has

δh(a1a2) = h⊥n (a1a2) =
∑

i1+i2=n

h⊥i1(a1)h
⊥
i2(a2) = h⊥n1

(a1)h
⊥
n2
(a2) = δh(a1)δh(a2)

in which the second equality used Proposition 2.47(iii) and Theorem 3.16(d). The argument for δe is sym-
metric.
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Conversely, given A
δ→ Z which is Z-linear, positive, multiplicative, and normalized, note that

δ(h2) + δ(e2) = δ(h2 + e2) = δ(ρ2) = δ(ρ)2 = 12 = 1

and hence positivity implies that either δ(h2) = 0 or δ(e2) = 0. Assume the latter holds, and we will show
that δ = δh.

Given any σ in Σ ∩ An \ {hn}, note that e⊥2 σ 6= 0 by Theorem 3.16(b), and hence 0 6= (e⊥2 σ, ρ
n−2) =

(σ, e2ρ
n−2). Thus σ is a constituent of e2ρ

n−2, so positivity implies

0 ≤ δ(σ) ≤ δ(e2ρ
n−2) = δ(e2)δ(ρ

n−2) = 0.

Thus δ(σ) = 0 for σ in Σ ∩ An \ {hn}. Since δ(ρn) = δ(ρ)n = 1n = 1, this forces δ(hn) = 1, for each n ≥ 0
(including n = 0, as 1 = δ(ρ) = δ(ρ · 1) = δ(ρ)δ(1) = 1 · δ(1) = δ(1).) Thus δ = δh. The argument when
δ(h2) = 0 showing δ = δe is symmetric. �

Proof of Theorem 3.18. Many of the assertions of parts (e) and (f) will come from constructing the unique
nontrivial PSH-automorphism ω of A from the antipode S: for homogeneous a in An, define ω(a) :=
(−1)nS(a). We now study some of the properties of S and ω.

Since A is a PSH, it is commutative by Theorem 3.7. This implies both that S, ω are actually algebra
endomorphisms by Proposition 1.26, and that S2 = 1A = ω2 by Corollary 1.28.

Since A is self-dual and the defining diagram (1.11) satisfied by the antipode S is sent to itself when
one replaces A by Ao and all maps by their adjoints, one concludes that S = St, i.e., S is self-adjoint.
Since S is an algebra endomorphism, and S = St, in fact S is also a coalgebra endomorphism, a bialgebra
endomorphism, and a Hopf endomorphism (by Proposition 1.35(c)) The same properties are shared by ω.

Since 1A = S2 = SSt, one concludes that S is an isometry, and hence so is ω.
Since ρ is primitive, one has S(ρ) = −ρ and ω(ρ) = ρ. Therefore ω(ρn) = ρn for n = 1, 2, . . .. Use this as

follows to check that ω is a PSH-automorphism, which amounts to checking that every σ in Σ has ω(σ) in
Σ:

(ω(σ), ω(σ)) = (σ, σ) = 1

so that ±ω(σ) lies in Σ, but also if σ lies in An, then

(ω(σ), ρn) = (σ, ω(ρn)) = (σ, ρn) > 0.

In summary, ω is a PSH-automorphism of A, an isometry, and an involution.
Let us try to determine the action of ω on the {hn}. By similar reasoning as in (3.7), one has

∆(h2) = h2 ⊗ 1 + ρ⊗ ρ+ 1⊗ h2.

Thus 0 = S(h2) + S(ρ)ρ + h2, and combining this with S(ρ) = −ρ, one has S(h2) = e2. Thus also
ω(h2) = (−1)2S(h2) = e2.

We claim that this forces ω(hn) = en, because h
⊥
2 ω(hn) = 0 via the following calculation: for any a in A

one has
(h⊥2 ω(hn), a) = (ω(hn), h2a)

= (hn, ω(h2a))

= (hn, e2ω(a))

= (e⊥2 hn, ω(a)) = (0, ω(a)) = 0.

Consequently the involution ω swaps hn and en, while the antipode S has S(hn) = (−1)nen and S(en) =
(−1)nhn. Thus the coproduct formulas in (d) and definition of the antipode S imply the relation (2.11)
between {hn} and {en}.

This relation (2.11) also lets one recursively express the hn as polynomials with integer coefficients in the
{en}, and vice-versa, so that {hn} and {en} each generate the same Z-subalgebra A′ of A. We wish to show
that A′ exhausts A.

We argue that Lemma 3.19 implies the Gram matrix [(hµ, hλ)]µ,λ∈Parn
has determinant ±1 as follows.

Since {hn} and {en} both generate A′, there exists a Z-matrix (aµ,λ) expressing eµt =
∑

λ aµ,λhλ, and one
has

[(eµt , hλ)] = [aµ,λ] · [(hµ, hλ)] .
Taking determinants of these three Z-matrices, and using the fact that the determinant on the left is ±1,
both determinants on the right must also be ±1.
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Now we will show that every σ ∈ Σ ∩ An lies in A′
n. Uniquely express σ = σ′ + σ′′ in which σ′ lies in

the R-span RA′
n and σ′′ lies in the real perpendicular space (RA′

n)
⊥ inside R ⊗Z An. One can compute

R-coefficients (cµ)µ∈Parn that express σ′ =
∑

µ cµhµ by solving the system
(
∑

µ

cµhµ, hλ

)
= (σ, hλ) for λ ∈ Parn .

This linear system is governed by the Gram matrix [(hµ, hλ)]µ,λ∈Parn
with determinant ±1, and its right

side has Z-entries since σ, hλ lie in A. Hence the solution (cµ)µ∈Parn will have Z-entries, so σ′ lies in A′.
Furthermore, σ′′ = σ − σ′ will lie in A, and hence by the orthogonality of σ′, σ′′,

1 = (σ, σ) = (σ′, σ′) + (σ′′, σ′′).

One concludes that either σ′′ = 0, or σ′ = 0. The latter cannot occur since it would mean that σ = σ′′ is
perpendicular to all of A′. But ρn = hn1 lies in A′, and (σ, ρn) 6= 0. Thus σ′′ = 0, meaning σ = σ′ lies in A′.
This completes the proof of assertion (e). Note that in the process, having shown det(hµ, hλ)λ,µ∈Parn = ±1,
one also knows that {hλ}λ∈Parn are Z-linearly independent, so that {h1, h2, . . .} are algebraically independent,
and A = Z[h1, h2, . . .] is the polynomial algebra generated by {h1, h2, . . .}.

For assertion (f), we have seen that ω gives such a PSH-automorphism A → A, swapping hn ↔ en.

Conversely, given a PSH-automorphism A
ϕ→ A, consider the positive, multiplicative, normalized Z-linear

map δ := δh ◦ ϕ : A→ Z. Proposition 3.20 shows that either

• δ = δh, which then forces ϕ(hn) = hn for all n, so ϕ = 1A, or
• δ = δe, which then forces ϕ(en) = hn for all n, so ϕ = ω.

For assertion (g), given a PSH A with PSH-basis Σ having exactly one primitive ρ, since we have seen
A = Z[h1, h2, . . .], where hn in A is as defined in Theorem 3.16, one can uniquely define an algebra morphism

A
ϕ→ Λ that sends the element hn to the complete homogeneous symmetric function hn(x). Assertions (d)

and (e) show that ϕ is a bialgebra isomorphism, and hence it is a Hopf isomorphism. To show that it is a
PSH-isomorphism, we first note that it is an isometry because one can iterate Proposition 2.47(iii) together
with assertions (c) and (d) to compute all inner products

(hµ, hλ)A = (1, h⊥µ hλ)A = (1, h⊥µ1
h⊥µ2

· · · (hλ1hλ2 · · · ))A
for µ, λ in Parn. Hence

(hµ, hλ)A = (hµ(x), hλ(x))Λ = (ϕ(hµ), ϕ(hλ))Λ

Once one knows ϕ is an isometry, then elements ω in Σ ∩An are characterized in terms of the form (·, ·) by
(ω, ω) = 1 and (ω, ρn) > 0. Hence ϕ sends each σ in Σ to a Schur function sλ, and is a PSH-isomorphism. �
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4. Complex representations for Sn, wreath products, GLn(Fq)

After reviewing the basics that we will need from representation and character theory of finite groups,
we give Zelevinsky’s three main examples of PSH’s arising as spaces of virtual characters for three towers of
finite groups:

• symmetric groups,
• their wreath products with any finite group, and
• the finite general linear groups.

4.1. Review of complex character theory. A good source for this material, including the crucial Mackey
formula, is Serre [66, Chaps. 1-7].

4.1.1. Basic definitions, Maschke, Schur. For a group G, a representation is a homomorphism G
ϕ→ GL(V )

for some vector space V over a field. We will take the field to be C from now on, and we will also assume
that V is finite-dimensional over C. Thus a representation of G is the same as a finite-dimensional (left-
)CG-module V .

We also assume that G is finite, so that Maschke’s Theorem13 says that CG is semisimple, meaning that
every CG-module U ⊂ V has a CG-module complement U ′ with V = U ⊕ U ′. Equivalently, indecomposable
CG-modules are the same thing as simple (=irreducible) CG-modules.

Schur’s Lemma implies that for two simple CG-modules V1, V2, one has

HomCG(V1, V2) ∼=
{
C if V1 ∼= V2,

0 if V1 6∼= V2.

4.1.2. Characters and Hom spaces. A CG-module V is completely determined up to isomorphism by its
character

G
χV−→ C

g 7−→ χV (g) := trace(g : V → V ).

This character χV is a class function, meaning it is constant on G-conjugacy classes. The space RC(G) of
class functions G→ C has a Hermitian, positive definite form

(f1, f2)G :=
1

|G|
∑

g∈G
f1(g)f2(g).

For any two CG-modules V1, V2,

(4.1) (χV1 , χV2)G = dimC HomCG(V1, V2).

The set of all irreducible characters

Irr(G) = {χV : V is a simple CG-module}
forms an orthonormal basis of RC(G) with respect to this form, and spans a Z-sublattice

R(G) := Z Irr(G) ⊂ RC(G)

sometimes called the virtual characters of G.
Instead of working with the Hermitian form (·, ·)G on G, we could also (and some authors do) define a

C-bilinear form 〈·, ·〉G on RC(G) by

〈f1, f2〉G :=
1

|G|
∑

g∈G
f1(g)f2(g

−1).

This form is not identical with (·, ·)G (indeed, 〈·, ·〉G is bilinear while (·, ·)G is Hermitian), but it still satisfies
(4.1), and thus is identical with (·, ·)G on R(G) ×R(G). Hence, for all we are going to do, we could just as
well use the form 〈·, ·〉G instead of (·, ·)G.

13... which has a beautiful generalization to finite-dimensional Hopf algebras due to Larson and Sweedler; see Montgomery
[56, §2.2].
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4.1.3. Tensor products. Given two groups G1, G2 and CGi-modules Vi for i = 1, 2, their tensor product
V1 ⊗C V2 becomes a C[G1 ×G2]-module via (g1, g2)(v1 ⊗ v2) = g1(v1)⊗ g2(v2). When V1, V2 are both simple,
then so is V1 ⊗ V2, and all simple C[G1 × G2]-modules arise this way. Thus one has identifications and
isomorphisms

Irr(G1 ×G2) = Irr(G1)× Irr(G2)

R(G1 ×G2) ∼= R(G1)⊗Z R(G2);

here, χV1 ⊗ χV2 ∈ R(G1) ⊗Z R(G2) is being identified with χV1⊗V2 ∈ R(G1 × G2) for all CG1-modules V1
and all CG2-modules V2. Given two CG1-modules V1 and W1 and two CG2-modules V2 and W2, we have

(4.2) (χV1⊗V2 , χW1⊗W2)G1×G2
= (χV1 , χW1)G1

(χV2 , χW2)G2
.

Exercise 4.1. Let G1 and G2 be two groups. Let Vi and Wi be CGi-modules for every i ∈ {1, 2}. Prove
that the map

HomCG1 (V1,W1)⊗HomCG2 (V2,W2) → HomC[G1×G2] (V1 ⊗ V2,W1 ⊗W2)

sending each tensor f ⊗ g to the tensor product f ⊗ g of homomorphisms is a vector space isomorphism.
Conclude that (4.2) holds.

4.1.4. Induction and restriction. Given a subgroup H < G and CH-module U , one can use the fact that CG
is a (CG,CH)-bimodule to form the induced CG-module

IndGH U := CG⊗CH U.

The fact that CG is free as a (right-)CH-module14 on basis elements {tg}gH∈G/H makes this tensor product
easy to analyze. For example one can compute its character

(4.3) χIndG
H
U (g) = IndGH(χU )(g) :=

1

|H |
∑

k∈G:
kgk−1∈H

χU (kgk
−1).

One can also recognize when a CG-module V is isomorphic to IndGH U for some CH-module U : this happens
if and only if there is an H-stable subspace U ⊂ V having the property that V =

⊕
gH∈G/H gU .

It is fairly easy to show that

(4.4) IndG1×G2

H1×H2
(U1 ⊗ U2) ∼=

(
IndG1

H1
U1

)
⊗
(
IndG2

H2
U2

)

wheneverG1 and G2 are two groups,H1 < G1 and H2 < G2 are two subgroups, and each Ui is a CHi-module.
The restriction operation V 7→ ResGH V restricts a CG-module V to a CH-module. Frobenius reciprocity

asserts the adjointness between IndGH and ResGH

(4.5) HomCG(Ind
G
H U, V ) ∼= HomCH(U,ResGH V ),

as a special case (S = A = CG,R = CH,B = U,C = V ) of the general adjoint associativity

HomS(A⊗R B,C) ∼= HomR(B,HomS(A,C))

for S,R two rings, A an (S,R)-bimodule, B a left R-module, C a left S-module. Taking characters in (4.5),
we obtain

(4.6) (IndGH χU , χV )G = (χU ,Res
G
H χV )H ,

where restriction ResGH f of an f ∈ RC(G) is defined just by restricting the map f : G→ C to H .

14... which also has a beautiful generalization to finite-dimensional Hopf algebras due to Nichols and Zoeller; see [56, §3.1].
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4.1.5. Mackey’s formula. Mackey gave an alternate description of a module which has been induced and
then restricted. To state it, for a subgroup H < G and g in G, let Hg := g−1Hg and gH := gHg−1. Given

a CH-module U , say defined by a homomorphism H
ϕ→ GL(U), let Ug denote the C[gHg−1]-module on the

same C-vector space U defined by the composite homomorphism

gH −→ H
ϕ−→ GL(U).

h 7−→ g−1hg

Theorem 4.2. (Mackey’s formula) Consider subgroups H,K < G, and any CH-module U . If {g1, . . . , gt}
are double coset representatives for K\G/H, then

ResGK IndGH U
∼=

t⊕

i=1

IndKgiH∩K

((
ResHH∩Kgi U

)gi)

Proof. In this proof, all tensor product symbols ⊗ should be interpreted as ⊗CH . Recall CG has C-basis
{tg}g∈G. For subsets S ⊂ G, let C[S] denote the C-span of {tg}g∈S in CG.

Note that each double coset KgH gives rise to a sub-(K,H)-bimodule C[KgH ] within CG, and one has
a CK-module direct sum decomposition

IndGH U = CG⊗ U =
t⊕

i=1

C[KgiH ]⊗ U.

Hence it suffices to check for any element g in G that

C[KgH ]⊗ U ∼= IndKgH∩K

((
ResHH∩Kg U

)g)
.

Note that gH ∩K is the subgroup of K consisting of the elements k in K for which kgH = gH . Hence by
picking {k1, . . . , ks} to be coset representatives for K/(gH ∩K), one disjointly decomposes the double coset

KgH =

s⊔

j=1

kj(
gH ∩K)gH,

giving a C-vector space direct sum decomposition

C[KgH ]⊗ U =

s⊕

j=1

C [kj (
gH ∩K) gH ]⊗ U

∼= IndKgH∩K (C[(gH ∩K) gH ]⊗ U) .

So it remains to check that one has a C[gH ∩K]-module isomorphism

C[(gH ∩K) gH ]⊗ U ∼=
(
ResHH∩Kg U

)g
.

Bearing in mind that, for each k in gH ∩K and h in H , one has g−1kg in H and hence

tkgh ⊗ u = tg · tg−1kg·h ⊗ u = tg ⊗ g−1kgh · u
one sees that this isomorphism can be defined by mapping

tkgh ⊗ u 7−→ g−1kgh · u.
�

4.1.6. Inflation and fixed points. There are two (adjoint) constructions on representations that apply when

one has a normal subgroup K ⊳ G. Given a C[G/K]-module U , say defined by the homomorphism G/K
ϕ→

GL(U), the inflation of U to a CG-module InflGG/K U has the same underlying space U , and is defined by

the composite homomorphism G → G/K
ϕ→ GL(U). We will later use the easily-checked fact that when

H < G is any other subgroup, one has

(4.7) ResGH InflGG/K U = InflHH/H∩K Res
G/K
H/H∩K U.

Inflation turns out to be adjoint to the K-fixed space construction sending a CG-module V to the C[G/K]-
module

V K := {v ∈ V : k(v) = v for k ∈ K}
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Note that V K is indeed a G-stable subspace: for any v in V K and g in G, one has that g(v) lies in V K since
an element k in K satisfies kg(v) = g · g−1kg(v) = g(v) as g−1kg lies in K. One has this adjointness

(4.8) HomCG(Infl
G
G/K U, V ) = HomC[G/K](U, V

K)

because any CG-module homomorphism ϕ on the left must have the property that kϕ(u) = ϕ(k(u)) = ϕ(u)
for all k in K, so that ϕ actually lies on the right. Taking characters in (4.8), we obtain

(4.9) (InflGG/K χU , χV )G = (χU , χV K )G/K ,

where inflation InflGG/K f of an f ∈ RC(G/K) is defined as the composition G // // G/K
f // C .

We will also need the following formula for the character χV K in terms of the character χV :

(4.10) χV K (gK) =
1

|K|
∑

k∈K
χV (gk).

To see this, note that when one has a C-linear endomorphism ϕ on a space V that preserves some C-subspace

W ⊂ V , if V
π→ W is any idempotent projection onto W , then the trace of the restriction ϕ|W equals the

trace of ϕ ◦ π on V . Applying this to W = V K and ϕ = g, with π = 1
|K|
∑

k∈K k, gives (4.10).

Another way to restate (4.10) is:

(4.11) χV K (gK) =
1

|K|
∑

h∈gK
χV (h).

There is also an analogue of (4.4):

Lemma 4.3. Let G1 and G2 be two groups, and K1 < G1 and K2 < G2 be two respective subgroups. Let Ui
be a CGi-module for each i ∈ {1, 2}. Then,

(4.12) (U1 ⊗ U2)
K1×K2 = UK1

1 ⊗ UK2
2

(as subspaces of U1 ⊗ U2).

Proof. The subgroupK1 = K1×1 of G1×G2 acts on U1⊗U2, and its fixed points are (U1 ⊗ U2)
K1 = UK1

1 ⊗U2

(because for a CK1-module, tensoring with U2 is the same as taking a direct power, which clearly commutes

with taking fixed points). Similarly, (U1 ⊗ U2)
K2 = U1 ⊗ UK2

2 . Now,

(U1 ⊗ U2)
K1×K2 = (U1 ⊗ U2)

K1 ∩ (U1 ⊗ U2)
K2 =

(
UK1
1 ⊗ U2

)
∩
(
U1 ⊗ UK2

2

)
= UK1

1 ⊗ UK2
2

according to the known linear-algebraic fact stating that if P and Q are subspaces of two vector spaces U
and V , respectively, then (P ⊗ V ) ∩ (U ⊗Q) = P ⊗Q. �

4.1.7. Semidirect products. Recall that a semidirect product is a group G ⋉ K having two subgroups G,K
with

• K ⊳ (G⋉K) is a normal subgroup,
• G⋉K = GK = KG, and
• G ∩K = {e}.

In this setting one has two interesting adjoint constructions, applied in Section 4.5.

Proposition 4.4. Fix a C[G⋉K]-module V .

(i) For any CG-module U , one has C[G⋉K]-module structure

Φ(U) := U ⊗ V,

determined via
k(u ⊗ v) = u⊗ k(v),

g(u⊗ v) = g(u)⊗ g(v).

(ii) For any C[G⋉K]-module W , one has CG-module structure

Ψ(W ) := HomCK(ResG⋉K
K V,ResG⋉K

K W ),

determined via g(ϕ) = g ◦ ϕ ◦ g−1.
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(iii) The maps

CG−mods
Φ
⇋
Ψ

C[G⋉K]−mods

are adjoint in the sense that one has an isomorphism

HomCG(U,Ψ(W )) −→ HomC[G⋉K](Φ(U),W )
‖ ‖

HomCG(U,HomCK(ResG⋉K
K V,ResG⋉K

K W )) HomC[G⋉K](U ⊗ V,W )

ϕ 7−→ ϕ(u⊗ v) := ϕ(u)(v)

(iv) One has a CG-module isomorphism

(Ψ ◦ Φ)(U) ∼= U ⊗ EndCK(ResG⋉K
K V ).

In particular, if ResG⋉K
K V is a simple CK-module, then (Ψ ◦ Φ)(U) ∼= U .

Proof. These are mostly straightforward exercises in the definitions. To check assertion (iv), for example,

note that K acts only in the right tensor factor in ResG⋉K
K (U ⊗ V ), and hence as CG-modules one has

(Ψ ◦ Φ)(U) = HomCK(ResG⋉K
K V, ResG⋉K

K (U ⊗ V ))

= HomCK(ResG⋉K
K V, U ⊗ ResG⋉K

K V )

= U ⊗HomCK(ResG⋉K
K V, ResG⋉K

K V )

= U ⊗ EndCK(ResG⋉K
K V )

�

4.2. Three towers of groups. Here we consider three towers of groups

G∗ = (G1 < G2 < G3 < · · · )

where either

• Gn = Sn, the symmetric group, or
• Gn = Sn[Γ], the wreath product of the symmetric group with some arbitrary finite group Γ, or
• Gn = GLn(Fq), the finite general linear group.

Here the wreath product Sn[Γ] can be thought of informally as the group of monomial n×n matrices whose
nonzero entries lie in Γ, that is, n× n matrices having exactly one nonzero entry in each row and column,
and that entry is an element of Γ. E.g.



0 g2 0
g1 0 0
0 0 g3





0 0 g6
0 g5 0
g4 0 0


 =




0 g2g5 0
0 0 g1g6

g3g4 0 0


 .

More formally, Sn[Γ] is the semidirect product Sn ⋉ Γn in which Sn acts on Γn via σ(γ1, . . . , γn) =
(γσ−1(1), . . . , γσ−1(n)).

For each of the three towers G∗, there are embeddings Gi × Gj →֒ Gi+j and we introduce maps indi+ji,j

taking C[Gi×Gj ]-modules to CGi+j -modules, as well as maps resi+ji,j carrying modules in the reverse direction
which are adjoint:

(4.13) HomCGi+j
(indi+ji,j U, V ) = HomC[Gi×Gj](U, res

i+j
i,j V ).

Definition 4.5. For Gn = Sn, one embeds Si×Sj into Si+j as the permutations that permute {1, 2, . . . , i}
and {i+ 1, i+ 2, . . . , i+ j} separately. Here one defines

indi+ji,j := Ind
Si+j

Si×Sj
,

resi+ji,j := Res
Si+j

Si×Sj
.
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For Gn = Sn[Γ], similarly embed Si[Γ]×Sj [Γ] into Si+j [Γ] as block monomial matrices whose two diagonal
blocks have sizes i, j respectively, and define

indi+ji,j := Ind
Si+j [Γ]

Si[Γ]×Sj [Γ]
,

resi+ji,j := Res
Si+j [Γ]

Si[Γ]×Sj [Γ]
.

For Gn = GLn(Fq), which we will denote just GLn, similarly embed GLi × GLj into GLi+j as block
diagonal matrices whose two diagonal blocks have sizes i, j respectively. However, one also introduces as an
intermediate the parabolic subgroup Pi,j consisting of the block upper-triangular matrices of the form

[
gi ℓ
0 gj

]

where gi, gj lie in GLi, GLj , respectively, and ℓ in Fi×jq is arbitrary. One has a quotient map Pi,j → GLi×GLj
whose kernel Ki,j is the set of matrices of the form

[
Ii ℓ
0 Ij

]

with ℓ again arbitrary. Here one defines

indi+ji,j := Ind
GLi+j

Pi,j
Infl

Pi,j

GLi×GLj
,

resi+ji,j :=
(
Res

GLi+j

Pi,j
(−)
)Ki,j

.

The operation indi+ji,j is sometimes called parabolic induction or Harish-Chandra induction. The operation

resi+ji,j is essentially just the Ki,j-fixed point construction V 7→ V Ki,j . However writing it as the above

two-step composite makes it more obvious, (via (4.5) and (4.8)) that resi+ji,j is again adjoint to indi+ji,j .

Definition 4.6. For each of the three towers G∗, define a graded Z-module

A := A(G∗) =
⊕

n≥0

R(Gn)

with a bilinear form (·, ·)A whose restriction to An := R(Gn) is the usual form (·, ·)Gn
, and such that

Σ =
⊔
n≥0 Irr(Gn) gives an orthonormal Z-basis. Here we adopt the convention that A0 = Z has its basis

element 1 equal to the unique irreducible character of the trivial group G0.

Bearing in mind that An = R(Gn) and

Ai ⊗Aj = R(Gi)⊗R(Gj) ∼= R(Gi ×Gj)

one then has candidates for product and coproduct defined by

m := indi+ji,j : Ai ⊗Aj −→ Ai+j
∆ :=

⊕
i+j=n res

i+j
i,j : An −→ ⊕

i+j=n Ai ⊗Aj .

The coassociativity of ∆ is an easy consequence of transitivity of the constructions of restriction and fixed
points. We could derive the associativity of m from the transitivity of induction and inflation, but this would
be more complicated; we will instead prove it differently.

We first show that the maps m and ∆ are adjoint with respect to the forms (·, ·)A and (·, ·)A⊗A. In fact,
if U , V , W are modules over CGi, CGj , CGi+j , respectively, then we can write the C[Gi × Gj ]-module

resi+ji,j W as a direct sum
⊕

kXk⊗Yk with Xk being CGi-modules and Yk being CGj-modules; we then have

(4.14) resi+ji,j χW =
∑

k

χXk
⊗ χYk
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and

(m (χU ⊗ χV ) , χW )A =
(
indi+ji,j (χU⊗V ) , χW

)
A
=
(
indi+ji,j (χU⊗V ) , χW

)
Gi+j

=
(
χU⊗V , res

i+j
i,j χW

)
Gi×Gj

=

(
χU⊗V ,

∑

k

χXk
⊗ χYk

)

Gi×Gj

=
∑

k

(χU⊗V , χXk⊗Yk
)Gi×Gj

=
∑

k

(χU , χXk
)Gi

(χV , χYk
)Gj

(the third equality sign follows by taking dimensions in (4.13) and recalling (4.1); the fourth equality sign
follows from (4.14); the sixth one follows from (4.2)) and

(χU ⊗ χV ,∆(χW ))A⊗A =
(
χU ⊗ χV , res

i+j
i,j χW

)
A⊗A

=

(
χU ⊗ χV ,

∑

k

χXk
⊗ χYk

)

A⊗A

=
∑

k

(χU , χXk
)A (χV , χYk

)A =
∑

k

(χU , χXk
)Gi

(χV , χYk
)Gj

.

(the first equality sign follows by removing all terms in ∆ (χW ) whose scalar product with χU ⊗ χV van-
ishes for reasons of gradedness; the second equality sign follows from (4.14)), which in comparison yield
(m (χU ⊗ χV ) , χW )A = (χU ⊗ χV ,∆(χW ))A⊗A, thus showing that m and ∆ are adjoint maps. Therefore,
m is associative (since ∆ is coassociative).

Endowing A =
⊕

n≥0R(Gn) with the obvious unit and counit maps, it thus becomes a graded, finite-type
Z-algebra and Z-coalgebra.

The next section address the issue of why they form a bialgebra. However, assuming this for the moment,
it should be clear that each of these algebras A is a PSH having Σ =

⊔
n≥0 Irr(Gn) as its PSH-basis. Σ is

self-dual because m,∆ are defined by adjoint maps, and it is positive because m,∆ take irreducible repre-
sentations to genuine representations not just virtual ones, and hence have characters which are nonnegative
sums of irreducible characters.

4.3. Bialgebra and double cosets. To show that the algebra and coalgebras A = A(G∗) are bialgebras,
the central issue is checking the pentagonal diagram in (1.8), that is, as maps A⊗A→ A⊗A, one has

(4.15) ∆ ◦m = (m⊗m) ◦ (1 ⊗ T ⊗ 1) ◦ (∆⊗∆).

In checking this, it is convenient to have a lighter notation for various subgroups of the groups Gn
corresponding to compositions α.

Definition 4.7. A composition is a (finite) tuple α = (α1, α2, . . . , αℓ) of positive integers. Its length is
defined to be ℓ and denoted by ℓ(α); its size is defined to be α1 + α2 + · · ·+ αℓ and denoted by |α|; its parts
are its entries α1, α2, . . . , αℓ. The compositions of size n are called the compositions of n. In particular, any
partition of n (written without trailing zeroes) is a composition of n. We write ∅ (and sometimes, sloppily,
(0)) for the empty composition ().

Definition 4.8. Given a composition α = (α1, . . . , αℓ) of n, define a subgroup

Gα ∼= Gα1 × · · · ×Gαℓ
< Gn

via the block-diagonal embedding with diagonal blocks of sizes (α1, . . . , αℓ). This Gα is called a Young
subgroup Sα when Gn = Sn, and a Levi subgroup when Gn = GLn. In the case when Gn = Sn[Γ], we
also denote Gα by Sα[Γ]. In the case where Gn = GLn, also define the parabolic subgroup Pα to be the
subgroup of Gn consisting of block-upper triangular matrices whose diagonal blocks have sizes (α1, . . . , αℓ),
and let Kα be the kernel of the obvious surjection Pα → Gα which sends a block upper-triangular matrix to
the tuple of its diagonal blocks whose sizes are α1, α2, . . . , αℓ. Notice that P(i,j) = Pi,j for any i and j with
i + j = n; we will also abbreviate G(i,j) = Gi × Gj by Gi,j . Also define operators indnα, res

n
α for the three

towers analogous to those defined in Definition 4.5 when α = (i, j) has only two parts.

Definition 4.9. Let K and H be two groups, τ : K → H a group homomorphism, and U a CH-module.
Then, U τ is defined as the CK-module with ground space U and action given by k ·u = τ(k) ·u for all k ∈ K
and u ∈ U . This very simple construction generalizes the definition of Ug for an element g ∈ G, where G
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is a group containing H as a subgroup; in fact, in this situation we have Ug = U τ , where K = gH and
τ : K → H is the map k 7→ g−1kg.

Using homogeneity, checking the bialgebra condition (4.15) in the homogeneous component (A ⊗ A)n
amounts to the following: for each pair of representations U1, U2 of Gr1 , Gr2 with r1 + r2 = n, and for each
(c1, c2) with c1 + c2 = n, one must verify that

(4.16)

resnc1,c2
(
indnr1,r2 (U1 ⊗ U2)

)

∼=
⊕

A

(
indc1a11,a21 ⊗ indc2a12,a22

)((
resr1a11,a12 U1 ⊗ resr2a21,a22 U2

)τ−1
A

)

where the direct sum is over all matrices A =

[
a11 a12
a21 a22

]
in N2×2 with row sums (r1, r2) and column sums

(c1, c2), and where τA is the obvious isomorphism between the subgroups

(4.17)
Ga11,a12,a21,a22 (< Gr1,r2)

Ga11,a21,a12,a22 (< Gc1,c2)

(we are using the inverse τ−1
A of this isomorphism τA to identify modules for the first subgroup with modules

for the second subgroup, according to Definition 4.9).
As one might guess, (4.16) comes from the Mackey formula (Theorem 4.2), once one identifies the appro-

priate double coset representatives. This is just as easy to do in a slightly more general setting.

Definition 4.10. Given compositions α, β of n having lengths ℓ,m and a matrix A in Nℓ×m with row sums
α and column sums β, define a permutation wA in Sn as follows. Disjointly decompose [n] = {1, 2, . . . , n}
into consecutive intervals of numbers

[n] = I1 ⊔ · · · ⊔ Iℓ
[n] = J1 ⊔ · · · ⊔ Jm

such that |Ii| = αi, |Jj | = βj . For every j ∈ [m], disjointly decompose Jj into consecutive intervals of
numbers Jj = Jj,1 ⊔ Jj,2 ⊔ · · · ⊔ Jj,ℓ such that every i ∈ [ℓ] satisfies |Jj,i| = aij . For every i ∈ [ℓ], disjointly
decompose Ii into consecutive intervals of numbers Ii = Ii,1⊔Ii,2 ⊔· · ·⊔Ii,m such that every j ∈ [m] satisfies
|Ii,j | = aij . Now, for every i ∈ [ℓ] and j ∈ [m], let πi,j be the increasing bijection from Jj,i to Ii,j (this is
well-defined since these two sets both have cardinality aij). The disjoint union of these bijections πi,j over
all i and j is a bijection [n] → [n] (since the disjoint union of the sets Jj,i over all i and j is [n], and so is
the disjoint union of the sets Ii,j), that is, a permutation of [n]; this permutation is what we call wA.

Example 4.11. Taking n = 9 and α = (4, 5), β = (3, 4, 2), one has

I1 = {1, 2, 3, 4}, I2 = {5, 6, 7, 8, 9}
J1 = {1, 2, 3}, J2 = {4, 5, 6, 7}, J3 = {8, 9}.

Then one possible matrix A having row and column sums α, β is A =

[
2 2 0
1 2 2

]
, and its associated permu-

tation wA written in two-line notation is
(
1 2 3 | 4 5 6 7 | 8 9
1 2 5 | 3 4 6 7 | 8 9

)

with vertical lines dividing the sets Jj on top, and with elements of Ii underlined i times on the bottom.

Remark 4.12. Given compositions α and β of n having lengths ℓ and m, and a permutation w ∈ Sn. It is
easy to see that there exists a matrix A ∈ Nℓ×m satisfying wA = w if and only if the restriction of w to
each Jj and the restriction of w−1 to each Ii are increasing. In this case, the matrix A is determined by
aij = |w(Jj) ∩ Ii|.

Among our three towers G∗ of groups, the symmetric group tower (Gn = Sn) is the simplest one. We
will now see that it also embeds into the two others, in the sense that Sn embeds into Sn[Γ] for every Γ
and into GLn(Fq) for every q.

First, for every n ∈ N and any group Γ, we embed the group Sn into Sn[Γ] by means of the canonical
embedding Sn → Sn⋉Γn = Sn[Γ]. If we regard elements of Sn[Γ] as n×n monomial matrices with nonzero
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entries in Γ, then this boils down to identifying every π ∈ Sn with the permutation matrix of π (in which
the 1’s are read as the neutral element of Γ). If α is a composition of n, then this embedding Sn → Sn [Γ]
makes the subgroup Sα of Sn become a subgroup of Sn [Γ] and actually into a subgroup of Sα [Γ] < Sn [Γ].

For every n ∈ N and every q, we embed the group Sn into GLn (Fq) by identifying every permutation
π ∈ Sn with its permutation matrix in GLn (Fq). If α is a composition of n, then this embedding makes the
subgroup Sα of Sn become a subgroup of GLn (Fq). If we let Gn = GLn (Fq), then Sα < Gα < Pα.

The embeddings we have just defined commute with the group embeddings Gn < Gn+1 on both sides.

Proposition 4.13. The permutations {wA} as A runs over all matrices in Nℓ×m having row, column sums
α, β give a system of double coset representatives for

Sα\Sn/Sβ

Sα[Γ]\Sn[Γ]/Sβ[Γ]

Pα\GLn/Pβ
Proof. First note that double coset representatives for Sα\Sn/Sβ should also provide double coset repre-
sentatives for Sα[Γ]\Sn[Γ]/Sβ[Γ], since

Sα[Γ] = SαΓ
n = ΓnSα.

We give an algorithm to show that every double coset SαwSβ contains some wA. Start by altering w within
its coset wSβ , that is, by permuting the positions within each set Jj , to obtain a representative w′ for wSβ

in which each set w′(Jj) appears in increasing order in the second line of the two-line notation for w′. Then
alter w′ within its coset Sαw

′, that is, by permuting the values within each set Ii, to obtain a representative
wA having the elements of each set Ii appearing in increasing order in the second line; because the values
within each set Ii are consecutive, this alteration will not ruin the property that one had each set w′(Jj)
appearing in increasing order. For example, one might have

w =

(
1 2 3 | 4 5 6 7 | 8 9
4 8 2 | 5 3 9 1 | 7 6

)

w′ =

(
1 2 3 | 4 5 6 7 | 8 9
2 4 8 | 1 3 5 9 | 6 7

)
∈ wSβ

wA =

(
1 2 3 | 4 5 6 7 | 8 9
1 2 5 | 3 4 6 7 | 8 9

)
∈ Sαw

′ ⊂ Sαw
′Sβ = SαwSβ

Next note that SαwASβ = SαwBSβ implies A = B, since the quantities

ai,j(w) := |w(Jj) ∩ Ii|
are easily seen to be constant on double cosets SαwSβ .

A similar argument shows that PαwAPβ = PαwBPβ implies A = B: for g in GLn, the rank rij(g) of the
matrix obtained by restricting g to rows Ii ⊔ Ii+1 ⊔ · · · ⊔ Iℓ and columns J1 ⊔ J2 ⊔ · · · ⊔ Jj is constant on
double cosets PαgPβ , and for a permutation matrix w one can recover ai,j(w) from the formula

ai,j(w) = ri,j(w)− ri,j−1(w) − ri+1,j(w) + ri+1,j−1(w).

Thus it only remains to show that every double coset PαgPβ contains some wA. Since Sα < Pα, and we
have seen already that every double coset SαwSβ contains some wA, it suffices to show that every double
coset PαgPβ contains some permutation w. However, we claim that this is already true for the smaller
double cosets BgB where B = P1n is the Borel subgroup of upper triangular invertible matrices, that is, one
has the usual Bruhat decomposition

GLn =
⊔

w∈Sn

BwB.

To prove this decomposition, we show how to find a permutation w in each double coset BgB. The freedom
to alter g within its coset gB allows one to scale columns and add scalar multiples of earlier columns to later
columns. We claim that using such column operations, one can always find a representative g′ for coset gB
in which

• the bottommost nonzero entry of each column has been scaled to 1 (call this a pivot),
• the entries to right of each pivot within its row are all 0, and
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• there is one pivot in each row and each column, so that they lie in the positions of some permutation
matrix w.

In fact, we will see below that BgB = BwB in this case. The algorithm which produces g′ from g is simple:
starting with the leftmost column, find its bottommost nonzero entry, and scale the column to make this
entry a 1, creating the pivot in this column. Now use this pivot to clear out all entries in its row to its right,
using column operations that subtract multiples of this column from later columns. Having done this, move
on to the next column to the right, and repeat, scaling to create a pivot, and using it to eliminate entries to
its right.

For example, the typical matrix g lying in the double coset BwB where

w =

(
1 2 3 | 4 5 6 7 | 8 9
4 8 2 | 5 3 9 1 | 7 6

)

from before is one that can be altered within its coset gB to look like this:

g′ =




∗ ∗ ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 ∗ 0 1 0 0 0 0 0
0 ∗ 0 0 0 ∗ 0 ∗ 1
0 ∗ 0 0 0 ∗ 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0




∈ gB.

Having found this g′ in gB, a similar algorithm using left multiplication by B shows that w lies in Bg′ ⊂
Bg′B = BgB. This time no scalings are required to create the pivot entries: starting with the bottom row,
one uses its pivot to eliminate all the entries above it in the same column (shown by stars ∗ above) by adding
multiples of the bottom row to higher rows. Then do the same using the pivot in the next-to-bottom row,
etc. The result is the permutation matrix for w. �

Corollary 4.14. For each of the three towers of groups G∗, the product and coproduct structures on A =
A(G∗) endow it with a bialgebra structure, and hence they form PSH-algebras.

Proof. The first two towers Gn = Sn and Gn = Sn[Γ] have product, coproduct defined by induction, restric-
tion along embeddings Gi ×Gj < Gi+j . Hence the desired bialgebra equality (4.16) follows from Mackey’s
Theorem 4.2, taking G = Gn, H = G(r1,r2),K = G(c1,c2), U = U1 ⊗ U2 with double coset representatives15

{g1, . . . , gt} =
{
wAt | A ∈ N2×2, A has row sums (r1, r2) and column sums (c1, c2)

}

and checking for a given double coset

KgH = (Gc1,c2)wAt(Gr1,r2)

indexed by a matrix A in N2×2 with row sums (r1, r2) and column sums (c1, c2), that the two subgroups
appearing on the left in (4.17) are exactly

H ∩KwAt = Gr1,r2 ∩ (Gc1,c2)
wAt ,

wAtH ∩K = wAt (Gr1,r2) ∩Gc1,c2 ,
respectively. One should also apply (4.4) and check that the isomorphism τA between the two subgroups in
(4.17) is the conjugation isomorphism by wAt (that is, τA(g) = wAtgw−1

At for every g ∈ H ∩KwAt ). We leave

all of these bookkeeping details to the reader to check. 16

15Proposition 4.13 gives as a system of double coset representatives for G(c1,c2)\Gn/G(r1,r2) the elements
{

wA | A ∈ N2×2, A has row sums (c1, c2) and column sums (r1, r2)
}

=
{

wAt | A ∈ N2×2, A has row sums (r1, r2) and column sums (c1, c2)
}

where At denotes the transpose matrix of A.
16It helps to recognize wAt as the permutation written in two-line notation as

(

1 2 . . . a11 | a11 + 1 a11 + 2 . . . r1 | r1 + 1 r1 + 2 . . . a′22 | a′22 + 1 a′22 + 2 . . . n
1 2 . . . a11 | c1 + 1 c1 + 2 . . . a′22 | a11 + 1 a11 + 2 . . . c1 | a′22 + 1 a′22 + 2 . . . n

)

,
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For the tower with Gn = GLn, there is slightly more work to be done to check the equality (4.16). Via
Mackey’s Theorem 4.2 and Proposition 4.13, the left side is

resnc1,c2
(
indnr1,r2 (U1 ⊗ U2)

)

=
(
ResGn

Pc1,c2
IndGn

Pr1,r2
Infl

Pr1,r2

Gr1,r2
(U1 ⊗ U2)

)Kc1,c2

=
⊕

A

(
Ind

Pc1,c2
w

AtPr1,r2∩Pc1,c2

((
Res

Pr1,r2

Pr1,r2∩P
w

At
c1,c2

Infl
Pr1,r2

Gr1,r2
(U1 ⊗ U2)

)τ−1
A

))Kc1,c2

(4.18)

where A runs over the usual 2× 2 matrices. The right side is a direct sum over this same set of matrices A:

⊕

A

(
indc1a11,a21 ⊗ indc2a12,a22

)((
resr1a11,a12 U1 ⊗ resr2a21,a22 U2

)τ−1
A

)

=
⊕

A

(
Ind

Gc1

Pa11,a21
⊗ Ind

Gc2

Pa12,a22

)
◦
(
Infl

Pa11,a21

Ga11,a21
⊗ Infl

Pa12,a22

Ga12,a22

)

(((
Res

Gr1

Pa11,a12
U1

)Ka11,a12 ⊗
(
Res

Gr2

Pa21 ,a22
U2

)Ka21,a22

)τ−1
A

)

=
⊕

A

Ind
Gc1,c2

Pa11 ,a21×Pa12,a22

Infl
Pa11,a21×Pa12,a22

Ga11,a21,a12,a22

(((
Res

Gr1,r2

Pa11,a12×Pa21,a22
(U1 ⊗ U2)

)Ka11,a12×Ka21,a22

)τ−1
A

)
(4.19)

(by (4.4), (4.12) and their obvious analogues for restriction and inflation). Thus it suffices to check for each
2×2 matrix A that any CGc1,c2-module of the form V1⊗V2 has the same inner product with the A-summands

of (4.18) and (4.19). Abbreviate w := wAt and τ := τ−1
A .

Notice that wPr1,r2 is the group of all matrices having the block form

(4.20)




g11 h i j
0 g21 0 k
d e g12 ℓ
0 f 0 g22




in which the diagonal blocks gij for i, j = 1, 2 are invertible of size aij×aij , while the blocks h, i, j, k, ℓ, d, e, f
are all arbitrary matrices17 of the appropriate (rectangular) block sizes. Hence, wPr1,r2 ∩Pc1,c2 is the group
of all matrices having the block form

(4.21)




g11 h i j
0 g21 0 k
0 0 g12 ℓ
0 0 0 g22




in which the diagonal blocks gij for i, j = 1, 2 are invertible of size aij × aij , while the blocks h, i, j, k, ℓ
are all arbitrary matrices of the appropriate (rectangular) block sizes; then wPr1,r2 ∩Gc1,c2 is the subgroup
where the blocks i, j, k all vanish. The canonical projection wPr1,r2 ∩ Pc1,c2 → wPr1,r2 ∩Gc1,c2 (obtained by
restricting the projection Pc1,c2 → Gc1,c2) has kernel

wPr1,r2 ∩ Pc1,c2 ∩Kc1,c2 . Consequently,

(4.22) (wPr1,r2 ∩ Pc1,c2) / (wPr1,r2 ∩ Pc1,c2 ∩Kc1,c2) =
wPr1,r2 ∩Gc1,c2 .

Similarly,

(4.23)
(
Pr1,r2 ∩ Pwc1,c2

)
/
(
Pr1,r2 ∩ Pwc1,c2 ∩Kr1,r2

)
= Gr1,r2 ∩ Pwc1,c2 .

where a′22 = r1 + a21 = c1 + a12 = n− a22. In matrix form, wAt is the block matrix









Ia11 0 0 0
0 0 Ia21 0
0 Ia12 0 0
0 0 0 Ia22









.

17The blocks i and j have nothing to do with the indices i, j in gij .
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Computing first the inner product of V1 ⊗ V2 with the A-summand of (4.18), and using adjointness
properties, one gets

((
Res

Pr1,r2

Pr1,r2∩Pw
c1,c2

Infl
Pr1,r2

Gr1,r2
(U1 ⊗ U2)

)τ
,

Res
Pc1,c2
wPr1,r2∩Pc1,c2

Infl
Pc1,c2

Gc1,c2
(V1 ⊗ V2)

)
wPr1,r2∩Pc1,c2

(4.7)
=

((
Infl

Pr1,r2∩P
w
c1,c2

Gr1,r2∩Pw
c1,c2

Res
Gr1,r2

Gr1,r2∩Pw
c1,c2

(U1 ⊗ U2)
)τ
,

Infl
wPr1,r2∩Pc1,c2
wPr1,r2∩Gc1,c2

Res
Gc1,c2
wPr1,r2∩Gc1,c2

(V1 ⊗ V2)
)

wPr1,r2∩Pc1,c2

(by (4.23) and (4.22)). One can compute this inner product by first recalling that wPr1,r2 ∩ Pc1,c2 is the
group of matrices having the block form (4.21) in which the diagonal blocks gij for i, j = 1, 2 are invertible
of size aij × aij , while the blocks h, i, j, k, ℓ are all arbitrary matrices of the appropriate (rectangular) block
sizes; then wPr1,r2 ∩Gc1,c2 is the subgroup where the blocks i, j, k all vanish. The inner product above then
becomes

(4.24)

1

|wPr1,r2 ∩ Pc1,c2 |
∑

(gij)
(h,i,j,k,ℓ)

χU1

(
g11 i
0 g12

)
χU2

(
g21 k
0 g22

)

χV1

(
g11 h
0 g21

)
χV2

(
g12 ℓ
0 g22

)
.

If one instead computes the inner product of V1 ⊗ V2 with the A-summand of (4.19), using adjointness
properties and (4.11) one gets

(((
Res

Gr1,r2

Pa11,a12×Pa21,a22
(U1 ⊗ U2)

)Ka11,a12×Ka21,a22

)τ
,

(
Res

Gc1,c2

Pa11,a21×Pa12,a22
(V1 ⊗ V2)

)Ka11,a21×Ka12,a22

)

Ga11,a21,a12,a22

=
1

|Ga11,a21,a12,a22 |
∑

(gij)

1

|Ka11,a12 ×Ka21,a22 |
∑

(i,k)

χU1

(
g11 i
0 g12

)
χU2

(
g21 k
0 g22

)

1

|Ka11,a21 ×Ka12,a22 |
∑

(h,ℓ)

χV1

(
g11 h
0 g21

)
χV2

(
g12 ℓ
0 g22

)
.

But this right hand side can be seen to equal (4.24), after one notes that

|wPr1,r2 ∩ Pc1,c2 | = |Ga11,a21,a12,a22 | · |Ka11,a12 ×Ka21,a22 | · |Ka11,a21 ×Ka12,a22 | ·#{j ∈ Fa11×a22q }

and that the summands in (4.24) are independent of the matrix j in the summation. �

4.4. Symmetric groups. Finally, some payoff. Consider the tower of symmetric groups Gn = Sn, and
A = A(G∗) = A(S). Denote by 1Sn

, sgnSn
the trivial and sign characters on Sn. For a partition λ of n,

denote by 1Sλ
, sgnSλ

the trivial and sign characters restricted to the Young subgroup Sλ = Sλ1 ×Sλ2×· · · ,
and denote by 1λ the class function which is the characteristic function for the Sn-conjugacy class of
permutations of cycle type λ.

Theorem 4.15. Irreducible complex characters {χλ} of Sn are indexed by partitions λ in Parn, and one
has a PSH-isomorphism, the Frobenius characteristic map,

A = A(S)
ch−→ Λ
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that sends
1Sn

7−→ hn
sgnSn

7−→ en
1(n) 7−→ pn

n
χλ 7−→ sλ

IndSn

Sλ
1Sλ

7−→ hλ
IndSn

Sλ
sgnSλ

7−→ eλ
1λ 7−→ pλ

zλ

and where the involution ω on Λ corresponds under ch−1 to the map on each virtual character space R(Sn)
given by tensoring with the sign character sgnSn

. Here, zλ is defined as in Proposition 2.30.

Proof. Corollary 4.14 implies that the set Σ =
⊔
n≥0 Irr(Sn) gives a PSH-basis for A. Since a character χ of

Sn has

(4.25) ∆(χ) =
⊕

i+j=n

ResSn

Si×Sj
χ,

such an element χ is never primitive for n ≥ 2. Hence the unique irreducible character ρ = 1S1 of S1 is the
only element of C = Σ ∩ p.

Thus Theorem 3.18 tells us that there are two isomorphisms A→ Λ, each of which sends Σ to the PSH-
basis of Schur functions {sλ} for Λ. It also tells us that we can pin down one of the two isomorphisms to
call ch, by insisting that it map the two characters 1S2 , sgnS2

in Irr(S2) to h2, e2 (and not e2, h2).
Bearing in mind the coproduct formula (4.25), and the fact that 1Sn

, sgnSn
restrict, respectively, to trivial

and sign characters of Si ×Sj for i+ j = n, one finds that for n ≥ 2 one has sgn⊥S2
annihilating 1Sn

, and

1⊥S2
annihilating sgnSn

. Therefore Theorem 3.16(b) implies 1Sn
, sgnSn

are sent under ch to hn, en. Then

the fact that IndSn

Sλ
1Sλ

, IndSn

Sλ
sgnSλ

are sent to hλ, eλ follows via induction products.
For the assertion about 1(n), note that it is primitive in A for n ≥ 1, because as a class function, the

indicator function of n-cycles vanishes upon restriction to Si × Sj for i + j = n if both i, j ≥ 1; these
subgroups contain no n-cycles. Hence Corollary 3.8 implies that ch(1(n)) is a scalar multiple of pn. To pin

down the scalar, note pn = m(n) so (hn, pn)Λ = (hn,mn)Λ = 1, while ch−1(hn) = 1Sn
has

(1Sn
, 1(n)) =

1

n!
· (n− 1)! =

1

n
.

Thus ch(1(n)) =
pn
n . The fact that ch(1λ) =

pλ
zλ

then follows via induction product calculations, e.g. using

(4.3).
The fact that ω corresponds on An = R(Sn) to the operation χ 7−→ χ ⊗ sgnSn

, comes from Theo-
rem 3.18(f), once one notes that the latter operation induces a (nontrivial) PSH-algebra automorphism of
A. �

Remark 4.16. The paper of Liulevicius [45] gives a very elegant alternate approach to the Frobenius map as

a Hopf isomorphism A(S)
ch−→ Λ, inspired by equivariant K-theory and vector bundles over spaces which

are finite sets of points!

4.5. Wreath products. Next consider the tower of groups Gn = Sn[Γ] for a finite group Γ, and the Hopf
algebra A = A(G∗) =: A(S[Γ]). Recall from the previous section that irreducible complex representations
χλ of Sn are indexed by partitions λ in Parn. Index the irreducible complex representations of Γ as
Irr(Γ) = {ρ1, . . . , ρd}.
Definition 4.17. Define for a partition λ in Parn and ρ in Irr(Γ) a representation χλ,ρ of Sn[Γ] in which
σ in Sn and γ = (γ1, . . . , γn) in Γn act on the space χλ ⊗ (ρ⊗n) as follows

(4.26)
σ(u ⊗ (v1 ⊗ · · · ⊗ vn)) = σ(u)⊗ (vσ−1(1) ⊗ · · · ⊗ vσ−1(n))

γ(u⊗ (v1 ⊗ · · · ⊗ vn)) = u⊗ (γ1v1 ⊗ · · · ⊗ γnvn)

Theorem 4.18. The irreducible CSn[Γ]-modules are the induced characters

χλ := Ind
Sn[Γ]
Sλ[Γ]

(
χλ

(1),ρ1 ⊗ · · · ⊗ χλ
(d),ρd

)
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as λ runs through all functions

Irr(Γ)
λ−→ Par

ρi 7−→ λ(i)

with the property that
∑d
i=1 |λ(i)| = n. Furthermore, one has a PSH-isomorphism

A(S[Γ]) −→ Λ⊗n

χλ 7−→ sλ(1) ⊗ · · · ⊗ sλ(d) .

Proof. We know from Corollary 4.14 that A(S[Γ]) is a PSH, with PSH-basis Σ given by the union of all
irreducible characters of all groups Sn[Γ]. Therefore Theorem 3.10 tells us that A(S[Γ]) ∼=

⊗
ρ∈C A(S[Γ])(ρ)

where C is the set of irreducible characters which are also primitive. Just as in the case of Sn, it is clear
from the definition of the coproduct that an irreducible character ρ of Sn[Γ] is primitive if and only if n = 1,
that Sn[Γ] = Γ, and ρ lies in Irr(Γ) = {ρ1, . . . , ρd}.

The remaining assertions of the theorem will then follow from the definition of the induction product
algebra structure on A(S[Γ]), once we have shown that there is a PSH-isomorphism sending

(4.27)
A(S) −→ A(S[Γ])(ρ)
χλ 7−→ χλ,ρ.

Such an isomorphism comes from applying Proposition 4.4 to the semidirect product Sn[Γ] = Sn ⋉ Γn, so
that K = Γn, G = Sn, and fixing V = ρ⊗n as CSn[Γ]-module with structure as defined in (4.26). One
obtains for each n, maps

A(Sn)
Φ
⇋
Ψ
A(Sn[Γ])

where

χ
Φ7−→ χ⊗ (ρ⊗n)

α
Ψ7−→ HomCΓn(ρ⊗n, α).

Taking the direct sum of these maps for all n gives maps A(S)
Φ
⇋
Ψ
A(S[Γ]).

These maps are coalgebra morphisms because of their interaction with restriction to Si × Sj . Since
Proposition 4.4(iii) gives the adjointness property that

(χ,Ψ(α))A(S) = (Φ(χ), α)A(S[Γ]),

one concludes from the self-duality of A(S), A(S[Γ]) that Φ,Ψ are also algebra morphisms. Since they
take genuine characters to genuine characters, they are PSH-morphisms. Since ρ being a simple CΓ-module
implies that V = ρ⊗n is a simple CΓn-module, Proposition 4.4(iv) shows that

(4.28) (Ψ ◦ Φ)(χ) = χ

for all Sn-characters χ. Hence Φ is an injective PSH-morphism. Using adjointness, (4.28) also shows that
Φ sends CSn-simples χ to C[Sn[Γ]]-simples Φ(χ):

(Φ(χ),Φ(χ))A(S[Γ]) = ((Ψ ◦ Φ)(χ), χ)A(S) = (χ, χ)A(S) = 1.

Since Φ(χ) = χ⊗ (ρ⊗n) has V = ρ⊗n as a constituent upon restriction to Γn, Frobenius Reciprocity shows

that the irreducible character Φ(χ) is a constituent of Ind
Sn[Γ]
Γn ρ⊗n = ρn. Hence the entire image of Φ lies

in A(S[Γ])(ρ), and so Φ must restrict to an isomorphism as desired in (4.27). �

One of Zelevinsky’s sample applications of the theorem is this branching rule.

Corollary 4.19. Given λ = (λ(1), . . . , λ(d)) with
∑d

i=1 |λ(i)| = n, one has

Res
Sn[Γ]
Sn−1[Γ]×Γ

(
χλ
)
=

d∑

i=1

∑

λ
(i)
−

⊆λ(i):

|λ(i)/λ
(i)
−

|=1

χ(λ(1),...,λ
(i)
−
,...,λ(d)) ⊗ ρi.

Example 4.20. For Γ a two-element group, so Irr(Γ) = {ρ1, ρ2} and d = 2, then

Res
S6[Γ]
S5[Γ]×Γ

(
χ((3,1),(1,1))

)
= χ((3),(1,1)) ⊗ ρ1 + χ((2,1),(1,1)) ⊗ ρ1 + χ((3,1),(1)) ⊗ ρ2.
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Proof of Corollary 4.19. By Theorem 4.18, this is equivalent to computing in the Hopf algebra A := Λ⊗d

the component of the coproduct of sλ(1) ⊗ · · · ⊗ sλ(d) that lies in An−1 ⊗ A1. Working within each tensor
factor Λ, the Pieri formula implies that the Λn−1 ⊗ Λ1-component of ∆(sλ) is

∑

λ−⊆λ:
|λ/λ−|=1

sλ−
⊗ ρ.

One must apply this in each of the d tensor factors of A = Λ⊗d, then sum on i. �

4.6. General linear groups. We now consider the tower of finite general linear groups Gn = GLn =
GLn(Fq) and A = A(G∗) =: A(GL). Corollary 4.14 tells us that A(GL) is a PSH, with PSH-basis Σ given
by the union of all irreducible characters of all groups GLn. Therefore Theorem 3.10 tells us that

(4.29) A(GL) ∼=
⊗

ρ∈C
A(GL)(ρ)

where C = Σ ∩ p is the set of primitive irreducible characters.

Definition 4.21. Call an irreducible representation ρ of GLn cuspidal for n ≥ 1 if it lies in C, that is, its
restriction to proper parabolic subgroups Pi,j with i+j = n and i, j > 0 contain no nonzero vectors which are
Ki,j-invariant. Given an irreducible character σ of GLn, say that d(σ) = n, and let Cn := {ρ ∈ C : d(ρ) = n}
for n ≥ 1 denote the subset of cuspidal characters of GLn.

Just as was the case for S1 and S1[Γ] = Γ, every irreducible character ρ of GL1(Fq) = F×
q is cuspidal.

However, this does not exhaust the cuspidal characters. In fact, one can predict the number of cuspidal
characters in Cn, using knowledge of the number of conjugacy classes in GLn. Let F denote the set of all
nonconstant monic irreducible polynomials f(x) 6= x in Fq[x]. Let Fn := {f ∈ F : deg(f) = n} for n ≥ 1.

Proposition 4.22. The number |Cn| of cuspidal characters of GLn(Fq) is the number of |Fn| of irreducible
monic degree n polynomials f(x) 6= x in Fq[x] with nonzero constant term.

Proof. We show |Cn| = |Fn| for n ≥ 1 by induction on n. For the base case n = 1, just as with the families
Gn = Sn and Gn = Sn[Γ], when n = 1 any irreducible character χ of G1 = GL1(Fq) gives a primitive
element of A = A(GL), and hence is cuspidal. Since GL1(Fq) = F×

q is abelian, there are |F×
q | = q − 1

such cuspidal characters in C1, which agrees with the fact that there are q − 1 monic (irreducible) linear
polynomials f(x) 6= x in Fq[x], namely F1 := {f(x) = x− c : c ∈ F×

q }.
In the inductive step, use the fact that the number |Σn| of irreducible complex characters χ of GLn(Fq)

equals its number of conjugacy classes. These conjugacy classes are uniquely represented by rational canonical
forms, which are parametrized by functions λ : F → Par with the property that

∑
f∈F deg(f)|λ(f)| = n.

On the other hand, (4.29) tells us that |Σn| is similarly parametrized by the functions λ : C → Par having
the property that

∑
ρ∈C d(ρ)|λ(f)| = n. Thus we have parallel disjoint decompositions

C =
⊔
n≥1 Cn where Cn = {ρ ∈ C : d(ρ) = n}

F =
⊔
n≥1 Fn where Fn = {f ∈ F : deg(f) = n}

and hence an equality for all n ≥ 1
∣∣∣∣∣∣



C λ−→ Par :

∑

ρ∈C
d(ρ)|λ(f)| = n





∣∣∣∣∣∣
= |Σn| =

∣∣∣∣∣∣



F λ−→ Par :

∑

f∈F
deg(f)|λ(f)| = n





∣∣∣∣∣∣
.

Since there is only one partition λ = (1) of having |λ| = 1, this leads to parallel recursions

|Cn| = |Σn| −
∣∣∣∣∣

{
n−1⊔

i=1

Ci
λ−→ Par :

∑

ρ

d(ρ)|λ(ρ)| = n

}∣∣∣∣∣

|Fn| = |Σn| −

∣∣∣∣∣∣





n−1⊔

i=1

Fi
λ−→ Par :

∑

f

deg(f)|λ(f)| = n





∣∣∣∣∣∣

and induction implies that |Cn| = |Fn|. �
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Example 4.23. Taking q = 2, let us list the sets Fn of monic irreducible polynomials f(x) 6= x in F2[x] of
degree n for n ≤ 3, so that we know how many cuspidal characters of GLn(Fq) in Cn to expect:

F1 = {x+ 1}
F2 = {x2 + x+ 1}
F3 = {x3 + x+ 1, x3 + x2 + 1}

Thus we expect

• one cuspidal character of GL1(F2), namely ρ1(= 1GL1(F2)),
• one cuspidal character ρ2 of GL2(F2), and
• two cuspidal characters ρ3, ρ

′
3 of GL3(F2).

We will say more about ρ2, ρ3, ρ
′
3 in the next section.

Exercise 4.24. (a) Show that for n ≥ 2,

(4.30) |Cn|(= |Fn|) =
1

n

∑

d dividing n

µ
(n
d

)
qd

where µ(m) is the number-theoretic Möbius function ofm, that is µ(m) = (−1)d if m = p1 · · · pd for d distinct
primes, and µ(m) = 0 if m is not squarefree.
(b) Show that (4.30) also counts the necklaces with n beads of q colors (=equivalence classes under the
Z/nZ-action of cyclic rotation on sequences (a1, . . . , an) in Fnq ) which are primitive in the sense that no
nontrivial rotation fixes any of the sequences within the equivalence class. For example, when q = 2, here
are representatives of these primitive necklaces for n = 2, 3, 4:

n = 2 :{(0, 1)}
n = 3 :{(0, 0, 1), (0, 1, 1)}
n = 4 :{(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1)}.

4.7. Steinberg’s unipotent characters. Not surprisingly, the (cuspidal) character ι := 1GL1 of GL1(Fq)
plays a distinguished role. The parabolic subgroup P(1n) is the Borel subgroup B of upper triangular
matrices, and the subalgebra A(GL)(ι) of A(GL) is the Z-span of the irreducible characters σ that appear

as constituents of ιn = IndGLn

B 1B = C[GLn/B] for some n.

Definition 4.25. An irreducible character σ of GLn appearing as a constituent of IndGLn

B 1B = C[GLn/B]
is called a unipotent character. Equivalently, by Frobenius reciprocity, σ is unipotent if it contains a nonzero
B-invariant vector.

In particular, 1GLn
is a unipotent character of GLn for each n.

Proposition 4.26. One can choose Λ ∼= A(GL)(ι) in Theorem 3.18(g) so that hn 7−→ 1GLn
.

Proof. Theorem 3.16(a) tells us ι2 = IndGL2

B 1B must have exactly two irreducible constituents, one of which
is 1GL2; call the other one St2. Choose the isomorphism so as to send h2 7−→ 1GL2 . Then hn 7→ 1GLn

follows

from the claim that St⊥2 (1GLn
) = 0 for n ≥ 2: one has

∆(1GLn
) =

∑

i+j=n

(
ResGn

Pi,j
1GLn

)Ki,j

=
∑

i+j=n

1GLi
⊗ 1GLj

so that St⊥2 (1GLn
) = (St2, 1GL2)1GLn−2 = 0 since St2 6= 1GL2.

�

This subalgebra A(GL)(ι), and the unipotent characters χλq corresponding under this isomorphism to

the Schur functions sλ, were introduced by Steinberg [74]. He wrote down χλq as a virtual sum of induced

characters IndGLn

Pα
1Pα

(= 1Gα1
· · · 1Gαℓ

), modelled on the Jacobi-Trudi determinantal expression for sλ =

det(hλi−i+j). Note that Ind
GLn

Pα
1Pα

is the transitive permutation representation C[G/Pα] for GLn permuting
the finite partial flag variety G/Pα, that is, the set of α-flags of subspaces

{0} ⊂ Vα1 ⊂ Vα1+α2 ⊂ · · · ⊂ Vα1+α2+···+αℓ−1
⊂ Fnq
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where dimFq
Vd = d in each case. This character has dimension equal to |G/Pα|, with formula given by the

q-multinomial coefficient (see e.g. Stanley [72, §1.7]):
[
n
α

]

q

=
[n]!q

[α1]!q · · · [αℓ]!q
where [n]!q := [n]q[n− 1]q · · · [2]q[1]q and [n]q := 1 + q + · · ·+ qn−1 = qn−1

q−1 .

Our terminology St2 is motivated by the n = 2 special case of the Steinberg character Stn, which is
the unipotent character corresponding under the isomorphism in Proposition 4.26 to en = s(1n). It can be
defined by the virtual sum

Stn := χ(1n)
q =

∑

α

(−1)n−ℓ(α) IndGLn

Pα
1Pα

in which the sum runs through all compositions α of n. This turns out to be the genuine character for
GLn(Fq) acting on the top homology group of its Tits building: the simplicial complex whose vertices are
nonzero proper subspaces V of Fnq , and whose simplices correspond to flags of nested subspaces. One needs
to know that this Tits building has only top homology, so that one can deduce the above character formula
from the Hopf trace formula; see Björner [12].

4.8. Examples: GL2(F2) and GL3(F2). Let’s get our hands dirty.

Example 4.27. For n = 2, there are two unipotent characters, χ
(2)
q = 1GL2 and

(4.31) St2 := χ(1,1)
q = 12GL1

− 1GL2 = IndGL2

B 1B − 1GL2

since the Jacobi-Trudi formula gives s(1,1) = det

[
h1 h2
1 h1

]
= h21−h2. The description (4.31) for this Steinberg

character St2 shows that it has dimension

|GL2/B| − 1 = (q + 1)− 1 = q

and that one can think of it as follows: consider the permutation action ofGL2 on the q+1 lines {ℓ0, ℓ1, . . . , ℓq}
in the projective space P1

Fq
= GL2(Fq)/B, and take the invariant subspace perpendicular to the sum of basis

elements eℓ0 + · · ·+ eℓq .

Example 4.28. Continuing the previous example, but taking q = 2, we find that we have constructed two

unipotent characters: 1GL2 = χ
(2)
q=2 of dimension 1, and St2 = χ

(1,1)
q=2 of dimension q = 2. This lets us identify

the unique cuspidal character ρ2 of GL2(F2), using knowledge of the character table of GL2(F2) ∼= S3:

[
1 0
0 1

] [
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 0

] [
1 1
1 0

]
,

[
0 1
1 1

]

1GL2 = χ
(2)
q=2 unipotent 1 1 1

St2 = χ
(1,1)
q=2 unipotent 2 0 -1

ρ2 cuspidal 1 -1 1

In other words, the cuspidal character ρ2 of GL2(F2) corresponds under the isomorphism GL2(F2) ∼= S3 to
the sign character sgnS3

.

Example 4.29. Continuing the previous example to q = 2 and n = 3 lets us analyze the irreducible
characters of GL3(F2). Recalling our labelling ρ1, ρ2, ρ3, ρ

′
3 from Example 4.23 of the cuspidal characters of

GLn(F2) for n = 1, 2, 3, Zelevinsky’s Theorem 3.10 tells us that the GL3(F2)-irreducible characters should

be labelled by function {ρ1, ρ2, ρ3, ρ′3}
λ−→ Par for which

1 · |λ(ρ1)|+ 2 · |λ(ρ2)|+ 3 · |λ(ρ3)|+ 3 · |λ(ρ′3)| = 3

We will label such an irreducible character χλ = χ(λ(ρ1),λ(ρ2),λ(ρ3),λ(ρ
′
3)).

Three of these irreducibles will be the unipotent characters, mapping under the isomorphism from Propo-
sition 4.26 as follows:

• s(3) = h3 7−→ χ((3),∅,∅,∅) = 1GL3 of dimension 1.
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•

s(2,1) = det

[
h2 h3
1 h1

]
= h2h1 − h3 7−→ χ((2,1),∅,∅,∅) = IndGL3

P2,1
1P2,1 − 1GL3 ,

of dimension

[
3
2, 1

]

q

−
[
3
3

]

q

= [3]q − 1 = q2 + q
q=2
 6.

• Lastly,

s(1,1,1) = det



h1 h2 h3
1 h1 h2
0 1 h1


 = h31 − h2h1 − h1h2 + h3

7−→ St3 = χ((1,1,1),∅,∅,∅) = IndGL3

B 1B − IndGL3

P1,2
1P1,2 − IndGL3

P2,1
1P2,1 + 1GL3.

of dimension [
3

1, 1, 1

]

q

−
[
3
2, 1

]

q

−
[
3
1, 2

]

q

−
[
3
3

]

q

= [3]!q − [3]q − [3]q + 1 = q3
q=2
 8.

There should also be one non-unipotent, non-cuspidal character, namely

χ((1),(1),∅,∅) = ρ1ρ2 = IndGL3

P1,2
Infl

P1,2

GL1×GL2
(1GL1 ⊗ ρ2)

having dimension

[
3
1, 2

]

q

· 1 · 1 = [3]q
q=2
 7.

Finally, we expect cuspidal characters ρ3 = χ(∅,∅,(1),∅), ρ′3 = χ(∅,∅,∅,(1)), whose dimensions d3, d
′
3 can be

deduced from the equation

12 + 62 + 82 + 72 + d23 + (d′3)
2 = |GL3(F2)| =

[
(q3 − q0)(q3 − q1)(q3 − q2)

]
q=2

= 168.

This forces d23 + (d′3)
2 = 18, whose only solution in positive integers is d3 = d′3 = 3.

We can check our predictions of the dimensions for the various GL3(F2)-irreducible characters since
GL3(F2) is the finite simple group of order 168 (also isomorphic to PSL2(F7)), with known character table
(see James and Liebeck [38, p. 318]):

centralizer order 168 8 4 3 7 7
unipotent?/cuspidal?

1GL3 = χ((3),∅,∅,∅) unipotent 1 1 1 1 1 1

χ((2,1),∅,∅,∅) unipotent 6 2 0 0 -1 -1

St3 = χ((1,1,1),∅,∅,∅) unipotent 8 0 0 -1 1 1

χ((1),(1),∅,∅) 7 -1 -1 1 0 0

ρ3 = χ(∅,∅,∅,(1)) cuspidal 3 -1 1 0 α α

ρ′3 = χ(∅,∅,(1),∅) cuspidal 3 -1 1 0 α α

Here α := −1/2 + i
√
7/2.

Remark 4.30. It is known (see e.g. Bump [13, Cor. 7.4]) that, for n ≥ 2, the dimension of any cuspidal
irreducible character ρ of GLn(Fq) is

(qn−1 − 1)(qn−2 − 1) · · · (q2 − 1)(q − 1).

Note that when q = 2,

• for n = 2 this gives 21 − 1 = 1 for the dimension of ρ2, and
• for n = 3 it gives (22 − 1)(2− 1) = 3 for the dimensions of ρ3, ρ

′
3,

agreeing with our calculations above. Much more is known about the character table of GLn(Fq); see
Remark 4.42 below, Zelevinsky [81, Chap. 11], and Macdonald [49, Chap. IV]
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4.9. The Hall algebra. There is another interesting Hopf subalgebra (and quotient Hopf algebra) of A(GL),
related to unipotent conjugacy classes in GLn(Fq).

Definition 4.31. Say that an element g in GLn(Fq) is unipotent if its eigenvalues are all equal to 1. Denote
by Hn the C-subspace of RC(GLn) consisting of those class functions which are supported only on unipotent
conjugacy classes, and let H =

⊕
n≥0 Hn as a C-subspace of AC(GL) =

⊕
n≥0RC(GLn).

Proposition 4.32. The subspace H is a Hopf-subalgebra of AC(GL), which is graded, connected, and of
finite type, and self-dual with respect to the inner product on class functions inherited from AC(GL). It is
also a quotient Hopf algebra of AC(GL), as the C-linear surjection AC(GL)։ H restricting class functions
to unipotent classes has kernel H⊥ which is both an ideal and a two-sided coideal.

Proof. Given two class functions χi, χj on GLi, GLj and g in GLi+j , one has

(4.32) (χi · χj) (g) =
1

|Pi,j |
∑

h∈GLi+j:

h−1gh=





gi ∗
0 gj



∈Pi,j

χi(gi)χj(gj).

Since g is unipotent if and only if h−1gh is unipotent if and only if both gi, gj are unipotent, the formula
(4.32) shows both that H is a subalgebra and that H⊥ is a two-sided ideal: χi and χj are both supported
only on unipotent classes if and only if the same holds for χi · χj . Similarly, for class functions χ on GLn
and (gi, gj) in GLi,j = GLi ×GLj , one has

∆(χ)(gi, gj) =
1

qij

∑

k∈F
i×j
q

χ

[
gi k
0 gj

]

using (4.10). This shows both that H is a sub-coalgebra of A = AC(GL)

∆H ⊂ H⊗H
and that H⊥ is a two-sided coideal

∆(H⊥) ⊂ H⊥ ⊗A+A⊗H⊥

since it shows that χ is supported only on unipotent classes if and only if ∆(χ) vanishes on (g1, g2) that have
either g1 or g2 non-unipotent. The rest follows. �

The subspace H is called the Hall algebra. It has an obvious orthogonal C-basis, with interesting structure
constants.

Definition 4.33. Given a partition λ of n, let Jλ denote the GLn-conjugacy class of unipotent matrices
whose Jordan type (= Jordan block sizes) is given by λ, and let zλ(q) denote the size of this conjugacy class
Jλ.

The indicator class functions {1Jλ
}λ∈Par form a C-basis for H whose multiplicative structure constants

are called the Hall coefficients gλµ,ν(q):

1Jµ
1Jν

=
∑

λ

gλµ,ν(q) 1Jλ
.

Because the dual basis to {1Jλ
} is {zλ(q)−11Jλ

}, self-duality of H shows that the Hall coefficients are
(essentially) also structure constants for the comultiplication:

∆1Jλ
=
∑

µ,ν

gλµ,ν(q)
zµ(q)zν(q)

zλ(q)
· 1Jµ

⊗ 1Jν
.

The Hall coefficient gλµ,ν(q) has the following interpretation.

Proposition 4.34. Fix any g in GLn(Fq) acting unipotently on Fnq with Jordan type λ. Then gλµ,ν(q) counts
the g-stable Fq-subspaces V ⊂ Fnq for which the restriction g|V acts with Jordan type µ, and the induced map
ḡ on the quotient space Fnq /V has Jordan type ν.
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Proof. Given µ, ν partitions of i, j with i+ j = n, taking χi, χj equal to 1Jµ
, 1Jν

in (4.32) shows that for any

g in GLn, the value of
(
1Jµ

· 1Jν

)
(g) is given by

(4.33)
1

|Pi,j |

∣∣∣∣
{
h ∈ GLn : h−1gh =

[
gi ∗
0 gj

]
with gi ∈ Jµ, gj ∈ Jν

}∣∣∣∣

Let S denote the set appearing in (4.33), and let Fiq denote the i-dimensional subspace of Fnq spanned by

the first i standard basis vectors. Note that the condition on an element h in S saying that h−1gh is in
block upper-triangular form can be re-expressed by saying that the subspace V := h(Fiq) is g-stable. One

then sees that the map h
ϕ7−→ V = h(Fiq) surjects S onto the set of i-dimensional g-stable subspaces V of Fnq

for which g|V and ḡ are unipotent of types µ, ν, respectively. Furthermore, for any particular such V , its
fiber ϕ−1(V ) in S is the stabilizer within GLn of V , which is conjugate to Pi,j , and hence has cardinality
|ϕ−1(V )| = |Pi,j |. This proves the assertion of the proposition. �

The Hall algebraH will turn out to be isomorphic to the ring ΛC of symmetric functions with C coefficients,
via a composite ϕ of three maps

ΛC −→ A(GL)(ι)C −→ A(GL)C −→ H
in which the first map is the isomorphism from Proposition 4.26, the second is inclusion, and the third is
the quotient map from Proposition 4.32.

Theorem 4.35. The above composite ϕ is a Hopf algebra isomorphism, sending

hn 7−→ ∑
λ∈Parn

1Jλ
,

en 7−→ q(
n
2)1J(1n)

,
pn 7−→ ∑

λ∈Parn
(q; q)ℓ(λ)1Jλ

,

where

(x; q)ℓ := (1 − x)(1 − qx)(1 − q2x) · · · (1− qℓ−1x).

Proof. That ϕ is a Hopf morphism follows because it is a composite of three such morphisms. We claim that
once one shows the formula for the (nonzero) image of ϕ(pn) given above is correct, then this will already
show ϕ is an isomorphism, by the following argument. Note first that ΛC and H both have dimension |Parn |
for their nth homogeneous components, so it suffices to show that the graded map ϕ is injective. On the
other hand, both ΛC and H are (graded, connected, finite type) self-dual Hopf algebras, so Theorem 3.7
says that each is the symmetric algebra on its space of primitive elements. Thus it suffices to check that
ϕ is injective when restricted to their subspaces of primitives. For ΛC, by Corollary 3.8 the primitives are
spanned by {p1, p2, . . .}, with only one basis element in each degree. Hence ϕ is injective on the subspace of
primitives if and only if it does not annihilate any pn.

Thus it only remains to show the above formulas for the images of hn, en, pn under ϕ. This is clear for
hn, since Proposition 4.26 shows that it maps under the first two composites to the indicator function 1GLn

which then restricts to the sum of indicators
∑
λ∈Parn

1Jλ
in H. For en, pn, we resort to generating functions.

Let h̃n, ẽn, p̃n denote the three putative images in H of hn, en, pn, appearing on the right side in the theorem,
and define generating functions in H[[t]]

H̃(t) :=
∑

n≥0

h̃nt
n, Ẽ(t) :=

∑

n≥0

ẽnt
n, P̃ (t) :=

∑

n≥0

p̃n+1t
n.

We wish to show that ϕ maps H(t), E(t), P (t) in Λ[[t]] to these three generating functions. Since we have
already shown this is correct for H(t), by (2.10), (2.20), it suffices to check that in H[[t]] one has

H̃(t)Ẽ(−t) = 1, or equivalently,
∑n

k=0(−1)kẽkh̃n−k = δ0,n
H̃ ′(t)Ẽ(−t) = P̃ (t), or equivalently,

∑n
k=0(−1)k(n− k)ẽkh̃n−k = p̃n.

Thus it would be helpful to evaluate the class function ẽkh̃n−k. Note that a unipotent g in GLn having ℓ
Jordan blocks has an ℓ-dimensional 1-eigenspace, so that

(ẽkh̃n−k)(g) = q(
k
2) · (1J

(1k)
· h̃n−k)(g) = q(

k
2)
[
ℓ
k

]

q
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where [
ℓ
k

]

q

=
(q; q)ℓ

(q; q)k(q; q)ℓ−k

is the q-binomial coefficient counting k-dimensional Fq-subspaces V of an ℓ-dimensional Fq-vector space; see,
e.g., [72, §1.7]. Thus one needs for ℓ ≥ 1 that

ℓ∑

k=0

(−1)kq(
k
2)
[
ℓ
k

]

q

= 0,(4.34)

ℓ∑

k=0

(−1)k(n− k)q(
k
2)
[
ℓ
k

]

q

= (q; q)ℓ.(4.35)

Identity (4.34) comes from setting x = 1 in the q-binomial theorem [72, Exer. 3.119]:

ℓ∑

k=0

(−1)kq(
k
2)
[
ℓ
k

]

q

xℓ−k = (x− 1)(x− q)(x − q2) · · · (x− qℓ−1).

Identity (4.35) comes from taking d
dx in the q-binomial theorem, then setting x = 1, and finally adding (n−ℓ)

times (4.34). �

We next indicate, without proof, how H relates to the classical Hall algebra.

Definition 4.36. The usual Hall algebra, or what Schiffmann [63, §2.3] calls Steinitz’s classical Hall algebra
(see also Macdonald [49, Chap. II]), has Z-basis elements {uλ}λ∈Par, with the multiplicative structure
constants gλµ,ν(p) in

uµuν =
∑

λ

gλµ,ν(p) uλ

defined as follows: fix a finite abelian p-group L of type λ, meaning that

L ∼=
ℓ(λ)⊕

i=1

Z/pλiZ,

and let gλµ,ν(p) be the number of subgroupsM of L of type µ, for which the quotient N := L/M is of type ν.

In other words, gλµ,ν(p) counts, for a fixed abelian p-group L of type λ, the number of short exact sequences
0 →M → L→ N → 0 in which M,N have types µ, ν, respectively.

We claim that when one takes the finite field Fq of order q = p a prime, the map

(4.36) uλ 7−→ 1Jλ

gives an isomorphism from this classical Hall algebra to the Z-algebra HZ ⊂ H. The key point is Hall’s
Theorem, a non-obvious statement for which Macdonald includes two proofs in [49, Chap. II], one of them
due to Zelevinsky18. To state it, we first recall some notions about discrete valuation rings.

Definition 4.37. A discrete valuation ring (DVR) o is a principal ideal domain having only one maximal
ideal m, with quotient k = o/m called its residue field.

The structure theorem for finitely generated modules over a PID implies that an o-module L with finite

composition series of composition length n must have L ∼=
⊕ℓ(λ)

i=1 o/mλi for some partition λ of n; say L has
type λ in this situation.

Here are the two crucial examples for us.

Example 4.38. For any field F, the power series ring o = F[[t]] is a DVR with maximal ideal m = (t) and
residue field k = o/m = F[[t]]/(t) ∼= F. An o-module L of type λ is an F-vector space together with an
F-linear transformation T that acts on M nilpotently (so that g := T + 1 acts unipotently) with Jordan
blocks of sizes given by λ: each summand o/mλi = F[[t]]/(tλi) of L has an F-basis {1, t, t2, . . . , tλi−1} on
which the map T that multiplies by t acts as a nilpotent Jordan block of size λi. Note also that, in this
setting, o-submodules are the same as T -stable (or g-stable) F-subspaces.

18See also [63, Thm. 2.6, Prop. 2.7] for quick proofs of part of it, similar to Zelevinsky’s.
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Example 4.39. The ring of p-adic integers o = Zp is a DVR with maximal ideal m = (p) and residue field
k = o/m = Zp/pZp ∼= Z/pZ. An o-module L of type λ is an abelian p-group of type λ: for each summand,
o/mλi = Zp/p

λiZp ∼= Z/pλiZ. Note also that, in this setting, o-submodules are the same as subgroups.

One last notation: n(λ) :=
∑
i≥1(i− 1)λi, for λ in Par. Hall’s Theorem is as follows.

Theorem 4.40. Assume o is a DVR with maximal ideal m, and that its residue field k = o/m is finite of
cardinality q. Fix an o-module L of type λ. Then the number of o-submodules M of type µ for which the
quotient N = L/M is of type ν can be written as the specialization

[gλµ,ν(t)]t=q

of a polynomial gλµ,ν(t) in Z[t], called the Hall polynomial.

Furthermore, the Hall polynomial gλµ,ν(t) has degree at most n(λ) − (n(µ) + n(ν)), and its coefficient of

tn(λ)−(n(µ)+n(ν)) is the Littlewood-Richardson coefficient cλµ,ν .

Comparing what Hall’s Theorem says in Examples 4.38 and 4.39, shows that the map (4.36) gives the desired
isomorphism from the classical Hall algebra to HZ.

We close this section with some remarks on the vast literature on Hall algebras that we will not discuss
here.

Remark 4.41. Macdonald’s version of Hall’s Theorem [49, (4.3)] is stronger than Theorem 4.40, and useful
for certain applications: he shows that gλµ,ν(t) is the zero polynomial whenever the Littlewood-Richardson

coefficient cλµ,ν is zero.

Remark 4.42. Zelevinsky in [81, Chaps 10, 11] uses the isomorphism ΛC → H to derive J. Green’s formula
for the value of any irreducible character χ of GLn on any unipotent class Jλ. The answer involves values
of irreducible characters of Sn along with Green’s polynomials Qλµ(q) (see Macdonald [49, §III.7]; they are
denoted Q(λ, µ) by Zelevinsky), which express the images under the isomorphism of Theorem 4.35 of the
symmetric function basis {pµ} in terms of the basis {1Jλ

}.
Remark 4.43. The Hall polynomials gλµ,ν(t) also essentially give the multiplicative structure constants for
Λ(x)[t] with respect to its basis of Hall-Littlewood symmetric functions Pλ = Pλ(x; t):

PµPν =
∑

λ

tn(λ)−(n(µ)+n(ν))gλµ,ν(t
−1)Pλ.

See Macdonald [49, §III.3].
Remark 4.44. Schiffmann [63] discusses self-dual Hopf algebras which vastly generalize the classical Hall
algebra called Ringel-Hall algebras, associated to abelian categories which are hereditary. Examples come
from categories of nilpotent representations of quivers; the quiver having exactly one node and one arc
recovers the classical Hall algebra HZ discussed above.

Remark 4.45. The general linear groups GLn(Fq) are one of four families of so-called classical groups.
Progress has been made on extending Zelevinsky’s PSH theory to the other families:

(a) Work of Thiem and Vinroot [80] shows that the tower {G∗} of finite unitary groups Un(Fq2) give
rise to another positive self-dual Hopf algebra A =

⊕
n≥0R(Un(Fq2)), in which the role of Harish-Chandra

induction is played by Deligne-Lusztig induction. In this theory, character and degree formulas for Un(Fq2)
are related to those ofGLn(Fq) by substituting q 7→ −q, along with appropriate scalings by±1, a phenomenon
sometimes called Ennola duality. See also [73, §4].

(b) van Leeuwen [44] has studied
⊕

n≥0R (Sp2n (Fq)),
⊕

n≥0R (O2n (Fq)) and
⊕

n≥0R
(
Un
(
Fq2
))

not

as Hopf algebras, but rather as so-called twisted PSH-modules over the PSH-algebra A(GL) (a “deformed”
version of the older notion of Hopf modules). He classified these PSH-modules axiomatically similarly to
Zelevinsky’s above classification of PSH-algebras.

(c) In a recent honors thesis [68], Shelley-Abrahamson defined yet another variation of the concept of Hopf
modules, named 2-compatible Hopf modules, and identified

⊕
n≥0R (Sp2n (Fq)) and

⊕
n≥0R (O2n+1 (Fq)) as

such modules over A(GL).
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5. Quasisymmetric functions and P -partitions

We discuss here our next important example of a Hopf algebra arising in combinatorics: the quasisym-
metric functions of Gessel [27], with roots in work of Stanley [69] on P -partitions.

5.1. Definitions, and Hopf structure. The definitions of quasisymmetric functions require a totally
ordered variable set. Usually we will use a variable set denoted x = (x1, x2, . . .) with the usual ordering
x1 < x2 < . . .. However, it is good to have some flexibility in changing the ordering, which is why we make
the following definition.

Definition 5.1. Given any totally ordered set I, create a totally ordered variable set {xi}i∈I , and then let
R({xi}i∈I) denote the power series of bounded degree in {xi}i∈I having coefficients in k.

The quasisymmetric functionsQSym := QSym({xi}i∈I) will be the k-submodule consisting of the elements
f in R({xi}i∈I) that have the same coefficient on the monomials xα1

i1
· · ·xαℓ

iℓ
and xα1

j1
· · ·xαℓ

jℓ
whenever both

i1 < · · · < iℓ and j1 < · · · < jℓ in the total order on I. We write QSymk instead of QSym to stress the choice
of base ring k.

It immediately follows from this definition that QSym({xi}i∈I) forms a free k-submodule of R({xi}i∈I),
having as k-basis elements the monomial quasisymmetric functions

Mα({xi}i∈I) :=
∑

i1<···<iℓ in I

xα1

i1
· · ·xαℓ

iℓ

for all compositions α satisfying ℓ(α) ≤ |I|. When I is infinite, this means that the Mα for all compositions
α form a basis of QSym({xi}i∈I). Note that QSym =

⊕
n≥0 QSymn is a graded k-module of finite type,

where QSymn is the subspace of quasisymmetric functions which are homogeneous of degree n. Letting
Comp denote the set of all compositions α, and Compn the compositions α of n (that is, compositions whose
parts sum to n), the subset {Mα}α∈Compn

gives a k-basis for QSymn.

Example 5.2. Taking the variable set x = (x1 < x2 < · · · ) to define QSym = QSym(x), for n = 0, 1, 2, 3,
one has these basis elements in QSymn:

M() =M∅ = 1

M(1) = x1 + x2 + x3 + · · · = m(1) = s(1) = e1 = h1 = p1

M(2) = x21 + x22 + x23 + · · · = m(2) = p2
M(1,1) = x1x2 + x1x3 + x2x3 + · · · = m(1,1) = e2

M(3) = x31 + x32 + x33 + · · · = m(3) = p3
M(2,1) = x21x2 + x21x3 + x22x3 + · · ·
M(1,2) = x1x

2
2 + x1x

2
3 + x2x

2
3 + · · ·

M(1,1,1) = x1x2x3 + x1x2x4 + x1x3x4 + · · · = m(1,1,1) = e3

It is not obvious that QSym is a subalgebra of R(x), but we will show this momentarily. For example,

M(a)M(b,c) = (xa1 + xa2 + xa3 + · · · )(xb1xc2 + xb1x
c
3 + xb2x

c
3 + · · · )

= xa+b1 xc2 + · · ·+ xb1x
a+c
3 + · · ·+ xa1x

b
2x
c
3 + · · ·+ xb1x

a
2x
c
3 + · · ·+ xb1x

c
2x
a
3 + · · ·

=M(a+b,c) +M(b,a+c) +M(a,b,c) +M(b,a,c) +M(b,c,a)

Proposition 5.3. For any infinite totally ordered set I, one has that QSym = QSym({xi}i∈I) is a k-
subalgebra of R({xi}i∈I), with multiplication in the {Mα}-basis as follows: Fix three pairwise disjoint chain
posets (i1 < · · · < iℓ), (j1 < · · · < jm) and (k1 < k2 < · · · ). Now, if α = (α1, . . . , αℓ), β = (β1, . . . , βm) then

(5.1) MαMβ =
∑

f

Mwt f

in which the sum is over all p ∈ N and all maps f from the disjoint union of two chains to a chain

(5.2) (i1 < · · · < iℓ) ⊔ (j1 < · · · < jm)
f−→ (k1 < · · · < kp)
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which are both surjective and strictly order-preserving (x < y implies f(x) < f(y)), and where the composition
wt(f) := (wt1(f), . . . ,wtp(f)) is defined by wts(f) :=

∑
iu∈f−1(ks)

αu +
∑

jv∈f−1(ks)
βv.

In particular, all such algebras are isomorphic to a single algebra QSym, defined as having k-basis
{Mα}α∈Comp and with multiplication defined k-linearly by (5.1). The isomorphism sendsMα 7−→Mα({xi}i∈I).
Proof. Formula (5.1) comes from considering a typical product of two monomials in the expansion ofMαMβ:

(
xα1

i1
· · ·xαℓ

iℓ

) (
xβ1

j1
· · ·xβm

jm

)
= xγ1k1 · · ·x

γp
kp

for subscript sequences i1 < · · · < iℓ and j1 < · · · < jm and k1 < · · · < kp with

{k1, . . . , kp} = {i1, . . . , iℓ} ∪ {j1, . . . , jm}.
Thinking of {is} and {jt} as disjoint sets, multiplication gives a surjective map f as in (5.2), with γs = wts(f).

Once one has this multiplication rule (5.1), the last assertion follows. �

The comultiplication of QSym will extend the one that we defined for Λ. That is, one considers the linear
order from (2.7) on two sets of variables (x,y) = (x1 < x2 < . . . < y1 < y2 < . . .), and notes that

QSym(x,y) ⊂ QSym(x)⊗QSym(y)

so that one can define QSym
∆−→ QSym⊗QSym as the composite of the maps in the bottom row here:

(5.3)

R(x,y) ∼= R(x)⊗R(y)
∪ ∪

QSym ∼= QSym(x,y) →֒ QSym(x) ⊗QSym(y) ∼= QSym⊗QSym
f 7−→ f(x,y) = f(x1, x2, . . . , y1, y2, . . .)

Here, f(x,y) is formally defined as the image of f under the algebra isomorphism QSym → QSym(x,y)
defined in Proposition 5.3.

Example 5.4. For example,

∆M(a,b,c) =M(a,b,c)(x1, x2, . . . , y1, y2, . . .)

= xa1x
b
2x
c
3 + xa1x

b
2x
c
4 + · · ·

+ xa1x
b
2 · yc1 + xa1x

b
2 · yc2 + · · ·

+ xa1 · yb1yc2 + xa1 · yb1yc3 + · · ·
+ ya1y

b
2y
c
3 + ya1y

b
2y
c
4 + · · ·

=M(a,b,c)(x) +M(a,b)(x)M(c)(y) +M(a)(x)M(b,c)(y) +M(a,b,c)(y)

=M(a,b,c) ⊗ 1 +M(a,b) ⊗M(c) +M(a) ⊗M(b,c) + 1⊗M(a,b,c)

Defining the concatenation β · γ of two compositions β = (β1, . . . , βr), γ = (γ1, . . . , γs) to be the composition
(β1, . . . , βr, γ1, . . . , γs), one has the following description of the coproduct in the {Mα} basis.

Proposition 5.5. For a composition α = (α1, . . . , αℓ), one has

∆Mα =

ℓ∑

k=0

M(α1,...,αk) ⊗M(αk+1,...,αℓ) =
∑

(β,γ):
β·γ=α

Mβ ⊗Mγ

Proof. This comes from expressing a monomial in ∆Mα = Mα(x,y) uniquely in the form xα1

i1
· · ·xαk

ik
·

y
αk+1

j1
· · · yαℓ

jℓ−k
for some k ∈ {0, 1, . . . , n} and some subscripts i1 < · · · < ik and j1 < · · · < jℓ−k. �

Proposition 5.6. The quasisymmetric functions QSym form a graded connected Hopf algebra of finite type,
which is commutative, and contains the symmetric functions Λ as a Hopf subalgebra.

Proof. To prove coassociativity of ∆, we need to be slightly careful. It seems reasonable to argue by
(∆⊗ 1)◦∆f = f(x,y, z) = (1⊗∆)◦∆f as in the case of Λ, but this would now require further justification,
as terms like f(x,y) and f(x,y, z) are no longer directly defined as evaluations of f on some sequences (but
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rather are defined as images of f under certain homomorphisms). However, it is very easy to see that ∆ is
coassociative by checking (∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ on the {Mα} basis: Proposition 5.5 yields

((∆⊗ 1) ◦∆)Mα =

ℓ∑

k=0

∆(M(α1,...,αk))⊗M(αk+1,...,αℓ)

=
ℓ∑

k=0

(
k∑

i=0

M(α1,...,αi) ⊗M(αi+1,...,αk)

)
⊗M(αk+1,...,αℓ)

=

ℓ∑

k=0

k∑

i=0

M(α1,...,αi) ⊗M(αi+1,...,αk) ⊗M(αk+1,...,αℓ)

and the same expression for ((1⊗∆) ◦∆)Mα.
The coproduct ∆ of QSym is an algebra morphism because it is defined as a composite of algebra mor-

phisms in the bottom row of (5.3). To prove that the restriction of ∆ to the subring Λ of QSym is the
comultiplication of QSym, it thus is enough to check that it sends the elementary symmetric function en to∑n

i=0 ei⊗ en−i for every n ∈ N. This again follows from Proposition 5.5, since en =M(1,1,...,1) (with n times
1).

The counit is as usual for a graded connected coalgebra, and just as in the case of Λ, sends a quasisymmetric
function f(x) to its constant term f(0, 0, . . .). This is an evaluation, and hence an algebra map. Hence QSym
forms a bialgebra, and as it is graded, connected, and of finite type, also a Hopf algebra by Proposition 1.30.

�

We will identify the antipode in QSym shortly, but we first deal with another slightly subtle issue. In
addition to the counit evaluation ǫ(f) = f(0, 0, . . .), starting in Section 6.1, we will want to specialize elements
in QSym(x) by making other variable substitutions, in which all but a finite list of variables are set to zero.
We justify this here.

Proposition 5.7. Fix a totally ordered set I, a k-algebra A, a finite list of variables xi1 , . . . , xim , say with
i1 < . . . < im in I, and an ordered list of elements (a1, . . . , am) ∈ Am.

Then there is a well-defined evaluation homomorphism

QSym({xi}i∈I) −→ A
f 7−→ [f ] xi1=a1,...,xim=am

xj=0 for j 6∈{i1,...,im}
.

Furthermore, this homomorphism depends only upon the list (a1, . . . , am), as it coincides with the following:

QSym({xi}i∈I) ∼= QSym(x1, x2, . . .) −→ A
f(x1, x2, . . .) 7−→ f(a1, . . . , am, 0, 0 . . .).

(This latter statement is stated for the case when I is infinite; otherwise, read “x1, x2, . . . , x|I|” for “x1, x2, . . .”,
and interpret (a1, . . . , am, 0, 0 . . .) as an |I|-tuple.)
Proof. One already can make sense of evaluating xi1 = a1, . . . , xim = am and xj = 0 for j 6∈ {i1, . . . , im}
in the ambient ring R({xi}i∈I) containing QSym({xi}i∈I), since a power series f of bounded degree will
have finitely many monomials that only involve the variables xi1 , . . . , xim . The last assertion follows from
quasisymmetry of f , and is perhaps checked most easily when f =Mα({xi}i∈I) for some α. �

The antipode in QSym has a reasonably simple expression in the {Mα} basis, but requiring a definition.

Definition 5.8. For α, β in Compn, say that α refines β or β coarsens α if, informally, one can obtain β
from α by combining some of its adjacent parts. Alternatively, one has a bijection Compn → 2[n−1] where
[n− 1] := {1, 2, . . . , n− 1} which sends α = (α1, . . . , αℓ) having length ℓ(α) = ℓ to its subset of partial sums

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ αℓ−1} ,
and this sends the refinement ordering to the inclusion ordering on the Boolean algebra 2[n−1] (to be more
precise: a composition α refines a composition β if and only if D(α) ⊃ D(β)). There is also a bijection
sending α to its ribbon diagram: the skew diagram λ/µ having rows of sizes (α1, . . . , αℓ) read from bottom to
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top with exactly one column of overlap between adjacent rows. These bijections and the refinement partial
order are illustrated here for n = 4:

{1, 2, 3}

{1, 2}

uuuuuuuuu
{1, 3} {2, 3}

IIIIIIIII

{1}

uuuuuuuuu
{2}

uuuuuuuuu

IIIIIIIII
{3}

IIIIIIIII

∅

uuuuuuuuuu

IIIIIIIIII

(1, 1, 1, 1)

(1, 1, 2)

ssssssssss
(1, 2, 1) (2, 1, 1)

KKKKKKKKKK
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ssssssssss
(2, 2)

ssssssssss

KKKKKKKKKK
(3, 1)

KKKKKKKKKK

(4)

ssssssssss
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Given α = (α1, . . . , αℓ), its reverse composition is rev(α) = (αℓ, αℓ−1, . . . , α2, α1). Note that α 7→ rev(α) is
a poset automorphism for the refinement ordering.

Theorem 5.9. For any composition α in Comp,

S(Mα) = (−1)ℓ(α)
∑

γ∈Comp:
γ coarsens rev(α)

Mγ

For example,

S(M(a,b,c)) = −
(
M(c,b,a) +M(b+c,a) +M(c,a+b) +M(a+b+c)

)

Proof. We give Ehrenborg’s proof19 [24, Prop. 3.4] via induction on ℓ = ℓ(α). One has easy base cases
when ℓ(α) = 0, where S(M∅) = S(1) = 1 = (−1)0Mrev(∅), and when ℓ(α) = 1, where M(n) is primitive by

Proposition 5.5, so Proposition 1.31 shows S(M(n)) = −M(n) = (−1)1Mrev((n)).
For the inductive step, apply the inductive definition of S from the proof of Proposition 1.30:

S(M(α1,...,αℓ)) = −
ℓ−1∑

i=0

S(M(α1,...,αi))M(αi+1,...,αℓ)

=

ℓ−1∑

i=0

∑

β coarsening
(αi,αi−1,...,α1)

(−1)i+1MβM(αi+1,...,αℓ)

The idea will be to cancel terms of opposite sign that appear in the expansions of the productsMβM(αi+1,...,αℓ).
Note that each composition β appearing above has first part β1 of the form αi + αi−1 + · · · + αh for some
h ≤ i (unless β = ∅), and hence each term Mγ in the expansion of the product MβM(αi+1,...,αℓ) has γ1 (that
is, the first entry of γ) a sum that can take one of these three forms:

• αi + αi−1 + · · ·+ αh,
• αi+1 + (αi + αi−1 + · · ·+ αh),
• αi+1.

Say that the type of γ is i in the first case, and i + 1 in the second two cases20; in other words, the type
is the largest subscript k on a part αk which was combined in the sum γ1. It is not hard to see that a
given γ for which the type k is strictly smaller than ℓ arises from exactly two pairs (β, γ), (β′, γ), having
opposite signs (−1)k and (−1)k+1 in the above sum21. For example, if α = (α1, . . . , α8), then the composition

19A different proof was given by Malvenuto and Reutenauer [51, Cor. 2.3], and is sketched in Remark 5.31 below.
20We imagine that we label the terms obtained by expanding MβM(αi+1,...,αℓ)

by distinct labels, so that each term knows

how exactly it was created (i.e., which i, which β and which map f as in (5.2) gave rise to it). Strictly speaking, it is these
triples (i, β, f) that we should be assigning types to, not terms.

21Strictly speaking, this means that we have an involution on the set of our (i, β, f) triples having type smaller than ℓ, and
this involution switches the sign of (−1)iMwt f .
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γ = (α6 + α5 + α4, α3, α7, α8 + α2 + α1) of type 6 can arise from either of

β = (α6 + α5 + α4, α3, α2 + α1) with i = 6 and sign (−1)7

β′ = (α5 + α4, α3, α2 + α1) with i = 5 and sign (−1)6.

Similarly, γ = (α6, α5 + α4, α3, α7, α8 + α2 + α1) can arise from either of

β = (α6, α5 + α4, α3, α2 + α1) with i = 6 and sign (−1)7

β′ = (α5 + α4, α3, α2 + α1) with i = 5 and sign (−1)6.

Thus one can cancel almost all the terms, excepting those with γ of type ℓ among the terms Mγ in the
expansion of the last (i = ℓ− 1) summand MβM(αℓ). A bit of thought shows that these are the γ coarsening

rev(α), and all have sign (−1)ℓ. �

5.2. The fundamental basis and P -partitions. There is a second important basis for QSym which arose
originally in Stanley’s P -partition theory [69].

Definition 5.10. A labelled poset will here mean a partially ordered set P whose underlying set is some

finite subset of the integers. A P -partition is a function P
f→ {1, 2, . . .} with the property that

• i <P j and i <Z j implies f(i) ≤ f(j), and
• i <P j and i >Z j implies f(i) < f(j).

Denote by A(P ) the set of all P -partitions f , and let FP (x) :=
∑

f∈A(P ) xf where xf :=
∏
i∈P xf(i)

Example 5.11. Depicted is a labelled poset P , along with the relations among the four values f =
(f(1), f(2), f(3), f(4)) that define its P -partitions f :

2

4 1

3

��������

>>>>>>>>

f(2)

f(4) f(1)

≤

f(3)

≤

EEEEEEEE

<
yyyyyyyy

The following is an important special case.

Proposition 5.12. When P is a total or linear order w = (w1 < . . . < wn), the generating function Fw(x)
depends only upon the descent set

Des(w) := {i : wi >Z wi+1} ⊂ {1, 2, . . . , n− 1}
and its associated composition α in Compn having partial sums D(α) = Des(w): one has that Fw(x) equals
the fundamental quasisymmetric function

(5.4) Lα := Lα(x) :=
∑

(1≤)i1≤···≤in:
ij<ij+1 if j∈D(α)

xi1 · · ·xin =
∑

β∈Compn:
β refines α

Mβ.

E.g., total order w = 35142 has Des(w) = {2, 4} and composition α = (2, 2, 1), so

F35142(x) =
∑

f(3)≤f(5)<f(1)≤f(4)<f(2)
xf(3)xf(5)xf(1)xf(4)xf(2)

=
∑

i1≤i2<i3≤i4<i5
xi1xi2xi3xi4xi5

= L(2,2,1) =M(2,2,1) +M(2,1,1,1) +M(1,1,2,1) +M(1,1,1,1,1).

Proof. Write Fw(x) as a sum of monomials xf(w1) · · ·xf(wn) over all sequences f(w1) ≤ · · · ≤ f(wn) having
strict inequalities f(wi) < f(wi+1) whenever i is in Des(w). The underlying set {f(wi)}ni=1 will equal
{j1 < . . . < jℓ} with indices in increasing order having a multiplicity sequence β = (β1, . . . , βℓ) that gives a
composition β refining α. �
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Example 5.13. The extreme cases for α in Compn give quasisymmetric functions Lα which are symmetric:

L(1n) =M(1n) = en,

L(n) =
∑

α∈Compn

Mα = hn

One sees that the {Lα}α∈Comp are a Z-basis for QSym, as inclusion-exclusion applied to (5.4) gives

Mα =
∑

β∈Compn:
β refines α

(−1)ℓ(β)−ℓ(α)Lβ .

We need to make a technical observation, which will be used later.

Lemma 5.14. Let n ∈ N. Let α be a composition of n. Let I be an infinite totally ordered set. Then,

Lα
(
{xi}i∈I

)
=

∑

i1≤i2≤···≤in in I;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin ,

where Lα
(
{xi}i∈I

)
is defined as the image of Lα under the isomorphism QSym → QSym

(
{xi}i∈I

)
obtained

in Proposition 5.3.

Proof. We cannot directly obtain the lemma by “evaluating” the sides of (5.4) at {xi}i∈I . However, we can
notice that every composition β = (β1, . . . , βℓ) of n satisfies

(5.5) Mβ ({xi}i∈I) =
∑

k1<···<kℓ in I

xβ1

k1
· · ·xβℓ

kℓ
=

∑

i1≤i2≤···≤in in I;
ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin .

Applying the ring homomorphism QSym → QSym
(
{xi}i∈I

)
to (5.4), we obtain

Lα
(
{xi}i∈I

)
=

∑

β∈Compn:
β refines α

Mβ

(
{xi}i∈I

) (5.5)
=

∑

β∈Compn:
β refines α

∑

i1≤i2≤···≤in in I;
ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin

=
∑

β∈Compn:
D(α)⊂D(β)

∑

i1≤i2≤···≤in in I;
ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin

=
∑

Z⊂[n−1]:
D(α)⊂Z

∑

i1≤i2≤···≤in in I;
ij<ij+1 if and only if j∈Z

xi1xi2 · · ·xin =
∑

i1≤i2≤···≤in in I;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin .

�

The next proposition ([72, Cor. 7.19.5], [48, Cor. 3.3.24]) is an algebraic shadow of Stanley’s main lemma
[72, Thm. 7.19.4] in P -partition theory. It expands any FP (x) in the {Lα} basis, as a sum over the set L(P )
of all linear extensions w of P , that is, the set of all extensions of P to a linear order. E.g., the poset P from
Example 5.11 has L(P ) = {3124, 3142, 3412}.
Theorem 5.15. For any labelled poset P ,

FP (x) =
∑

w∈L(P )

Fw(x).

Proof. We give Gessel’s proof [27, Thm. 1], via induction on the number of pairs i, j which are incomparable
in P . When this quantity is 0, then P is itself a linear order w, so that L(P ) = {w} and there is nothing to
prove.

In the inductive step, let i, j be incomparable elements. Consider the two posets Pi<j and Pj<i which are
obtained from P by adding in an order relation between i and j, and then taking the transitive closure; it is
not hard to see that these transitive closures cannot contain a cycle, so that these really do define two posets.
The result then follows by induction applied to Pi<j , Pj<i, once one notices that L(P ) = L(Pi<j) ⊔ L(Pj<i)
since every linear extension w of P either has i before j or vice-versa, and A(P ) = A(Pi<j)⊔A(Pj<i) since,
assuming that i <Z j without loss of generality, every f in A(P ) either satisfies f(i) ≤ f(j) or f(i) > f(j). �
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Example 5.16. To illustrate the induction in the above proof, consider the poset P from Example 5.11,
having L(P ) = {3124, 3142, 3412}. Then choosing as incomparable pair (i, j) = (1, 4), one has

4 2

Pi<j = 1

��������

<<<<<<<<

3

f(4) f(2)

f(1)

≤ yyyyyyyy≤

EEEEEEEE

f(3)

<

L(Pi<j) = {3124, 3142}

2

Pj<i = 1

4

3

f(2)

f(1)

≤

f(4)

<

f(3)

≤

L(Pj<i) = {3412}

We next wish to describe the structure maps for the Hopf algebra QSym in the basis {Lα} of fundamental
quasisymmetric functions. For this purpose, two more definitions are useful.

Definition 5.17. Given two nonempty compositions α = (α1, . . . , αℓ), β = (β1, . . . , βm), their near-concatenation
is

α⊙ β := (α1, . . . , αℓ−1, αℓ + β1, β2, . . . , βm)

For example, the figure below depicts for α = (1, 3, 3) (black squares) and β = (4, 2) (white squares) the
concatenation and near-concatenation as ribbons:

α · β =

� �

� � � �

� � �

� � �

�

α⊙ β =

� �

� � � � � � �

� � �

�

Lastly, given α in Compn, let ω(α) be the unique composition in Compn whose partial sums D(ω(α))
form the complementary set within [n− 1] to the partial sums D(rev(α)); alternatively, one can check this
means that the ribbon for ω(α) is obtained from that of α by conjugation or transposing, that is, if α = λ/µ
then ω(α) = λt/µt. E.g. if α = (4, 2, 2) so that n = 8, then rev(α) = (2, 2, 4) has D(rev(α)) = {2, 4} ⊂ [7],
complementary to the set {1, 3, 5, 6, 7} which are the partial sums for ω(α) = (1, 2, 2, 1, 1, 1), and the ribbon
diagrams of α, ω(α) are

α =
� �

� �

� � � �

ω(α) =

�

�

�

� �

� �

�
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Proposition 5.18. The structure maps for the Hopf algebra QSym in the basis {Lα} of fundamental qua-
sisymmetric functions are as follows:

∆Lα =
∑

(β,γ):
β·γ=α or β⊙γ=α

Lβ ⊗ Lγ(5.6)

LαLβ =
∑

w∈wα�wβ

Lγ(w)(5.7)

S(Lα) = (−1)|α|Lω(α).(5.8)

Here we are making use of the following notations in (5.7) (recall also Definition 1.39):

• A labelled linear order will mean a labelled poset P whose order <P is a total order. We will identify
any labelled linear order P with the word (over the alphabet {1, 2, 3, . . .}) obtained by writing down
the elements of P in increasing order (with respect to the total order <P ). This way, every word
(over the alphabet {1, 2, 3, . . .}) which has no two equal letters becomes identified with a total labelled
poset.

• wα is any labelled linear order with underlying set {1, 2, . . . , |α|} such that Des (wα) = D (α).
• wβ is any labelled linear order with underlying set {|α|+ 1, |α|+ 2, . . . , |α|+ |β|} such that Des (wβ) =
D (β).

• γ(w) is the unique composition of |α|+ |β| with D(γ(w)) = Des(w).

At first glance the formula (5.6) for ∆Lα might seem more complicated than the formula of Proposition 5.5
for ∆Mα. However, it is equally simple when viewed in terms of ribbon diagrams: it cuts the ribbon diagram
α into two smaller ribbons β and γ, in all |α| + 1 possible ways, via horizontal cuts (β · γ = α) or vertical
cuts (β ⊙ γ = α). For example,

∆L(3,2) = 1⊗ L(3,2) +L(1) ⊗ L(2,2) +L(2) ⊗ L(1,2) +L(3) ⊗ L(2) +L(3,1) ⊗ L(1) +L(3,2) ⊗ 1
� �

� � �

� �

� |� �

� �

� � |�
� �

� � �

� |�
� � �

� �

� � �

Example 5.19. To multiply L(1,1)L(2), one could pick wα = 21 and wβ = 34, and then

L(1,1)L(2) =
∑
w∈21� 34 Lγ(w) = Lγ(2134) +Lγ(2314) +Lγ(3214) +Lγ(2341) +Lγ(3241) +Lγ(3421)

= L(1,3) +L(2,2) +L(1,1,2) +L(3,1) +L(1,2,1) +L(2,1,1).

Proof of Proposition 5.18. To prove formula (5.6) for α in Compn, note that

∆Lα = Lα(x,y) =
n∑

k=0

∑

1≤i1≤···≤ik,
1≤ik+1≤···≤in:

ir<ir+1 for r∈D(α)\{k}

xi1 · · ·xik · yik+1
· · · yin

by Lemma 5.14. One then realizes that the inner sums corresponding to values of k that lie (resp. do not lie)
in D(α) ∪ {0, n} correspond to the terms Lβ(x)Lγ(y) for pairs (β, γ) in which β · γ = α (resp. β ⊙ γ = α).

For formula (5.7), let P be the labelled poset which is the disjoint union of linear orders wα, wβ . Then

LαLβ = Fwα
(x)Fwβ

(x) = FP (x) =
∑

w∈L(P )

Fw(x) =
∑

w∈wα�wβ

Lγ(w)

where the first equality used Proposition 5.12, the second equality comes from the definition of a P -partition,
the third equality from Theorem 5.15, and the fourth from the equality L(P ) = wα � wβ .

To prove formula (5.8), compute using Theorem 5.9 that

S(Lα) =
∑

β refining α

S(Mβ) =
∑

(β,γ):
β refines α,

γ coarsens rev(β)

(−1)ℓ(β)Mγ =
∑

γ

Mγ

∑

β

(−1)ℓ(β)

in which the last inner sum is over β for which

D(β) ⊃ D(α) ∪D(rev(γ)).
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The alternating signs make such inner sums vanish unless they have only the single term where D(β) = [n−1]
(that is, β = (1n)). This happens exactly when D(rev(γ))∪D(α) = [n− 1] or equivalently, when D(rev(γ))
contains the complement of D(α), that is, when D(γ) contains the complement of D(rev(α)), that is, when
γ refines ω(α). Thus

S(Lα) =
∑

γ∈Compn:
γ refines ω(α)

Mγ · (−1)n = (−1)|α|Lω(α).

�

The antipode formula (5.8) for Lα leads to a general interpretation for the antipode of QSym acting on
P -partition enumerators FP (x).

Definition 5.20. Given a labelled poset P on {1, 2, . . . , n}, let the opposite or dual labelled poset P opp have
i <P opp j if and only if j <P i.

For example,

P = 2

4 1

3

��������

>>>>>>>>

P opp = 3

��
��
��
��

>>
>>

>>
>>

4 1

2

The following observation is straightforward.

Proposition 5.21. When P is a linear order corresponding to some permutation w = (w1, . . . , wn) in Sn,
then wopp = ww0 where w0 ∈ Sn is the permutation that swaps i↔ n+ 1− i (this is the so-called longest
permutation, thus named due to it having the highest “Coxeter length” among all permutations in Sn).
Furthermore, in this situation one has Fw(x) = Lα, that is, Des(w) = D(α) if and only if Des(wopp) =
D(ω(α)), that is Fwopp(x) = Lω(α). Thus,

S(Fw(x)) = (−1)nFwopp(x).

For example, given the compositions considered earlier

α = (4, 2, 2) =
� �

� �

� � � �

ω(α) = (1, 2, 2, 1, 1, 1) =

�

�

�

� �

� �

�

if one picks w = 1235 · 47 · 68 (with descent positions marked by dots) having Des(w) = {4, 6} = D(α), then
wopp = ww0 = 8 · 67 · 45 · 3 · 2 · 1 has Des(wopp) = {1, 3, 5, 6, 7} = D(ω(α)).

Corollary 5.22. For any labelled poset P on {1, 2, . . . , n}, one has

S (FP (x)) = (−1)nFP opp (x).

Proof. Since S is linear, one can apply Theorem 5.15 and Proposition 5.21

S (FP (x)) =
∑

w∈L(P )

S(Fw(x)) =
∑

w∈L(P )

(−1)nFwopp(x) = (−1)nFP opp(x).

as L(P opp) = {wopp : w ∈ L(P )}. �

Remark 5.23. Malvenuto and Reutenauer, in [52, Theorem 3.1], prove an even more general antipode formula,
which encompasses our Corollary 5.22, Proposition 5.21, Theorem 5.9 and (5.8).

We remark on a special case of Corollary 5.22 to which we alluded earlier, related to skew Schur functions.
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Corollary 5.24. In Λ, the action of ω and the antipode S on skew Schur functions sλ/µ are as follows:

ω(sλ/µ) = sλt/µt(5.9)

S(sλ/µ) = (−1)|λ/µ|sλt/µt .(5.10)

Proof. Given a skew shape λ/µ, one can always create a labelled poset P which is its skew Ferrers poset,
together with one of many column-strict labellings, in such a way that FP (x) = sλ/µ(x). An example is
shown here for λ/µ = (4, 4, 2)/(1, 1, 0):

λ/µ =
� � �

� � �

� �

P = 5

8

���
4

===

2

7

=== ���
3

=== ���
1

===

6

=== ���

f(5)

f(8)

< vvv
f(4)

≤
HHH

f(2)

f(7)
≤
HHH < vvv

f(3)
≤
HHH < vvv

f(1)
≤
HHH

f(6)
≤
HHH

< vvv

The general definition is as follows: Let P be the set of all boxes of the skew diagram λ/µ. Label these
boxes by the numbers 1, 2, . . . , n (where n = |λ/µ|) row by row from bottom to top (reading every row from
left to right), and then define an order relation <P on P by requiring that every box be smaller (in P ) than
its right neighbor and smaller (in P ) than its lower neighbor. It is not hard to see that in this situation,
FP opp(x) =

∑
T xcont(T ) as T ranges over all reverse semistandard tableaux or column-strict plane partitions

of λt/µt:

λt/µt =

�

� � �

� �

� �

P opp = 6
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���
3
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1

8

���
4

���
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2

���
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5

���
===

f(6)

f(7)

< vvv
f(3)

≤
HHH

f(1)

f(8)

< vvv
f(4)

< vvv≤
HHH

f(2)

< vvv≤
HHH

f(5)

< vvv≤
HHH

But this means that FP opp(x) = sλt/µt(x), since the fact that skew Schur functions lie in Λ implies that they
can be defined either as generating functions for column-strict tableaux or reverse semistandard tableaux;
see Remark 2.10 above, or [72, Prop. 7.10.4].

Thus we have
FP (x) = sλ/µ(x)

FP opp (x) = sλt/µt(x).

Proposition 1.35(c) tell us that the antipode for QSym must specialize to the antipode for Λ (see also
Remark 5.34 below), so (5.10) is a special case of Corollary 5.22. Then (5.9) follows from the relation (2.14)
that S(f) = (−1)nω(f) for f in Λn. �

Remark 5.25. Before leaving P -partitions temporarily, we mention two open questions about them.
The first is a conjecture of Stanley from his thesis [69]. As mentioned in the proof of Corollary 5.24, each

skew Schur function sλ/µ(x) is a special instance of P -partition enumerator FP (x).

Conjecture 5.26. A labelled poset P has FP (x) symmetric, and not just quasisymmetric, if and only if P is
a column-strict labelling of some skew Ferrers poset λ/µ.

A somewhat weaker result in this direction was proven by Malvenuto in her thesis [50, Thm. 6.4], showing
that if a labelled poset P has the stronger property that its set of linear extensions L(P ) is a union of plactic
or Knuth equivalence classes, then P must be a column-strict labelling of a skew Ferrers poset.

The next question is due to P. McNamara, and is suggested by the obvious factorizations of P -partition
enumerators FP1⊔P2(x) = FP1(x)FP2 (x).

Question 5.27. Does a connected labelled poset P always have FP (x) irreducible within the ring QSym?
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The phrasing of this question requires further comment. It is assumed here that x = (x1, x2, . . .) is infinite;
for example when P is a 2-element chain labelled “against the grain” (i.e., the bigger element of the chain
has the smaller label), then FP (x) = e2(x) is irreducible, but its specialization to two variables x = (x1, x2)
is e2(x1, x2) = x1x2, which is reducible. If one wishes to work in finitely many variables x = (x1, . . . , xm)
one can perhaps assume that m is at least |P |+ 1.

When working in QSym = QSym(x) in infinitely many variables, it is perhaps not so clear where factor-
izations occur. For example, if f lies in QSym and factors f = g · h with g, h in R(x), does this imply that
g, h also lie in QSym? The answer is “Yes”, but this is not obvious, and was proven by P. Pylyavskyy in [60,
Chap. 11].

One also might wonder whether QSym is a unique factorization domain, but this follows from the result
of M. Hazewinkel [28] who proved a conjecture of Ditters that QSym(:= QSymZ) is a polynomial algebra;
earlier Malvenuto and Reutenauer [51, Cor. 2.2] had shown that QSymQ is a polynomial algebra. In fact,
one can find polynomial generators {Pα} for QSymQ as a subset of the dual basis to the Q-basis {πα} for
NSymQ which comes from taking products πα := πα1 · · ·παℓ

of the elements {πn} defined in Remark 5.31
below. Specifically, one takes those Pα for which the composition α is a Lyndon composition.

An affirmative answer to Question 5.27 is known at least in the special case where P is a connected
column-strict labelling of a skew Ferrers diagram, that is, when FP (x) = sλ/µ(x) for some connected skew
diagram λ/µ; see [9].

5.3. The Hopf algebra NSym dual to QSym. We introduce here the dual Hopf algebra to QSym.

Definition 5.28. Let NSym := QSymo, with dual pairing NSym⊗QSym
(·,·)−→ k. Let {Hα} be the k-basis

of NSym dual to the k-basis {Mα} of QSym, so that

(Hα,Mβ) = δα,β .

When the base ring k is not clear from the context, we write NSymk in lieu of NSym.

Theorem 5.29. Letting Hn := H(n) for n = 0, 1, 2, . . ., with H0 = 1, one has that

NSym ∼= k〈H1, H2, . . .〉,
the free associative (but not commutative) algebra on generators {H1, H2, . . .} with coproduct determined by22

(5.11) ∆Hn =
∑

i+j=n

Hi ⊗Hj .

Proof. Since Proposition 5.5 asserts that ∆Mα =
∑

(β,γ):β·γ=αMβ ⊗Mγ , and since {Hα} are dual to {Mα},
one concludes that for any compositions β, γ, one has

HβHγ = Hβ·γ

Iterating this gives

Hα = H(α1,...,αℓ) = Hα1 · · ·Hαℓ
.

Since the Hα are a k-basis for NSym, this shows NSym ∼= k〈H1, H2, . . .〉.
Note that Hn = H(n) is dual toM(n), so to understand ∆Hn, one should understand howM(n) can appear

as a term in the product MαMβ. By (5.1) this occurs only if α = (i), β = (j) where i+ j = n, where

M(i)M(j) =M(i+j) +M(i,j) +M(j,i)

(where the M(i,j) and M(j,i) addends have to be disregarded if one of i and j is 0). By duality, this implies
the formula (5.11). �

22 The abbreviated summation indexing
∑

i+j=n ti,j used here is intended to mean

∑

(i,j):
0≤i,j≤n,
i+j=n

ti,j .
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Corollary 5.30. The algebra homomorphism defined by

NSym
π−→ Λ

Hn 7−→ hn

is a Hopf algebra surjection, and adjoint to the inclusion Λ
i→֒ QSym.

Proof. As an algebra map π may be identified with the surjection T (V ) → Sym(V ) from the tensor algebra
on a graded free k-module V with basis {H1, H2, . . .} to the symmetric algebra on V , since

NSym ∼= k〈H1, H2, . . .〉
Λ ∼= k[h1, h2, . . .]

As (5.11) and Proposition 2.18(iii) assert that

∆Hn =
∑

i+j=n

Hi ⊗Hj

∆hn =
∑

i+j=n

hi ⊗ hj

this map π is also a bialgebra morphism, and hence a Hopf morphism by Proposition 1.35.
To check π is adjoint to i, let λ(α) denote the partition which is the weakly decreasing rearrangement of

the composition α, and note that the bases {Hα} of NSym and {mλ} of Λ satisfy

(π(Hα),mλ) = (hλ(α),mλ) =

{
1 if λ(α) = λ
0 otherwise

}
=


Hα,

∑

β:λ(β)=λ

Mβ


 = (Hα, i(mλ)).

�

Remark 5.31. For those who prefer generating functions to sign-reversing involutions, we sketch here Mal-
venuto and Reutenauer’s elegant proof [51, Cor. 2.3] of the antipode formula (Theorem 5.9). One needs
to know that when A is a k-algebra (possibly noncommutative) with k of characteristic zero, in the ring of
power series A[[t]] where t commutes with all of A, one still has familiar facts, such as

a(t) = log b(t) if and only if b(t) = exp a(t)

and whenever a(t), b(t) commute in A[[t]], one has

exp (a(t) + b(t)) = exp a(t) exp b(t)(5.12)

log (a(t)b(t)) = log a(t) + log b(t)(5.13)

Start by assuming WLOG that k = Z (as NSymk = NSymZ⊗Zk in the general case). Now, define in
NSymQ = NSym⊗ZQ the elements {π1, π2, . . .} via generating functions in NSymQ[[t]]:

(5.14)

H(t) :=
∑

n≥0

Hnt
n,

π(t) :=
∑

n≥1

πnt
n = logH(t)

One first checks that this makes each πn primitive, via a computation in the ring (NSymQ ⊗NSymQ)[[t]]
(into which we “embed” the ring (NSymQ[[t]])⊗Q[[t]] (NSymQ[[t]]) via the canonical ring homomorphism from
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the latter into the former 23):

∆π(t) = log
∑

n≥0

∆(Hn)t
n = log

∑

n≥0



∑

i+j=n

Hi ⊗Hj


 tn

= log





∑

i≥0

Hit
i


⊗



∑

j≥0

Hjt
j




 = log





∑

i≥0

Hit
i ⊗ 1




1⊗

∑

j≥0

Hjt
j






(5.13)
= logH(t)⊗ 1 + 1⊗ logH(t) = π(t)⊗ 1 + 1⊗ π(t).

Comparing coefficients in this equality yields ∆(πn) = πn⊗1+1⊗πn. Thus S(πn) = −πn, by Proposition 1.31.
This allows one to determine S(Hn) and S(Hα), after one first inverts the relation (5.14) to get that H(t) =
expπ(t), and hence

S(H(t)) = S(expπ(t)) = expS(π(t)) = exp (−π(t)) (5.12)
= (expπ(t))−1

= H(t)−1 =
(
1 +H1t+H2t

2 + · · ·
)−1

.

Upon expanding the right side, and comparing coefficients of tn, this gives

S(Hn) =
∑

β∈Compn

(−1)ℓ(β)Hβ

and hence
S(Hα) = S(Hαℓ

) · · ·S(Hα2)S(Hα1) =
∑

γ:
γ refines rev(α)

(−1)ℓ(γ)Hγ .

As SNSym, SQSym are adjoint, and {Hα}, {Mα} are dual bases, this is equivalent to Theorem 5.9:

S(Mα) = (−1)ℓ(α)
∑

γ:
γ coarsens rev(α)

Mγ

(because if µ and ν are two compositions, then µ coarsens ν if and only if rev(µ) coarsens rev(ν)).

We next explore the basis for NSym dual to the {Lα} in QSym.

Definition 5.32. Define the noncommutative ribbon functions {Rα} to be the k-basis of NSym dual to the
fundamental basis {Lα} of QSym, so that (Rα, Lβ) = δα,β.

Theorem 5.33. One has that

Hα =
∑

β coarsens α

Rβ(5.15)

Rα =
∑

β coarsens α

(−1)ℓ(β)−ℓ(α)Hβ(5.16)

and the surjection NSym
π−→ Λ sends Rα 7−→ sα, the skew Schur function associated to the ribbon α.

Furthermore,

RαRβ = Rα·β +Rα⊙β if α and β are nonempty(5.17)

S(Rα) = (−1)|α|Rω(α)(5.18)

Finally, R∅ is the multiplicative identity of NSym.

Proof. For the first assertion, note that

Hα =
∑

β

(Hα, Lβ)Rβ =
∑

β


Hα,

∑

γ:
γ refines β

Mγ


Rβ =

∑

β:
β coarsens α

Rβ .

The second assertion follows from the first by inclusion-exclusion.

23This ring homomorphism fails to be injective, whence the “embed” stands in quotation marks.
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Write α as (α1, . . . , αℓ). To show that π(Rα) = sα, we instead examine π(Hα):

π(Hα) = π(hα1 · · ·hαℓ
) = hα1 · · ·hαℓ

= s(α1) · · · s(αℓ) = s(α1)⊕···⊕(αℓ)

where (α1)⊕ · · ·⊕ (αℓ) is some skew shape which is a horizontal strip having rows of lengths α1, . . . , αℓ from
bottom to top. We claim

s(α1)⊕···⊕(αℓ) =
∑

β:
β coarsens α

sβ

because column-strict tableaux T of shape (α1) ⊕ · · · ⊕ (αℓ) biject to column-strict tableaux T ′ of some
ribbon β coarsening α, as follows: let ai, bi denote the leftmost, rightmost entries of the ith row from the
bottom in T , of length αi, and

• if bi ≤ ai+1, merge parts αi, αi+1 in β, and concatenate the rows of length αi, αi+1 in T ′, or
• if bi > ai+1, do not merge parts αi, αi+1 in β, and let these two rows overlap in one column in T ′

E.g., if α = (3, 3, 2, 3, 2), this T of shape (α1)⊕ · · · ⊕ (αℓ) maps to this T ′ of shape β = (3, 8, 2):

T =

3 4
4 4 5

4 4
2 2 3

1 1 3

7−→
3 4

2 2 3 4 4 4 4 5
1 1 3

The reverse bijection breaks the rows of T ′ into the rows of T of lengths dictated by the parts of α. Having
shown π(Hα) =

∑
β:β coarsens α sβ, the relation (5.15) and inclusion-exclusion show π(Rα) = sα.

Finally, (5.17) and (5.18) follow from (5.6) and (5.8) by duality. �

Remark 5.34. Since the maps

NSym

π
"" ""E
EE

EE
EE

EE
QSym

Λ
-
 i

<<yyyyyyyyy

are Hopf morphisms, they must respect the antipodes SΛ, SQSym, SNSym, but it is interesting to compare
them explicitly using the fundamental basis for QSym and the ribbon basis for NSym.

On one hand (5.8) shows that SQSym(Lα) = (−1)|α|Lω(α) extends the map SΛ since L(1n) = en and
L(n) = hn, as observed in Example 5.13, and ω((n)) = (1n).

On the other hand, (5.18) shows that SNSym(Rα) = (−1)|α|Rω(α) lifts the map SΛ to SNSym: Theorem 5.33

showed that Rα lifts the skew Schur function sα, while (2.15) asserted that S(sλ/µ) = (−1)|λ/µ|sλt/µt , and
a ribbon α = λ/µ has ω(α) = λt/µt.

5.4. Polynomial generators for QSym and Lyndon words. Perhaps to be filled in later....

5.5. Application: Multiple zeta values and Hoffman’s stuffle conjecture. Perhaps to be filled in
later....
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6. Aguiar-Bergeron-Sottile character theory Part I: QSym as a terminal object

It turns out that the universal mapping property of NSym as a free associative algebra leads via duality
to a universal property for its dual QSym, elegantly explaining several combinatorial invariants that take
the form of quasisymmetric or symmetric functions:

• Ehrenborg’s quasisymmetric function of a ranked poset [24],
• Stanley’s chromatic symmetric function of a graph [71],
• the quasisymmetric function of a matroid considered in [11]

6.1. Characters and the universal property.

Definition 6.1. Given a Hopf algebra A over k, a character is an algebra morphism A
ζ−→ k, that is,

• ζ(1A) = 1k,
• ζ is k-linear, and
• ζ(ab) = ζ(a)ζ(b) for a, b in A.

Example 6.2. A particularly important character for A = QSym is defined as follows:

QSym
ζQ−→ k

f(x) 7−→ f(1, 0, 0, . . .) = [f(x)]x1=1,x2=x3=···=0 .

Hence,

ζQ(Mα) = ζQ(Lα) =

{
1 if α = (n) for some n,

0 otherwise.

In other words, the restriction ζQ|QSymn
coincides with the functional Hn in NSymn = Homk(QSymn,k):

one has for f in QSymn that ζQ(f) = (Hn, f).
It is worth remarking that there is nothing special about setting x1 = 1 and x2 = x3 = · · · = 0: for

quasisymmetric f , we could have defined the same character ζQ by picking any variable, say xn, and sending

f(x) 7−→ [f(x)] xn=1, and
xm=0 for m 6=n

.

This character QSym
ζQ−→ k has a certain universal property.

Theorem 6.3. A connected graded Hopf algebra A of finite type together with a character A
ζ−→ k induces

a unique graded Hopf morphism A
Ψ−→ QSym making this diagram commute:

(6.1) A
Ψ //

ζ ��>
>>

>>
>>

> QSym

ζQ||yy
yy
yy
yy
y

k

Furthermore, Ψ has this formula on elements of An:

(6.2) Ψ(a) =
∑

α∈Compn

ζα(a)Mα

where for α = (α1, . . . , αℓ), the map ζα is the composite

An
∆(ℓ−1)

−→ A⊗ℓ πα−→ Aα1 ⊗ · · · ⊗Aαℓ

ζ⊗ℓ

−→ k

in which A⊗ℓ πα−→ Aα1 ⊗ · · · ⊗Aαℓ
is the canonical projection.

Proof. One argues that Ψ is unique, and has formula (6.2), using only that ζ is k-linear and sends 1 to 1
and that Ψ is a graded k-coalgebra map making (6.1) commute. Equivalently, consider the adjoint k-algebra
map

NSym = QSymo Ψ∗

−→ Ao.

Commutativity of (6.1) implies that for a in An,

(Ψ∗(Hn), a) = (Hn,Ψ(a)) = ζQ(Ψ(a)) = ζ(a)
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where the second equality used Example 6.2. In other words, Ψ∗(Hn) is the element of Ao defined as the
following functional on A:

(6.3) Ψ∗(Hn)(a) =

{
ζ(a) if a ∈ An,

0 if a ∈ Am for some m 6= n.

By the universal property for NSym ∼= k〈H1, H2, . . .〉 as free associative k-algebra, we see that any choice

of a k-linear map A
ζ→ k uniquely produces a k-algebra map Ψ∗ : QSymo → Ao which satisfies (6.3) for all

n ≥ 1. It is easy to see that this Ψ∗ then automatically satisfies (6.3) for n = 0 as well if ζ sends 1 to 1 (it

is here that we use ζ(1) = 1 and the connectedness of A). Hence, any given k-linear map A
ζ→ k sending 1

to 1 uniquely produces a k-algebra map Ψ∗ : QSymo → Ao which satisfies (6.3) for all n ≥ 0. Formula (6.2)
follows as

Ψ(a) =
∑

α∈Comp

(Hα,Ψ(a)) Mα

and for a composition α = (α1, . . . , αℓ), one has

(Hα,Ψ(a)) = (Ψ∗(Hα), a) = (Ψ∗(Hα1) · · ·Ψ∗(Hαℓ
), a)

= (Ψ∗(Hα1)⊗ · · · ⊗Ψ∗(Hαℓ
), (πα ◦∆(ℓ−1))(a)) = ζα(a)

using (6.3) and the definition of ζα.

We wish to show that if, in addition, A is a Hopf algebra and A
ζ−→ k is a character (algebra map), then

A
Ψ−→ QSym will be an algebra map, that is, the two maps A⊗A −→ QSym given by Ψ◦m and m◦ (Ψ⊗Ψ)

coincide. To see this, consider these two diagrams having the two maps in question as the composites of
their top rows:

(6.4) A⊗A
m //

ζ⊗ζ
""E

EE
EE

EE
EE

A
Ψ //

ζ

��

QSym

ζQ
||yy
yy
yy
yy
y

k

A⊗A
Ψ⊗Ψ //

ζ⊗ζ
((RR

RRR
RRR

RRR
RRR

RR
QSym⊗2 m //

ζQ⊗ζQ
��

QSym

ζQ
vvlll

lll
lll

lll
lll

l

k

The fact that ζ, ζQ are algebra maps makes the above diagrams commute, so that applying the uniqueness in

the first part of the proof to the character A⊗A
ζ⊗ζ−→ k proves the desired equality Ψ ◦m = m ◦ (Ψ⊗Ψ). �

Remark 6.4. When one assumes in addition that A is cocommutative, it follows that the image of Ψ will lie
in the subalgebra Λ ⊂ QSym, e.g. from the explicit formula (6.2) and the fact that one will have ζα = ζβ

whenever β is a rearrangement of α. In other words, the character Λ
ζΛ−→ k defined by restricting ζQ to Λ,

or by

ζΛ(mλ) =

{
1 if λ = (n) for some n,

0 otherwise,

has a universal property as terminal object with respect to characters on cocommutative co- or Hopf algebras.

We close this section by discussing a well-known polynomiality and reciprocity phenomenon; see, e.g.,
Humpert and Martin [37, Prop. 2.2], Stanley [71, §4].

Definition 6.5. For a field k, the binomial Hopf algebra is the polynomial algebra k [m] in a single variable
m, with a Hopf algebra structure transported from the symmetric algebra Sym

(
k1
)
(which is a Hopf algebra

by virtue of Example 1.18, applied to V = k1) along the isomorphism Sym
(
k1
)
→ k [m] which sends the

standard basis element of k1 to m. Thus the element m is primitive; that is, ∆m = 1 ⊗m + m ⊗ 1 and
S(m) = −m. As S is an algebra anti-endomorphism by Proposition 1.26 and k[m] is commutative, one has
S(g)(m) = g(−m) for all polynomials g(m) in k[m].
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Definition 6.6. For an element f(x) in QSym and a nonnegative integer m, let ps1(f)(m) denote the
element of k obtained by principal specialization at q = 1

ps1(f)(m) = [f(x)] x1=x2=···=xm=1,
xm+1=xm+2=···=0

= f(1, 1, . . . , 1︸ ︷︷ ︸
m ones

, 0, 0, . . .).

Proposition 6.7. Assume that the field k has characteristic 0. The map ps1 has the following properties.

(i) There is a unique polynomial in k[m] which agrees for each nonnegative integer m with ps1(f)(m),
and which, by abuse of notation, we will also denote ps1(f)(m). If f lies in QSymn, then ps1(f)(m)
is a polynomial of degree at most n, taking these values on Mα, Lα for α = (α1, . . . , αℓ) in Compn:

ps1(Mα)(m) =

(
m

ℓ

)
,

ps1(Lα)(m) =

(
m− ℓ+ n

n

)
.

(ii) The map QSym
ps1−→ k[m] is a Hopf morphism into the binomial Hopf algebra.

(iii) For all m in Z and f in QSym one has

ζ⋆mQ (f) = ps1(f)(m).

In particular, one also has

ζ
⋆(−m)
Q (f) = ps1(S(f))(m) = ps1(f)(−m).

(iv) For a graded Hopf algebra A of finite type with a character A
ζ−→ k, and any element a in An, the

polynomial ps1(Ψ(a))(m) in k[m] has degree at most m, and when specialized to m in Z satisfies

ζ⋆m(a) = ps1(Ψ(a))(m).

Proof. To prove assertion (i), note that one has

ps1(Mα)(m) =Mα(1, 1, . . . , 1, 0, 0, . . .) =
∑

1≤i1<···<iℓ≤m

[
xα1

i1
· · ·xαℓ

iℓ

]
xj=1

=

(
m

ℓ

)

ps1(Lα)(m) = Lα(1, 1, . . . , 1, 0, 0, . . .) =
∑

1≤i1≤···≤in≤m
ik<ik+1 if k∈D(α)

[xi1 · · ·xin ]xj=1

= |{1 ≤ j1 ≤ j2 ≤ · · · ≤ jn ≤ m− ℓ+ 1}| =
(
m− ℓ+ n

n

)
.

As {Mα}α∈Compn
form a basis for QSymn, and

(
m
ℓ

)
is a polynomial function in m of degree ℓ(≤ n), one

concludes that for f in QSymn one has that ps1(f)(m) is a polynomial function in m of degree at most n.
The polynomial giving rise to this function is unique, since infinitely many of its values are fixed.

To prove assertion (ii), note that ps1 is an algebra morphism because it is an evaluation homomorphism.
To check that it is a coalgebra morphism, it suffices to check ∆ ◦ ps1 = (ps1 ⊗ ps1) ◦ ∆ on each Mα for

α = (α1, . . . , αℓ) in Compn. Using the Vandermonde summation
(
A+B
ℓ

)
=
∑
k

(
A
k

)(
B
ℓ−k
)
, one has

(∆ ◦ ps1)(Mα) = ∆

(
m

ℓ

)
=

(
m⊗ 1 + 1⊗m

ℓ

)
=

ℓ∑

k=0

(
m⊗ 1

k

)(
1⊗m

ℓ− k

)
=

ℓ∑

k=0

(
m

k

)
⊗
(

m

ℓ− k

)

while at the same time

(
(ps1 ⊗ ps1) ◦∆

)
(Mα) =

ℓ∑

k=0

ps1(M(α1,...,αk))⊗ ps1(M(αk+1,...,αℓ)) =

ℓ∑

k=0

(
m

k

)
⊗
(

m

ℓ− k

)
.

Thus ps1 is a bialgebra map, and hence also a Hopf map, by Proposition 1.35(c).
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For assertion (iii), first assume m lies in {0, 1, 2, . . .}. Since ζQ(f) = f(1, 0, 0, . . .), one has

ζ⋆mQ (f) = ζ⊗mQ ◦∆(m−1)f(x) = ζ⊗mQ

(
f(x(1),x(2), . . . ,x(m))

)

=
[
f(x(1),x(2), . . . ,x(m))

]
x
(1)
1 =x

(2)
1 =···=x(m)

1 =1,

x
(j)
2 =x

(j)
3 =···=0 for all j

= f(1, 0, 0, . . . , 1, 0, 0, . . . , · · · , 1, 0, 0, . . .) = f(1, 1, . . . , 1︸ ︷︷ ︸
m ones

, 0, 0, . . .) = ps1(f)(m)

But then Proposition 1.35(a) also implies

ζ
⋆(−m)
Q (f) =

(
ζ
⋆(−1)
Q

)⋆m
(f) = (ζQ ◦ S)⋆m (f) = ζ⋆mQ (S(f))

= ps1(S(f))(m) = S(ps1(f))(m) = ps1(f)(−m).

For assertion (iv), note that

ζ⋆m(a) = (ζQ ◦Ψ)⋆m(a) = (ζ⋆mQ )(Ψ(a)) = ps1(Ψ(a))(m).

where the three equalities come from (6.1), Proposition 1.35(a), and assertion (iii) above, respectively. �

Remark 6.8. Aguiar, Bergeron and Sottile give a very cute (third) proof of the QSym antipode formula
Theorem 5.9, via Theorem 6.3, in [4, Example 4.8]. They apply Theorem 6.3 to the coopposite coalgebra

QSymcop and its character ζ⋆
−1

Q . One can show that the map QSym
Ψ→ QSymcop induced by ζ⋆

−1

Q is Ψ = S,

the antipode of QSym, because S is a coalgebra anti-endomorphism satisfying ζ⋆
−1

Q = ζ ◦ S. They then use

the formula (6.2) for Ψ = S (together with the polynomiality Proposition 6.7) to derive Theorem 5.9.

6.2. Example: Ehrenborg’s quasisymmetric function of a ranked poset. Here we consider incidence
algebras, coalgebras and Hopf algebras generally, and then particularize to the case of graded posets, to
recover Ehrenborg’s interesting quasisymmetric function invariant via Theorem 6.3.

6.2.1. Incidence algebras, coalgebras, Hopf algebras.

Definition 6.9. Given a family P of finite partially ordered sets P , let k[P ] denote the free k-module whose
basis consists of symbols [P ] corresponding to isomorphism classes of posets P in P .

We will assume throughout that each P in P is bounded, that is, it has a unique minimal element 0̂ := 0̂P
and unique maximal element 1̂ := 1̂P . In particular, P 6= ∅, although it is allowed that |P | = 1, so that

0̂ = 1̂; denote this isomorphism class of posets with one element by [o].
If P is closed under taking intervals

[x, y] := [x, y]P := {z ∈ P : x ≤P z ≤P y}
then one can easily that the following coproduct and counit endow k[P ] with the structure of a coalgebra,
called the (reduced) incidence coalgebra:

∆[P ] :=
∑

x∈P
[0̂, x]⊗ [x, 1̂],

ǫ[P ] :=

{
1 if |P | = 1

0 otherwise.

The dual algebra k[P ]o is generally called the (reduced) incidence algebra for the family P . It contains the

important element k[P ]
ζ−→ k, called the ζ-function that takes the value ζ[P ] = 1 for all P .

If P (is not empty and) satisfies the further property of being hereditary in the sense that for every P1, P2

in P , the Cartesian product poset P1 ×P2 with componentwise partial order is also in P , then one can check
that the following product and unit endow k[P ] with the structure of a (commutative) algebra:

[P1] · [P2] := m([P1]⊗ [P2]) := [P1 × P2],

1k[P] := [o].
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Proposition 6.10. For any hereditary family P of finite posets, k[P ] is a bialgebra, and even a Hopf algebra
with antipode S given as in Theorem 1.15 (Takeuchi’s formula):

S[P ] =
∑

k≥0

(−1)k
∑

0̂=x0<···<xk=1̂

[x0, x1] · · · [xk−1, xk].

Proof. Checking the commutativity of the pentagonal diagram in (1.8) amounts to the fact that, for any
(x1, x2) <P1×P2 (y1, y2), one has a poset isomorphism

[(x1, x2) , (y1, y2)]P1×P2

∼= [x1, y1]P1 × [x2, y2]P2 .

Commutativity of the remaining diagrams in (1.8) is straightforward, and so k[P ] is a bialgebra. But
then Remark 1.34 implies that it is a Hopf algebra, with antipode S as in the theorem, because the map
f := 1k[P] − uǫ (sending the class [o] to 0, and fixing all other [P ]) is locally ⋆-nilpotent:

f⋆k[P ] =
∑

0̂=x0<···<xk=1̂

[x0, x1] · · · [xk−1, xk]

will vanish due to an empty sum whenever k exceeds the maximum length of a chain in the finite poset
P . �

It is perhaps worth remarking how this generalizes the Möbius function formula of P. Hall. Note that

the zeta function k[P ]
ζ−→ k is a character, that is, an algebra morphism. Proposition 1.35(a) then tells us

that ζ should have a convolutional inverse k[P ]
µ=ζ⋆−1

−→ k, traditionally called the Möbius function, with the
formula µ = ζ⋆−1 = ζ ◦ S. Rewriting this via the antipode formula for S given in Proposition 6.10 yields P.
Hall’s formula.

Corollary 6.11. For a finite bounded poset P , one has

µ[P ] =
∑

k≥0

(−1)k|{chains 0̂ = x0 < · · · < xk = 1̂ in P}|.

6.2.2. The incidence Hopf algebras for ranked posets and Ehrenborg’s function.

Definition 6.12. Take P to be the class of bounded ranked finite posets P , that is, those for which all
maximal chains from 0̂ to 1̂ have the same length r(P ). This is a hereditary class, as it implies that any
interval is [x, y]P is also ranked, and the product of two bounded ranked posets is also bounded and ranked.

It also uniquely defines a rank function P
r−→ N in which r(0̂) = 0 and r(x) is the length of any maximal

chain from 0̂ to x.

Example 6.13. Consider a pyramid with apex vertex a over a square base with vertices b, c, d, e:
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c d
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Ordering its faces by inclusion gives a bounded ranked poset P , where the rank of an element is one more
than the dimension of the face it represents:

rank:
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Definition 6.14. Ehrenborg’s quasisymmetric function Ψ[P ] for a bounded ranked poset P is the image of

[P ] under the map k[P ]
Ψ−→ QSym induced by the zeta function k[P ]

ζ−→ k as a character, via Theorem 6.3.

The quasisymmetric function Ψ[P ] captures several interesting combinatorial invariants of P ; see Stanley
[72, Chap. 3] for more background on these notions.

Definition 6.15. Let P be a bounded ranked poset P of rank r(P ) := r(1̂). Define its rank-generating
function

RGF (P, q) :=
∑

p∈P
qr(p),

its characteristic polynomial

χ(P, q) :=
∑

p∈P
µ(0̂, p)qr(p)

(where µ(p, q) is shorthand for µ([p, q])), its zeta polynomial

Z(P,m) = |{multichains 0̂ ≤P p1 ≤P · · · ≤P pm−1 ≤P 1̂}|(6.5)

=

r(P )−1∑

s=0

(
m

s+ 1

)
|{chains 0̂ < p1 < · · · < ps < 1̂}|(6.6)

and for a subset S ⊂ {1, 2, . . . , r − 1}, its flag number fS , as a component of its flag f -vector (fS)S⊂[r−1]

fS = |{chains 0̂ <P p1 <P · · · <P ps <P 1̂ with {r(p1), . . . , r(ps)} = S}|,

as well as the flag h-vector entry hT given by fS =
∑
T⊂S hT , or by inclusion-exclusion, hS =

∑
T⊂S(−1)|S\T |fT .

Example 6.16. For the poset P in Example 6.13, one has RGF (P, q) = 1 + 5q + 8q2 + 5q3 + q4. Since
P is the poset of faces of a polytope, the Möbius function values for its intervals are easily predicted:
µ(x, y) = (−1)r[x,y], that is, P is an Eulerian ranked poset; see Stanley [72, §3.16]. Hence its characteristic
polynomial is trivially related to the rank generating function, sending q 7→ −q, that is,

χ(P, q) = RGF (P,−q) = 1− 5q + 8q2 − 5q3 + q4.

Its flag f -vector and h-vector entries are given in the following table.
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S fS hS

∅ 1 1
{1} 5 5− 1 = 4
{2} 8 8− 1 = 7
{3} 5 5− 1 = 4
{1, 2} 16 16− (5 + 8) + 1 = 4
{1, 3} 16 16− (5 + 5) + 1 = 7
{2, 3} 16 16− (5 + 8) + 1 = 4
{1, 2, 3} 32 32− (16 + 16 + 16) + (5 + 8 + 5)− 1 = 1

and using (6.6), its zeta polynomial is

Z(P,m) = 1

(
m

1

)
+ (5 + 8 + 5)

(
m

2

)
+ (16 + 16 + 16)

(
m

3

)
+ 32

(
m

4

)
=
m2(2m− 1)(2m+ 1)

3
.

Theorem 6.17. Ehrenborg’s quasisymmetric function Ψ[P ] for a bounded ranked poset P encodes

(i) the flag f -vector entries fS and flag h-vector entries hS as its Mα and Lα expansion coefficients24 :

Ψ[P ] =
∑

α

fD(α)(P ) Mα =
∑

α

hD(α)(P ) Lα,

(ii) the zeta polynomial as the specialization from Definition 6.6

Z(P,m) = ps1(Ψ[P ])(m) = [Ψ[P ]]x1=x2=···=xm=1,
xm+1=xm+2=···=0

, and

(iii) the rank-generating function as the specialization

RGF (P, q) = [Ψ[P ]] x1=q,x2=1,
x3=x4=···=0

,

(iv) the characteristic polynomial as the convolution

χ(P, q) = ((ψq ◦ S) ⋆ ζQ) ◦Ψ[P ]

where QSym
ψq−→ k[q] maps f(x) 7−→ f(q, 0, 0, . . .).

Proof. In assertion (i), the expansion Ψ[P ] =
∑
α fD(α)(P )Mα is (6.2), since ζα[P ] = fD(α)(P ). The Lα

expansion follows by inclusion-exclusion, as Lα =
∑

β:D(β)⊃D(α)Mβ and fS(P ) =
∑

T⊂S hT .

Assertion (ii) is immediate from Proposition 6.7(iv), since Z(P,m) = ζ⋆m[P ].
Assertion (iii) can be deduced from assertion (i), but it is perhaps more fun and in the spirit of things

to proceed as follows. Note that ψq(Mα) = qn for α = (n), and ψq(Mα) vanishes for all other α 6= (n) in
Compn. Hence for a bounded ranked poset P one has

(6.7) (ψq ◦Ψ)[P ] = qr(P ).

Consequently, using (1.16) one can compute

RGF (P, q) =
∑

p∈P
qr(p) · 1 =

∑

p∈P
qr([0̂,p]) · ζ[p, 1̂]

(6.7),
(6.1)
=

∑

p∈P
(ψq ◦Ψ)[0̂, p] · (ζQ ◦Ψ)[p, 1̂]

(1.16)
= (ψq ⋆ ζQ)(Ψ[P ]) = (ψq ⊗ ζQ) (∆Ψ[P ])

= [Ψ[P ](x,y)]x1=q,x2=x3=···=0
y1=1,y2=y3=···=0

= [Ψ[P ](x)] x1=q,x2=1,
x3=x4=···=0

Similarly, for assertion (iv) first note that Proposition 6.10 and Corollary 6.11 let one calculate that

(ψq ◦Ψ ◦ S)[P ] =
∑

k

(−1)k
∑

0̂=x0<···<xk=1̂

(ψq ◦Ψ)([x0, x1]) · · · (ψq ◦Ψ)([xk−1, xk])

(6.7)
=
∑

k

(−1)k
∑

0̂=x0<···<xk=1̂

qr(P ) = µ(0̂, 1̂)qr(P ).

24In fact, Ehrenborg defined Ψ[P ] in [24, Defn. 4.1] via this Mα expansion, and then showed that it gave a Hopf morphism.
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This is used in the penultimate equality here:

((ψq ◦ S) ⋆ ζQ) ◦Ψ[P ]
(1.16)
= ((ψq ◦ S ◦Ψ) ⋆ (ζQ ◦Ψ))[P ] = ((ψq ◦Ψ ◦ S) ⋆ ζ)[P ]

=
∑

p∈P
(ψq ◦Ψ ◦ S)[0̂, p] · ζ[p, 1̂] =

∑

p∈P
µ[0̂, p]qr(p) = χ(P, q).

�

6.3. Example: Stanley’s chromatic symmetric function of a graph. We introduce the chromatic
Hopf algebra of graphs and an associated character ζ so that the map Ψ from Theorem 6.3 sends a graph G
to Stanley’s chromatic symmetric function of G. Then principal specialization ps1 sends this to the chromatic
polynomial of the graph.

6.3.1. The chromatic Hopf algebra of graphs.

Definition 6.18. The chromatic Hopf algebra (see Schmitt [65, §3.2]) G is a free k-module whose k-basis
elements [G] are indexed by isomorphism classes of (finite) simple graphs G = (V,E). Define for G1 =
(V1, E1), G2 = (V2, E2) the multiplication

[G1] · [G2] := [G1 ⊔G2]

where [G1 ⊔ G2] denote the isomorphism class of the disjoint union, on vertex set V = V1 ⊔ V2 which is a
disjoint union of copies of their vertex sets V1, V2, with edge set E = E1 ⊔ E2. For example,


 • •

•
@@ ~~


 ·


 •
•


 =


 • • •

•
@@ ~~ •




Thus the class [∅] of the empty graph ∅ having V = ∅, E = ∅ is a unit element.
Given a subset V ′ ⊂ V , the subgraph induced on vertex set V ′ is defined as the graph G|V ′ := (V ′, E′)

with edge set E′ = {e ∈ E : e = {v1, v2} ⊂ V ′}. This lets one define a comultiplication

∆[G] :=
∑

(V1,V2):V1⊔V2=V

[G|V1 ]⊗ [G|V2 ].

Define a counit

ǫ[G] :=

{
1 if G = ∅

0 otherwise.

Proposition 6.19. The above maps endow G with the structure of a graded connected finite type Hopf
algebra over k, which is both commutative and cocommutative.

Example 6.20. Here are some examples of these structure maps:

 • •

•
@@ ~~


 ·


 •
•


 =


 • • •

•
@@ ~~ •




∆


 • •

•
@@ ~~


 = 1⊗


 • •

•
@@ ~~


+ 2 [ • ]⊗


 •
•


+ 2


 •
•


⊗ [ • ] + [ • • ]⊗ [ • ]

+ [ • ]⊗ [ • • ] +


 • •

•
@@ ~~


⊗ 1

Proof. The associativity of the multiplication and comultiplication should be clear as

m(2)([G1]⊗ [G2]⊗ [G3]) = [G1 ⊔G2 ⊔G3]

∆(2)[G] =
∑

(V1,V2,V3):
V=V1⊔V2⊔V3

[G|V1 ]⊗ [G|V2 ]⊗ [G|V3 ].
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Checking the unit and counit conditions are straightforward. Commutativity of the pentagonal bialgebra
diagram in (1.8) comes down to check that, given graphs G1, G2 on disjoint vertex sets V1, V2 , when one
applies to [G1] ⊗ [G2] either the composite ∆ ◦m or the composite (m ⊗m) ◦ (1 ⊗ T ⊗ 1) ◦ (∆ ⊗ ∆), the
result is the same:

∑

(V11,V12,V21,V22):
V1=V11⊔V12
V2=V21⊔V22

[G1|V11 ⊔G2|V21 ]⊗ [G1|V12 ⊔G2|V22 ].

Letting Gn be the k-span of [G] having n vertices makes G a bialgebra which is graded, connected, and
of finite type, and hence also a Hopf algebra by Proposition 1.30. Cocommutativity should be clear, and
commutativity follows from the graph isomorphism G1 ⊔G2

∼= G2 ⊔G1. �

Remark 6.21. Humpert and Martin [37, Theorem 3.1] gave the following expansion for the antipode in
the chromatic Hopf algebra, containing fewer terms than Takeuchi’s general formula (1.15): given a graph
G = (V,E), one has

S[G] =
∑

F

(−1)|V |−rank(F ) acyc(G/F )[GV,F ].

Here F runs over all subsets of edges that form flats in the graphic matroid for G, meaning that if e = {v, v′}
is an edge in E for which one has a path of edges in F connecting v to v′, then e also lies in F . Here G/F
denotes the quotient graph in which all of the edges of F have been contracted, while acyc(G/F ) denotes its
number of acyclic orientations, and GV,F := (V, F ) as a simple graph.

It turns out that the chromatic Hopf algebra G is self-dual. In the dual Hopf algebra Go, let {[G]∗} denote
the dual basis elements, so that ([H ]∗, [G]) = δ[H],[G]. To describe the structure maps in Go explicitly, for
graphs H,H1, H2 one has

(6.8)

∆[H ]∗ =
∑

(V1,V2):
V=V1⊔V2

H=H|V1⊔H|V2

[H |V1 ]
∗ ⊗ [H |V2 ]

∗

[H1]
∗[H2]

∗ =
∑

H=(V1⊔V2,E)
H|V1=H1

H|V2=H2

[H ]∗.

Proposition 6.22. One has a Hopf isomorphism G ϕ−→ Go defined by

[G] 7−→
∑

H=(V,E′):
E′∩E=∅

[H ]∗.

For example, this isomorphism maps

ϕ


 • •

•
@@ ~~


 =


 • •

•



∗

+


 • •

•



∗

.

Proof. First note that ϕ is a k-module isomorphism via triangularity: one has H = (V,E′) with E′ ∩E = ∅

if and only if H is an edge subgraph of the complementary graph G to G on the same vertex set V .
One can then check that for graphs G1, G2 on vertex sets V1, V2, the fact that ϕ([G1][G2]) = ϕ[G1]ϕ[G2]

amounts, using (6.8), to both being a sum of [H ]∗ over graphs H on V1⊔V2 that share no edges with G1⊔G2.
Similarly, one can check that the fact that ∆ϕ[G] = (ϕ⊗ ϕ)(∆[G]) amounts, using (6.8), to both being a

sum of [H1]
∗ ⊗ [H2]

∗ over triples (H,H1, H2) where H is a graph on the same vertex set V as G but sharing
no edges with G, and with H = H1 ⊔H2. �
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6.3.2. Stanley’s chromatic symmetric function of a graph.

Definition 6.23. Stanley’s chromatic symmetric function Ψ[G] for a simple graph G = (V,E) is the image

of [G] under the map G Ψ−→ QSym induced via Theorem 6.3 from the edge-free character G ζ−→ k

(6.9) ζ[G] =

{
1 if G has no edges, that is, G is an independent/stable set of vertices,

0 otherwise.

Note that, because G is cocommutative, Ψ[G] is symmetric and not just quasisymmetric; see Remark 6.4.

Recall that for a graph G = (V,E), a (vertex-)coloring f : V → {1, 2, . . .} is called proper if no edge
e = {v, v′} in E has f(v) = f(v′).

Proposition 6.24. For a graph G = (V,E), the symmetric function Ψ[G] has the expansion 25

Ψ[G] =
∑

proper colorings
f :V→{1,2,...}

xf

where xf :=
∏
v∈V xf(v). In particular, its specialization from Proposition 6.6 gives the chromatic polynomial

of G:

ps1Ψ[G](m) = χG(m) = |{proper colorings f : V → {1, 2, . . . ,m}}|

Proof. The iterated coproduct G ∆(ℓ−1)

−→ G⊗ℓ sends

[G] 7−→
∑

(V1,...,Vℓ):
V=V1⊔···⊔Vℓ

[G|V1 ]⊗ · · · ⊗ [G|Vℓ
]

and the map ζ⊗ℓ sends the element on the right to 1 or 0, depending upon whether each Vi ⊂ V is a stable
set or not, that is, whether the assignment of color i to the vertices in Vi gives a proper coloring. Thus
formula (6.2) shows that the coefficient ζα of xα1

1 · · ·xαℓ

ℓ in Ψ[G] counts the proper colorings f in which
|f−1(i)| = αi for each i. �

Example 6.25. For the complete graph Kn on n vertices, one has

Ψ[Kn] = n!en

ps1(Ψ[Kn])(m) = n!en(1, 1, . . . , 1︸ ︷︷ ︸
m ones

) = n!

(
m

n

)

= m(m− 1) · · · (m− (n− 1)) = χ(Kn,m).

In particular, the single vertex graph K1 has Ψ[K1] = e1, and since the Hopf morphism Ψ is in particular
an algebra morphism, a graph K⊔n

1 having n isolated vertices and no edges will have Ψ[K⊔n
1 ] = en1 .

As a slightly more interesting example, the graph P3 which is a path having three vertices and two edges
will have

Ψ[P3] = m(2,1) + 6m(1,1,1) = e2e1 + 3e3

One might wonder, based on the previous examples, when Ψ[G] is e-positive, that is, when does its unique
expansion in the {eλ} basis for Λ have nonnegative coefficients? This is an even stronger assertion than
s-positivity, that is, having nonnegative coefficients for the expansion in terms of Schur functions {sλ}, since
each eλ is s-positive. This weaker property fails, starting with the claw graph K3,1, which has

Ψ[K3,1] = s(3,1) − s(2,2) + 5s(2,1,1) + 8s(1,1,1,1).

On the other hand, a result of Gasharov [26] shows that one at least has s-positivity for Ψ[inc(P )] where
inc(P ) is the incomparability graph of a poset which is (3 + 1)-free; we refer the reader to Stanley [71, §5]
for a discussion of the following conjecture, which remains open26:

25In fact, Stanley defined Ψ[G] in [71, Defn. 2.1] via this expansion.
26A recent refinement for incomparability graphs of posets which are both (3 + 1)- and (2 + 2)-free, also known as unit

interval orders is discussed by Shareshian and Wachs [67].
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Conjecture 6.26. For any (3+1)-free poset P , the incomparability graph inc(P ) has Ψ[inc(P )] an e-positive
symmetric function.

Here is another question about Ψ[G]: how well does it distinguish nonisomorphic graphs? Stanley gave
this example of two graphs G1, G2 having Ψ[G1] = Ψ[G2]:

G1 = • •
•

@@ ~~

@@~~• •

G2 = •

@@
@@

@@
@ •

@@
@@

@@
@

• • •
At least Ψ[G] appears to do better at distinguishing trees, much better than its specialization, the chromatic
polynomial χ(G,m), which takes the same value m(m− 1)n−1 on all trees with n vertices.

Question 6.27. Does the chromatic symmetric function distinguish trees?

It has been checked that the answer is affirmative for trees on 23 vertices or less. There are also interesting
partial results on this question by Martin, Morin and Wagner [57].

We close this section with a few other properties of Ψ[G] proven by Stanley which follow easily from the
theory we have developed. For example, his work makes no explicit mention of the chromatic Hopf algebra G,
and the fact that Ψ is a Hopf morphism (although he certainly notes the trivial algebra morphism property
Ψ[G1 ⊔ G2]) = Ψ[G1]Ψ[G2]). One property he proves is implicitly related to Ψ as a coalgebra morphism:
he considers the effect on Ψ of the operator ∂

∂p1
: ΛQ −→ ΛQ which acts by first expressing a symmetric

function f = f(p1, p2, . . .) as a polynomial in the power sums {pn}, and then applies ∂
∂p1

. It is not hard to

see that ∂
∂p1

is the same as the skewing operator s⊥(1) = p⊥1 : both act as derivations on ΛQ = Q[p1, p2, . . .],

and agree in their effect on each pn, in that both send p1 7→ 1, and both annihilate p2, p3, . . ..

Proposition 6.28. (Stanley [71, Cor. 2.12(a)]) For any graph G = (V,E), one has

∂

∂p1
Ψ[G] =

∑

v∈V
Ψ[G|V \v].

Proof. One first computes

∆Ψ[G] = (Ψ⊗Ψ)∆[G] =
∑

(V1,V2):
V=V1⊔V2

Ψ[G|V1 ]⊗Ψ[G|V2 ].

Since degree considerations force (s(1),Ψ[G|V1 ]) = 0 unless |V1| = 1, in which case Ψ[G|V1 ] = s(1), one has

∂

∂p1
Ψ[G] = s⊥(1)Ψ[G] =

∑

(V1,V2):
V=V1⊔V2

(s(1),Ψ[G|V1 ]) ·Ψ[G|V2 ] =
∑

v∈V
Ψ[G|V \v].

�

Definition 6.29. Given a graph G = (V,E), an acyclic orientation Ω of the edges E (that is, an orientation
of each edge such that the resulting directed graph has no cycles), and a vertex-coloring f : V → {1, 2, . . .},
say that the pair (Ω, f) are weakly compatible if whenever Ω orients an edge {v, v′} in E as v → v′, one has
f(v) ≤ f(v′). Note that a proper vertex-coloring f of a graph G = (V,E) is weakly compatible with a unique
acyclic orientation Ω.

Proposition 6.30. (Stanley [71, Prop. 4.1, Thm. 4.2]) The involution ω of Λ sends Ψ[G] to ω (Ψ[G]) =∑
(Ω,f) xf in which the sum runs over weakly compatible pairs (Ω, f) of an acyclic orientation Ω and vertex-

coloring f .
Furthermore, the chromatic polynomial χG(m) has the property that (−1)|V |χ(G,−m) counts all such

weakly compatible pairs (Ω, f) in which f : V → {1, 2, . . . ,m} is a vertex-m-coloring.

Proof. As observed above, a proper coloring f is weakly compatible with a unique acyclic orientation Ω of G.
Denote by PΩ the poset on V which is the transitive closure of Ω, endowed with a strict labelling by integers,
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that is, i <P j implies i >Z j. Then proper colorings f that induce Ω are the same as PΩ-partitions, so that

(6.10) Ψ[G] =
∑

Ω

FPΩ(x).

Applying the antipode S and using Corollary 5.22 gives

ω (Ψ[G]) = (−1)|V |S (Ψ[G]) =
∑

Ω

FP opp
Ω

(x) =
∑

(Ω,f)

xf

where in the last line one sums over weakly compatible pairs as in the proposition. The last equality comes
from the fact that since each PΩ has been given a strict labelling, P opp

Ω acquires a weak (or natural) labelling,
that is i <P opp

Ω
j implies i <Z j.

The last assertion follows from Proposition 6.7(iii). �

Remark 6.31. The interpretation of χ(G,−m) in Proposition 6.30 is a much older result of Stanley [70]. The
special case interpreting χ(G,−1) as (−1)|V | times the number of acyclic orientations of G has sometimes
been called Stanley’s (-1)-color theorem. It also follows (via Proposition 6.7) from Humpert and Martin’s
antipode formula for G discussed in Remark 6.21: taking ζ to be the character of G given in (6.9),

χ(G,−1) = ζ∗(−1)[G] = ζ(S[G]) =
∑

F

(−1)|V |−rank(F ) acyc(G/F )S[GV,F ] = (−1)|V | acyc(G)

where the last equality uses the vanishing of ζ on graphs that have edges, so only the F = ∅ term survives.

6.4. Example: The quasisymmetric function of a matroid. We introduce the matroid-minor Hopf
algebra of Schmitt [64], and studied extensively by Crapo and Schmitt [16, 17, 18]. A very simple character
ζ on this Hopf algebra will then give rise, via the map Ψ from Theorem 6.3, to the quasisymmetric function
invariant of matroids from the work of Billera, Jia and the author [11].

6.4.1. The matroid-minor Hopf algebra. We begin by reviewing some notions from matroid theory; see Oxley
[58] for background, undefined terms and unproven facts.

Definition 6.32. A matroid M of rank r on a (finite) ground set E is specified by a nonempty collection
B(M) of r-element subsets of E with the following exchange property:

For any B,B′ in B(M) and b in B, there exists b′ in B′ with (B \ {b}) ∪ {b′} in B(M).

Example 6.33. A matroid M is represented by a collection of vectors E = {e1, . . . , en} in a vector space if
B(M) is the collection of subsets B = {ei1 , . . . , eir} having the property that B forms a basis for the span of
all of the vectors in E. For example, if E = {a, b, c, d} are the four vectors a = (1, 0), b = (1, 1), c = (0, 1) = d
in R2 depicted here

c, d b

//

OOOO
>>}}}}}}}}} a

then B(M) = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}}.
Example 6.34. A special case of matroids M represented by vectors are graphic matroids, coming from a
graph G = (V,E), with parallel edges and self-loops allowed. One represents these by vectors in RV with
standard basis {ǫv}v∈V by associating to the edge e = {v, v′} the vector ǫv − ǫv′ . One can check (or see
[58, §1.2]) that the bases B in B(M) correspond to the edge sets of spanning forests for G, that is, edge sets
which are acyclic and contain one spanning tree for each connected component of G. For example, the graph
G = (V,E) shown below has the same matroid B(M) as the one represented by the vectors in Example 6.33:

•
a

��
��
��
�

b

@@
@@

@@
@

•
c

d

•

whose spanning trees are the edge sets B(M) = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}}.
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To define the matroid-minor Hopf algebra one needs the basic matroid operations of deletion and con-
traction. These model the operations of deleting or contracting an edge in a graph. For configurations of
vectors they model the deletion of a vector, or the passage to images in the quotient space modulo the span
of a vector.

Definition 6.35. Given a matroid M of rank r and an element e of its ground set E, say that e is loop
(resp. coloop) ofM if e lies in no basis (resp. every basis) B in B(M). If e is not a coloop, the deletion M \ e
is a matroid of rank r on ground set E \ {e} having bases

(6.11) B(M \ e) := {B ∈ B(M) : e 6∈ B}.
If e is not a loop, the contraction M/e is a matroid of rank r on ground set E \ {e} having bases

(6.12) B(M/e) := {B \ {e} : e ∈ B ∈ B(M)}.
When e is a loop of M , then M/e has rank r instead of r − 1 and one defines its bases as in (6.11) rather
than (6.12); similarly, if e is a coloop of M then M \ e has rank r − 1 instead of r and one defines its bases
as in (6.12) rather than (6.11).

Example 6.36. Starting with the graph G and its graphic matroid M from Example 6.34, the deletion
M \ a and contraction M/c correspond to the graphs G \ a and G/c shown here:

G \ a = •
b

@@
@@

@@
@

•
c

d

•

G/c = •
a b

•
d

One has

• B(M \ a) = {{b, c}, {b, d}}, so that b has become a coloop in M \ a, and
• B(M/c) = {{a}, {b}}, so that d has become a loop in M/c.

Definition 6.37. Deletions and contractions commute with each other, leading to well-defined operations
for subsets A ⊂ E of the

• restriction M |A on ground set A, obtained by deleting all e of E \A in any order, and
• quotient/contraction M/A on ground set E \A, obtained by contracting all e in A in any order.

We will also need the direct sum M1 ⊕M2, whose ground set E = E1 ⊔E2 is the disjoint union of a copy
of the ground sets E1, E2 for M1,M2, and having bases

B(M1 ⊕M2) := {B1 ⊔B2 : Bi ∈ B(Mi) for i = 1, 2}.
Lastly, say that two matroids M1,M2 are isomorphic if there is a bijection of their ground sets E1

ϕ−→ E2

having the property that ϕB(M1) = B(M2).

Now one can define the matroid-minor Hopf algebra, originally introduced by Schmitt [64, §15], and
studied further by Crapo and Schmitt [16, 17, 18].

Definition 6.38. Let M have k-basis elements [M ] indexed by isomorphism classes of matroids. Define the
multiplication via

[M1] · [M2] := [M1 ⊕M2]

so that the class [∅] of the empty matroid ∅ having empty ground set gives a unit. Define the comultiplication
for M a matroid on ground set E via

∆[M ] :=
∑

A⊂E
[M |A]⊗ [M/A],

and a counit

ǫ[M ] :=

{
1 if M = ∅

0 otherwise.

Proposition 6.39. The above maps endow M with the structure of a graded connected finite type Hopf
algebra over k, which is commutative.
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Proof. Checking the unit and counit conditions are straightforward. Associativity and commutativity of the
multiplication follow because the direct sum operation ⊕ for matroids is associative, and commutative up
to isomorphism. Coassociativity follows because for a matroid M on ground set E, one has this equality
between the two candidates for ∆(2)[M ]

∑

∅⊆A1⊆A2⊆E
[M |A1 ]⊗ [(M |A2)/A1]⊗ [M/A2]

=
∑

∅⊆A1⊆A2⊆E
[M |A1 ]⊗ [(M/A1)|A2\A1

]⊗ [M/A2]

due to the matroid isomorphism (M |A2)/A1
∼= (M/A1)|A2\A1

. Commutativity of the bialgebra diagram in
(1.8) amounts to the fact that for a pair of matroids M1,M2 and subsets A1, A2 of their (disjoint) ground
sets E1, E2, one has isomorphisms

M1|A1 ⊕M2|A2
∼= (M1 ⊕M2) |A1⊔A2 ,

M1/A1 ⊕M2/A2
∼= (M1 ⊕M2) /(A1 ⊔ A2).

Letting Mn be the k-span of [M ] for matroids whose ground set E has cardinality |E| = n, one can then
easily check that M becomes a bialgebra which is graded, connected, and of finite type, hence also a Hopf
algebra by Proposition 1.30. �

6.4.2. A quasisymmetric function for matroids.

Definition 6.40. Define a character M ζ−→ k by

ζ[M ] =

{
1 if M has only one basis,

0 otherwise.

It is easily checked that this is a character, that is, an algebra map M ζ−→ k. Note that if M has only one
basis, say B(M) = {B}, then B := coloops(M) is the set of coloops of M , and E \ B = loops(M) is the set
of loops of M . Equivalently, M =

⊕
e∈EM |{e} is the direct sum of matroids each having one element, each

a coloop or loop.

Define Ψ[M ] for a matroidM to be the image of [M ] under the mapM Ψ−→ QSym induced via Theorem 6.3
from the above character ζ.

It turns out that Ψ[M ] is intimately related with greedy algorithms and finding minimum cost bases. A
fundamental property of matroids (and one that characterizes them, in fact; see [58, §1.8]) is that no matter
how one assigns costs f : E → R to the elements of E, the following greedy algorithm (generalizing Kruskal’s
algorithm for finding minimum cost spanning trees) always succeeds in finding one basis B in B(M) achieving
the minimum total cost f(B) :=

∑
b∈B f(b):

Start with the empty subset I0 = ∅ of E. For j = 1, 2, . . . , r, having already defined the set
Ij−1, let e be the element of E \ Ij−1 having the lowest cost f(e) among all those for which
Ij−1 ∪{e} is independent, that is, still a subset of at least one basis B in B(M). Then define
Ij := Ij−1 ∪ {e}. Repeat this until j = r, and B = Ir will be among the bases that achieve
the minimum cost.

Definition 6.41. Say that a cost function f : E → {1, 2, . . .} is M -generic if there is a unique basis B in
B(M) achieving the minimum cost f(B).

Example 6.42. For the graphic matroid M of Example 6.34, this cost function f1 : E → {1, 2, . . .}
•

f1(a)=1

��
��
��
� f1(b)=3

@@
@@

@@
@

•
f1(c)=3

f1(d)=2

•
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is M -generic, as it minimizes uniquely on the basis {a, d}, whereas this cost function f2 : E → {1, 2, . . .}
•

f2(a)=1

��
��
��
� f2(b)=3

@@
@@

@@
@

•
f2(c)=2

f2(d)=2

•

is not M -generic, as it achieves its minimum value on the two bases {a, c}, {a, d}.
Proposition 6.43. For a matroid M on ground set E, one has this expansion27

Ψ[M ] =
∑

M-generic
f :E→{1,2,...}

xf

where xf :=
∏
e∈E xf(e). In particular, for m ≥ 0, its specialization ps1 from Definition 6.6 has this

interpretation:

ps1Ψ[M ](m) = |{M -generic f : E → {1, 2, . . . ,m}}|.

Proof. The iterated coproduct M ∆(ℓ−1)

−→ M⊗ℓ sends

[M ] 7−→
∑

[M |A1 ]⊗ [(M |A2)/A1]⊗ · · · ⊗ [(M |Aℓ
)/Aℓ−1]

where the sum is over flags of nested subsets

(6.13) ∅ = A0 ⊆ A1 ⊆ · · · ⊆ Aℓ−1 ⊆ Aℓ = E.

The map ζ⊗ℓ sends each summand to 1 or 0, depending upon whether each (M |Aj
)/Aj−1 has a unique basis

or not. Thus formula (6.2) shows that the coefficient ζα of xα1

i1
· · ·xαℓ

iℓ
in Ψ[M ] counts the flags of subsets in

(6.13) for which |Aj \Aj−1| = αj and (M |Aj
)/Aj−1 has a unique basis, for each j.

Given a flag as in (6.13), associate the cost function f : E → {1, 2, . . .} whose value on each element of
Aj \Aj−1 is ij ; conversely, given any cost function, say whose distinct values are i1 < . . . < iℓ, one associates
the flag having Aj \Aj−1 = f−1(ij) for each j.

We will prove below, using induction on s = 0, 1, 2 . . . , ℓ the following claim: After having completed
α1 + α2 + · · · + αs steps in the greedy algorithm (6.4.2), there is a unique choice for the independent set
produced thus far, namely

(6.14) Iα1+α2+···+αs
=

s⊔

j=1

coloops((M |Aj
)/Aj−1),

if and only if each of the matroids (M |Aj
)/Aj−1 for j = 1, 2, . . . , s has a unique basis.

The case s = ℓ in this claim would show what we want, namely that f is M -generic, minimizing uniquely
on the basis shown in (6.14) with s = ℓ, if and only if each (M |Aj

)/Aj−1 has a unique basis.
The assertion of the claim is trivially true for s = 0. In the inductive step, one may assume that

• the independent set Iα1+α2+···+αs−1 takes the form in (6.14), replacing s by s− 1,
• it is the unique f -minimizing basis for M |As−1 , and
• (M |Aj

)/Aj−1 has a unique basis for j = 1, 2, . . . , s− 1.

Since As−1 exactly consists of all of the elements e of E whose costs f(e) lie in the range {i1, i2, . . . , is−1},
in the next αs steps the algorithm will work in the quotient matroid M/Aj−1 and attempt to augment
Iα1+α2+···+αs−1 using the next-cheapest elements, namely the elements of As \ As−1, which all have cost
f equal to is. Thus the algorithm will have no choices about how to do this augmentation if and only if
(M |As

)/As−1 has a unique basis, namely its set of coloops, in which case the algorithm will choose to add
all of these coloops, giving Iα1+α2+···+αs

as described in (6.14). This completes the induction.
The last assertion follows from Proposition 6.7. �

27In fact, this expansion was the original definition of Ψ[M ] in [11, Defn. 1.1].
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Example 6.44. If M has one basis then every function f : E → {1, 2, . . .} is M -generic, and

Ψ[M ] =
∑

f :E→{1,2,...}
xf = (x1 + x2 + · · · )|E| =M

|E|
(1) .

Example 6.45. Let Ur,n denote the uniform matroid of rank r on n elements E, having B(Ur,n) equal to
all of the r-element subsets of E.

As U1,2 has E = {1, 2} and B = {{1}, {2}}, genericity means f(1) 6= f(2), so

Ψ[U1,2] =
∑

(f(1),f(2)):
f(1) 6=f(2)

xf(1)xf(2) = x1x2 + x2x1 + x1x3 + x3x1 + · · · = 2M(1,1).

Similarly U1,3 has E = {1, 2, 3} with B = {{1}, {2}, {3}}, and genericity means either that f(1), f(2), f(3)
are all distinct, or that two of them are the same and the third is smaller. This shows

Ψ[U1,3] = 3
∑

i<j

xix
2
j + 6

∑

i<j<k

xixjxk

= 3M(1,2) + 6M(1,1,1)

ps1Ψ[U1,3](m) = 3

(
m

2

)
+ 6

(
m

3

)
=
m(m− 1)(2m− 1)

2

One can similarly analyze U2,3 and check that

Ψ[U2,3] = 3M(2,1) + 6M(1,1,1)

ps1Ψ[U2,3](m) = 3

(
m

2

)
+ 6

(
m

3

)
=
m(m− 1)(2m− 1)

2

These last examples illustrate the behavior of Ψ under the duality operation on matroids.

Definition 6.46. Given a matroid M of rank r on ground set E, its dual or orthogonal matroid M⊥ is a
matroid of rank |E| − r on the same ground set E, having

B(M⊥) := {E \B}B∈B(M).

Here are a few examples of dual matroids.

Example 6.47. The dual of a uniform matroid is another uniform matroid:

U⊥
r,n = Un−r,n.

Example 6.48. If M is matroid of rank r represented by collection of vectors E = {e1, . . . , en} in a vector
space over some field k, one can find a collection of vectors {e⊥1 , . . . , e⊥n } that represent M⊥ in the following
way. Pick a basis for the span of the vectors {ei}ni=1, and create a matrix A in kr×n whose columns express
the ei in terms of this basis. Then pick any matrix A⊥ whose row space is the null space of A, and one finds
that the columns {e⊥i }ni=1 of A⊥ represent M⊥. See Oxley [58, §2.2].
Example 6.49. Let G = (V,E) be graph embedded in the plane with edge set E, giving rise to a graphic
matroid M on ground set E. Let G⊥ be a planar dual of G, so that, in particular, for each edge e in E, the
graph G⊥ has one edge e⊥, crossing e transversely. Then the graphic matroid of G⊥ is M⊥. See Oxley [58,
§2.3].
Proposition 6.50. If Ψ[M ] =

∑
α cαMα then Ψ[M⊥] =

∑
α cαMrev(α).

Consequently, ps1Ψ[M ](m) = ps1Ψ[M⊥](m).

Proof. This amounts to showing that for any composition α = (α1, . . . , αℓ), the cardinality of the set of M -
generic f having xf = xα is the same as the cardinality of the set of M⊥-generic f⊥ having xf⊥ = xrev(α).

We claim that the map f 7−→ f⊥ in which f⊥(e) = ℓ+ 1− f(e) gives a bijection between these sets. To see
this, note that any basis B of M satisfies

f(B) + f(E \B) =
∑

e∈E
f(e)(6.15)

f(E \B) + f⊥(E \B) = (ℓ + 1)(|E| − r),(6.16)
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where r denotes the rank of M . Thus B is f -minimizing if and only if E \B is f -maximizing (by (6.15)) if
and only if E \B is f⊥-minimizing (by (6.16)). Consequently f isM -generic if and only if f⊥ isM⊥-generic.

The last assertion follows, for example, from the calculation in Proposition 6.7(i) that ps1(Mα)(m) =
(
m
ℓ(α)

)

together with the fact that ℓ(rev(α)) = ℓ(α). �

Just as (6.10) showed that Stanley’s chromatic symmetric function of a graph has an expansion as a sum
of P -partition enumerators for certain strictly labelled posets P , the same holds for Ψ[M ].

Definition 6.51. Given a matroidM on ground set E, and a basis B in B(M), define the base-cobase poset
PB to have b < b′ whenever b lies in B and b′ lies in E \B and (B \ {b}) ∪ {b′} is in B(M).

Proposition 6.52. For any matroid M , one has Ψ[M ] =
∑
B∈B(M) F(PB ,strict)(x) where F(P, strict)(x) for

a poset P means the P -partition enumerator for any strict labelling of P , i.e. a labelling such that the
P -partitions satisfy f(i) < f(j) whenever i <P j.

In particular, Ψ[M ] expands nonnegatively in the {Lα} basis.

Proof. A basic result about matroids, due to Edmonds [23], describes the edges in the matroid base polytope
which is the convex hull of all vectors {∑b∈B ǫb}B∈B(M) inside RE with standard basis {ǫe}e∈E . He shows
that all such edges connect two bases B,B′ that differ by a single basis exchange, that is, B′ = (B \ {b})∪{b′}
for some b in B and b′ in E \B.

Polyhedral theory then says that a cost function f on E will minimize uniquely at B if and only if one
has a strict increase f(B) < f(B′) along each such edge B → B′ emanating from B, that is, if and only if
f(b) < f(b′) whenever b <PB

b′ in the base-cobase poset PB, that is, f lies in A(PB , strict). �

Example 6.53. The graphic matroid from Example 6.34 has this matroid base polytope, with the bases B
in B(M) labelling the vertices:

cd

nnn
nnn

nnn
nnn

nn

��
��
��
��
��
��
��

NNN
NNN

NNN
NNN

N

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

ac ______________

AA
AA

AA
AA

ad

AA
AA

AA
AA

bc bd

The base-cobase posets PB for its five vertices B are as follows:

a
<<
b

��
�

c d

b d
���

a c

a d
���

b c

a c
��

b d

b c
��
�

a d

One can label the first of these five strictly as

1
==
2

��

3 4

and compute its strict P -partition enumerator from the linear extensions {3412, 3421, 4312, 4321} as

L(2,2) + L(2,1,1) + L(1,1,2) + L(1,1,1,1)

while any of the last four can be labelled strictly as

1 2
��

3 4

and they each have an extra linear extension 3142 giving their strict P -partition enumerators as

L(2,2) + L(2,1,1) + L(1,1,2) + L(1,1,1,1) + L(1,2,1).

Hence one has
Ψ[M ] = 5L(2,2) + 5L(1,1,2) + 4L(1,2,1) + 5L(2,1,1) + 5L(1,1,1,1).
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As M is a graphic matroid for a self-dual planar graph, one has a matroid isomorphism M ∼= M⊥ (see
Example 6.49), reflected in the fact that Ψ[M ] is invariant under the symmetry swapping Mα ↔ Mrev(α)

(and simultaneously swapping Lα ↔ Lrev(α)).

This P -partition expansion for Ψ[M ] also allows us to identify its image under the antipode of QSym.

Proposition 6.54. For a matroid M on ground set E, one has

S(Ψ[M ]) = (−1)|E|
∑

f :E→{1,2,...}
|{f -maximizing bases B}| · xf

and
ps1Ψ[M ](−m) = (−1)|E|

∑

f :E→{1,2,...,m}
|{f -maximizing bases B}|.

In particular, the expected number of f -maximizing bases among all cost functions f : E → {1, 2, ...,m} is
(−m)−|E|ps1Ψ[M ](−m).

Proof. Corollary 5.22 implies

S(Ψ[M ]) =
∑

B∈B(M)

S(F(PB ,strict)(x)) = (−1)|E|
∑

B∈B(M)

F(P opp
B

,natural)(x)

where F(P,natural)(x) is the enumerator for P -partitions in which P has been naturally labelled, so that they
satisfy f(i) ≤ f(j) whenever i <P j. When P = P opp

B , this is exactly the condition for f to achieve its
maximum value at f(B) (possibly not uniquely), that is, for f to lie in the closed normal cone to the vertex
indexed by B in the matroid base polytope; compare this with the discussion in the proof of Proposition
6.52. Thus one has

S(Ψ[M ]) = (−1)|E|
∑

(B,f):
B∈B(M)

f maximizing at B

xf

which agrees with the statement of the proposition, after reversing the order of the summation.
The rest follows from Proposition 6.7. �

Example 6.55. We saw in Example 6.53 that the matroid M from Example 6.34 has

Ψ[M ] = 5L(2,2) + 5L(1,1,2) + 4L(1,2,1) + 5L(2,1,1) + 5L(1,1,1,1).

and therefore will have

ps1Ψ[M ](m) = 5

(
m− 2 + 4

4

)
+ (5 + 4 + 5)

(
m− 3 + 4

4

)
+ 5

(
m− 4 + 4

4

)
=
m(m− 1)(2m2 − 2m+ 1)

2
.

using ps1(Lα)(m) =
(m−ℓ+|α|

|α|
)
from Proposition 6.7 (i). Let us first do a reality-check on a few of its values

with m ≥ 0 using Proposition 6.43, and for negative m using Proposition 6.54:

m −1 0 1 2
ps1Ψ[M ](m) 5 0 0 5

When m = 0, interpreting the set of cost functions f : E → {1, 2, . . . ,m} as being empty explains why
the value shown is 0. When m = 1, there is only one function f : E → {1}, and it is not M -generic; any of
the 5 bases in B(M) will minimize f(B), explaining both why the value for m = 1 is 0, but also explaining
the value of 5 for m = −1. The value of 5 for m = 2 counts these M -generic cost functions f : E → {1, 2}:

•
1

��
��
��
�

1

@@
@@

@@
@

•
2

2

•

•
1

��
��
��
�

2

@@
@@

@@
@

•
1

2

•

•
1

��
��
��
�

2

@@
@@

@@
@

•
2

1

•

•
2

��
��
��
�

1

@@
@@

@@
@

•
1

2

•

•
2

��
��
��
�

1

@@
@@

@@
@

•
2

1

•

Lastly, Proposition 6.54 predicts the expected number of f -minimizing bases for f : E → {1, 2, . . . ,m} as

(−m)−|E|ps1Ψ[M ](−m) = (−m)−4m(m+ 1)(2m2 + 2m+ 1)

2
=

(m+ 1)(2m2 + 2m+ 1)

2m3
,
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whose limit as m → ∞ is 1, consistent with the notion that “most” cost functions should be generic with
respect to the bases of M , and maximize/minimize on a unique basis.

Remark 6.56. It is not coincidental that there is a similarity of results for Stanley’s chromatic symmetric
function of a graph Ψ[G] and for the matroid quasisymmetric function Ψ[M ], such as the P -partition expan-
sions (6.10) versus Proposition 6.52, and the reciprocity results Proposition 6.30 versus Proposition 6.54. It
was noted in [11, §9] that one can associate a similar quasisymmetric function invariant to any generalized
permutohedra in the sense of Postnikov [59]. Furthermore, recent work of Ardila and Aguiar [3] has shown
that there is a Hopf algebra of such generalized permutohedra, arising from a Hopf monoid in the sense
of Aguiar and Mahajan [5]. This Hopf algebra generalizes the chromatic Hopf algebra of graphs and the
matroid-minor Hopf algebra, and its quasisymmetric function invariant derives as usual from Theorem 6.3.
Their work [3] also provides a generalization of the chromatic Hopf algebra antipode formula of Humpert
and Martin [37] discussed in Remark 6.21 above.
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7. The Malvenuto-Reutenauer Hopf algebra of permutations

Like so many Hopf algebras we have seen, the Malvenuto-Reutenauer Hopf algebra FQSym can be thought
of fruitfully in more than one way. One is that it gives a natural noncommutative lift of the quasisymmetric
P -partition enumerators and the fundamental basis {Lα} of QSym, rendering their product and coproduct
formulas even more natural.

7.1. Definition and Hopf structure.

Definition 7.1. Define FQSym =
⊕

n≥0 FQSymn to be a graded k-module in which FQSymn has k-basis

{Fw}w∈Sn
indexed by the permutations w = (w1, . . . , wn) in Sn.

We first attempt to lift the product and coproduct formulas (5.7), (5.6) in the {Lα} basis of QSym. We
attempt to define a product for u ∈ Sk, v ∈ Sℓ

(7.1) FuFv :=
∑

w∈u� v[k]

Fw

where for v = (v1, . . . , vℓ) one sets v[k] := (k + v1, . . . , k + vℓ).
The coproduct will be defined using the notation of standardization std(i) of a word i = (i1, . . . , in) in

some linearly ordered alphabet, which is the permutation in Sn obtained by replacing all the occurrences of
the smallest letter in i by the numbers 1, 2, . . . ,m1 from left to right, then replacing all occurrences of the
next smallest letter by the numbers m1 + 1,m1 + 2, . . . ,m1 +m2, from left to right, etc.

Example 7.2. Considering words in the Roman alphabet a < b < c < · · ·

std(b a c c b a a b a c b)
= (5 1 9 10 6 2 3 7 4 11 8).

Using this, define for w = (w1, . . . , wn) in Sn

(7.2) ∆Fw :=
n∑

k=0

Fstd(w1,w2,...,wk) ⊗ Fstd(wk+1,wk+2,...,wn).

It is possible to check directly that the maps defined in (7.1) and (7.2) endow FQSym with the structure
of a graded connected finite type Hopf algebra; see Hazewinkel, Gubareni, Kirichenko [29, Thm. 7.1.8].
However in justifying this here, we will follow the approach of Duchamp, Hivert and Thibon [22], which
exhibits FQSym as a subalgebra of a larger ring of (noncommutative) power series of bounded degree in a
totally ordered alphabet.

Definition 7.3. Given a totally ordered set I, create a totally ordered variable set {Xi}i∈I , and the ring
R〈{Xi}i∈I〉 of noncommutative power series of bounded degree in this alphabet. Many times, we will use a
variable set X := (X1 < X2 < · · · ), and call the ring R〈X〉.

We first identify the algebra structure for FQSym as the subalgebra of finite type within R〈{Xi}i∈I〉
spanned by the elements

Fw = Fw({Xi}i∈I) :=
∑

i=(i1,...,in):

std(i)=w−1

Xi

where Xi := Xi1 · · ·Xin , as w ranges over
⋃
n≥0 Sn .
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Example 7.4. For the alphabet X = (X1 < X2 < · · · ), in R〈X〉 one has

F1 =
∑

1≤i
Xi = X1 +X2 + · · ·

F12 =
∑

1≤i≤j
XiXj = X2

1 +X2
2 + · · ·+X1X2 +X1X3 +X2X3 +X1X4 + · · ·

F21 =
∑

1≤i<j
XjXi = X2X1 +X3X1 +X3X2 +X4X1 + · · ·

F312 =
∑

i:std(i)=231

Xi =
∑

1≤i<j≤k
XjXkXi

= X2
2X1 +X2

3X1 +X2
3X2 + · · ·+X2X3X1 +X2X4X1 + · · ·

Proposition 7.5. For any totally ordered infinite set I, the elements {Fw} as w ranges over
⋃
n≥0 Sn form

the k-basis for a subalgebra FQSym({Xi}i∈I) of R〈X〉, which is graded connected and of finite type, having
multiplication defined k-linearly by (7.1).

Consequently all such algebras are isomorphic to a single algebra FQSym, having basis {Fw} and multi-
plication given by the rule (7.1), with the isomorphism mapping Fw 7−→ Fw({Xi}i∈I).

For example,

F1F21 = (X1 +X2 +X3 + · · · )(X2X1 +X3X1 +X3X2 +X4X1 + · · · )
= X1 ·X3X2 +X1 ·X4X2 + · · ·+X1 ·X2X1 +X2 ·X3X2 +X2 ·X4X2 + · · ·

+X2 ·X3X1 +X2 ·X4X1 + · · ·+X2 ·X2X1 +X3 ·X3X1 +X3 ·X3X2 + · · ·
+X3 ·X2X1 +X4 ·X2X1 + · · ·

=
∑

i:std(i)=132

Xi +
∑

i:std(i)=231

Xi +
∑

i:std(i)=321

Xi = F132 + F312 + F321 =
∑

w∈1� 32

Fw

Proof. The elements {Fw({Xi}i∈I)} are linearly independent as they are supported on disjoint monomials,
and so form a k-basis for their span. The fact that they multiply via rule (7.1) is the equivalence of conditions
(i) and (iii) in the following Lemma 7.6, from which all the remaining assertions follow. �

Lemma 7.6. For a triple of permutations

u = (u1, . . . , uk) in Sk,

v = (v1, . . . , vn−k) in Sn−k,

w = (w1, . . . , wn) in Sn,

the following conditions are equivalent:

(i) w−1 lies in the set u−1 � v−1[k].
(ii) u = std(w1, . . . , wk) and v = std(wk+1, . . . , wn),
(iii) for some word i = (i1, . . . , in) with std(i) = w one has u = std(i1, . . . , ik) and v = std(ik+1, . . . , in).

Proof of Lemma. The implication (ii) ⇒ (iii) is clear since std(w) = w. The reverse implication (iii) ⇒ (ii)
is best illustrated by example, e.g. considering Example 7.2 as concatenated, with n = 11, k = 6, n− k = 5:

w = std (b a c c b a | a b a c b)
= (5 1 9 10 6 2 | 3 7 4 11 8)

u = std (5 1 9 10 6 2 ) v = std( 3 7 4 11 8)
= (3 1 5 6 4 2 ) = ( 1 3 2 5 4)

= std (b a c c b a ) = std( a b a c b)

The equivalence of (i) and (ii) is a fairly standard consequence of unique parabolic factorization W =
W JWJ where W = Sn and WJ = Sk × Sn−k, so that W J are the minimum-length coset representatives
for cosets xWJ (that is, the permutations x ∈ Sn satisfying x1 < · · · < xk and xk+1 < · · · < xn). One can
uniquely express any w inW as w = xy with x inW J and y inWJ , which here means that y = u·v[k] = v[k]·u
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for some u in Sk and v in Sn−k. Therefore w = xuv[k], if and only if w−1 = u−1v−1[k]x−1, which means that
w−1 is the shuffle of the sequences u−1 in positions {x1, . . . , xk} and v−1[k] in positions {xk+1, . . . , xn}. �

Example 7.7. To illustrate the equivalence of (i) and (ii) and the parabolic factorization in the preceding
proof, let n = 9 and k = 5 with

w =

(
1 2 3 4 5 | 6 7 8 9
4 9 6 1 5 | 8 2 3 7

)

=

(
1 2 3 4 5 | 6 7 8 9
1 4 5 6 9 | 2 3 7 8

)(
1 2 3 4 5
2 5 4 1 3

)(
6 7 8 9
9 6 7 8

)

= x · u · v[k]

w−1 =

(
1 2 3 4 5 6 7 8 9
4 9 6 1 5 8 2 3 7

)

=

(
1 2 3 4 5
4 1 5 3 2

)(
6 7 8 9
7 8 9 6

)(
1 2 3 4 5 6 7 8 9
1 6 7 2 3 4 8 9 5

)

= u−1 · v−1[k] · x−1

One can now use this to define a coalgebra structure on R〈X〉 as follows. Given the ordered variable set

(X,Y) := (X1 < X2 < · · · < Y1 < Y2 < · · · )
form the ring R〈X,Y〉 and its quotient R〈X,Y〉/[X,Y] by the two-sided ideal generated by all commutators
[Xi, Yj ] = XiYj − YjXi, in which one has forced the X variables to commute with Y variables. One can
check that

R〈X,Y〉/[X,Y] ∼= R〈X〉 ⊗R〈Y〉
giving a ring homomorphism FQSym

∆−→ R〈X〉 ⊗R〈Y〉 which is the composite of these ring morphisms:

(7.3)
FQSym ∼= FQSym(X,Y) →֒ R〈X,Y〉 −→ R〈X,Y〉/[X,Y] ∼= R〈X〉 ⊗R〈Y〉
f(X) 7−→ f(X,Y).

Example 7.8. Recall from Example 7.4 that one has

F312 =
∑

i:std(i)=231

Xi =
∑

1≤i<j≤k
XjXkXi

and therefore its coproduct is

∆F312 = F312(X1, X2, . . . , Y1, Y2, . . .)

=
∑

i<j≤k
XjXkXi +

∑

i<j,
k

XjYkXi +
∑

i,
j≤k

YjYkXi +
∑

i<j≤k
YjYkYi

=
∑

i<j≤k
XjXkXi · 1 +

∑

i<j,
k

XjXi · Yk +
∑

i,
j≤k

Xi · YjYk +
∑

i<j≤k
1 · YjYkYi

= F312(X) · 1 + F21(X) · F1(Y) + F1(X) · F12(Y) + 1 · F312(Y)

= F312 ⊗ 1 + F21 ⊗ F1 + F1 ⊗ F12 + 1⊗ F312

Proposition 7.9. The image of the composite map in (7.3) lies in FQSym(X)⊗FQSym(Y), giving rise to
a coproduct

FQSym(X,Y)
∆−→ FQSym(X)⊗ FQSym(Y)

‖ ‖
FQSym FQSym⊗FQSym

whose action on the {Fw} basis is given by the rule (7.2). This endows FQSym with the structure of a graded
connected finite type Hopf algebra.
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Proof. One has

∆Fw = Fw(X,Y) =
∑

i:std(i)=w−1

(X,Y)i =
n∑

k=0

∑

(i,j):

std(i)=(std(w1,...,wk))
−1

std(j)=(std(wk+1,...,wn))
−1

XiYj

=
n∑

k=0

Fstd(w1,...,wk)(X)Fstd(wk+1,...,wn)(Y)

relying again on Lemma 7.6. �

Corollary 7.10. The Hopf algebra FQSym is self-dual: the map sending Fw 7−→ Fw−1 gives an isomorphism
FQSym −→ FQSymo.

Proof. One has

Fu−1Fv−1 =
∑

w−1∈u−1� v−1[k]

Fw−1 =
∑

w:
std(w1,...,wk)=u

std(wk+1,...,wn)=v

Fw−1

via the equivalence of (i) and (ii) in Lemma 7.6. On the other hand, in FQSymo, the dual k-basis {Gw} to
the k-basis {Fw} for FQSym should have product formula

GuGv =
∑

w:
std(w1,...,wk)=u

std(wk+1,...,wn)=v

Gw

coming from the coproduct formula (7.2) for FQSym in the {Fw}-basis. �

We can now be a bit more precise about the relations between the various algebras

Λ,QSym,NSym,FQSym, R〈X〉, R(x).
Not only does FQSym allow one to lift the Hopf structure of QSym, it dually allows one to extend the Hopf
structure of NSym. To set up this duality, note that Corollary 7.10 motivates the choice of an inner product
on FQSym in which

(Fu, Fv) := δu−1,v.

We wish to identify the images of the ribbon basis {Rα} of NSym when included in FQSym.

Definition 7.11. Define the free quasi-ribbon function

Rα :=
∑

w:Des(w)=D(α)

Fw−1 =
∑

(w,i):
Des(w)=D(α)

std(i)=w

Xi =
∑

i:Des(i)=D(α)

Xi

where the w in the sums are supposed to belong to S|α|, and where the descent set of a sequence i =
(i1, . . . , in) is defined by

Des(i) := {j ∈ {1, 2, . . . , n− 1} : ij > ij+1} = Des(std(i)).

Alternatively, Rα =
∑

T XT in which the sum is over column-strict tableaux of the ribbon skew shape α, and
XT = Xi in which i is the sequence of entries of T read in order from the southwest toward the northeast.

Example 7.12. Taking α = (1, 3, 2), with ribbon shape and column-strict fillings T as shown

� �

� � �

�

T =

i5 ≤ i6
∧

i2 ≤ i3 ≤ i4
∧
i1

one has that

R(1,3,2) =
∑

i=(i1,i2,i3,i4,i5,i6):
Des(i)=D(α)={1,4}

Xi =
∑

i1>i2≤i3≤i4>i5≤i6
Xi1Xi2Xi3Xi4Xi5Xi6 =

∑

T

XT
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Corollary 7.13. The following surjection and injection are Hopf morphisms

FQSym
π
։ QSym

Fw 7−→ Lγ(w)

NSym
ι→֒ FQSym

Rα 7−→ Rα

and are also adjoint maps with respect to the above choice of inner product on FQSym and the usual dual
pairing between NSym and QSym. Furthermore, the second map ι lets one factor the surjection NSym։ Λ
as follows

NSym → FQSym →֒ R〈X〉 → R(x)
Rα 7−→ Rα 7−→ sα(x)

through the abelianization R〈X〉։ R(x) sending the noncommutative variable Xi to the commutative xi.

Proof. The fact that FQSym
π
։ QSym is a Hopf map comes from checking that it respects the product

(compare (5.7) and (7.1)) and the coproducts (compare (5.6) and (7.2)) then applying Proposition 1.35(c).

It follows that NSym
ι→֒ FQSym is a Hopf map once we check the adjointness assertion, via the following

calculation:

(ι(Rα), Fw) = (Rα, Fw) =
∑

u:Des(u)=D(α)

(Fu−1 , Fw) =

{
1 if Des(w) = D(α)
0 otherwise

}

= (Rα, Lγ(w)) = (Rα, π(Fw)).

The last assertion is clear: the abelianization map sends the noncommutative tableau monomial XT to the
commutative tableau monomial xT . �

We summarize some of this picture as follows:

FQSym oo id // FQSym

π
����

NSym

π

## ##G
GG

GG
GG

GG

?�

ι

OO

QSym

Λ
-


;;wwwwwwwww

(This is not a commutative diagram!)

8. 0-Hecke algebras

8.1. Review of representation theory of finite-dimensional algebras. Review the notions of inde-
composables, simples, projectives, along with the theorems of Krull-Remak-Schmidt, of Jordan-Hölder, and
the two kinds of Grothendieck groups dual to each other.

8.2. 0-Hecke algebra representation theory. Describe the simples and projectives, following Denton,
Hivert, Schilling, Thiery on J -trivial monoids.

8.3. Nsym and Qsym as Grothendieck groups. Give Krob and Thibon’s interpretation of

• QSym and the Grothendieck group of composition series, and
• NSym and the Grothendieck group of projectives.

Remark 8.1. Mention P. McNamara’s interpretation, in the case of supersolvable lattices, of the Ehrenborg
quasisymmetric function as the composition series enumerator for an Hn(0)-action on the maximal chains
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9. Aguiar-Bergeron-Sottile character theory Part II: Odd and even characters,

subalgebras

10. Face enumeration, Eulerian posets, and cd-indices

Borrowing from Billera’s ICM notes.

10.1. f-vectors, h-vectors.

10.2. flag f-vectors, flag h-vectors.

10.3. ab-indices and cd-indices.

11. Further topics

Some of these we may touch on in class, others are appropriate for student talks.

• Loday-Ronco Hopf algebra of planar binary trees
• Poirier-Reutenauer Hopf algebra of tableaux
• Reading Hopf algebra of Baxter permutations
• Hopf monoids, e.g. of Hopf algebra of generalized permutohedra, of matroids, of graphs, Stanley
chromatic symmetric functions and Tutte polynomials

• Lam-Pylyavskyy Hopf algebra of set-valued tableaux
• Connes-Kreimer Hopf algebra and renormalization
• Noncommutative symmetric functions and ΩΣCP∞

• Maschke’s theorem and “integrals” for Hopf algebras
• Nichols-Zoeller structure theorem and group-like elements
• Cartier-Milnor-Moore structure theorem and primitive elements
• Quasi-triangular Hopf algebras and quantum groups
• The Steenrod algebra, its dual, and tree Hopf algebras
• Ringel-Hall algebras of quivers
• Ellis-Khovanov odd symmetric function Hopf algebras (see also Lauda-Russell)

Student talks given in class were:

(1) Al Garver, on Maschke’s theorem for finite-dimensional Hopf algebras
(2) Jonathan Hahn, on the paper by Humpert and Martin.
(3) Emily Gunawan, on the paper by Lam, Lauve and Sottile.
(4) Jonas Karlsson, on the paper by Connes and Kreimer
(5) Thomas McConville, on Butcher’s group and generalized Runge-Kutta methods.
(6) Cihan Bahran, on universal enveloping algebras and the Poincaré-Birkhoff-Witt theorem.
(7) Theodosios Douvropolos, on the Cartier-Milnor-Moore theorem.
(8) Alex Csar, on the Loday-Ronco Hopf algebra of binary trees
(9) Kevin Dilks, on Reading’s Hopf algebra of (twisted) Baxter permutations
(10) Becky Patrias, on the paper by Lam and Pylyavskyy
(11) Meng Wu, on multiple zeta values and Hoffman’s homomorphism from QSym

12. Some open problems and conjectures

• Is there a proof of the Assaf-McNamara skew Pieri rule that gives a resolution of Specht or Schur/Weyl
modules whose character corresponds to sλ/µhn, whose terms model their alternating sum?

• Explicit antipodes in the Lam-Pylyavskyy Hopf algebras?
• P. McNamara’s question: are P -partition enumerators irreducible for connected posets P?
• Stanley’s question: are the only P -partition enumerators which are symmetric (not just quasisym-
metric) those for which P is a skew-shape with a column-strict labelling?

• Does Stanley’s chromatic symmetric function distinguish trees?
• Hoffman’s stuffle conjecture
• Billera-Brenti’s nonnegativity conjecture for the total cd-index of Bruhat intervals
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