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Abstract

Generalizing the notion of a vexillary permutation, we introduce a filtration
of S∞ by the number of terms in the Stanley symmetric function, with the kth
filtration level called the k-vexillary permutations. We show that for each k, the
k-vexillary permutations are characterized by avoiding a finite set of patterns. A
key step is the construction of a Specht series, in the sense of James and Peel, for
the Specht module associated to the diagram of a permutation. As a corollary, we
prove a conjecture of Liu on diagram varieties for certain classes of permutation
diagrams. We apply similar techniques to characterize multiplicity-free Stanley
symmetric functions, as well as permutations whose diagram is equivalent to a
forest in the sense of Liu.

Keywords: Edelman-Greene correspondence, Stanley symmetric functions,
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1. Introduction

In [32], Stanley defined a symmetric function Fw depending on a permutation
w with the property that the coefficient of x1 · · ·x` in Fw is the number of
reduced words of w. Therefore, if Fw =

∑
λ awλsλ is written in terms of Schur

functions, then

|Red(w)| =
∑
λ

awλf
λ, (1)

where fλ is the number of standard Young tableaux of shape λ and Red(w) is
the set of reduced words of w.

Edelman and Greene [6] gave an algorithm which realizes (1) bijectively and
shows that the coefficients awλ are nonnegative. An alternative approach can be
given in terms of the nilplactic monoid [17].
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Theorem. Given a permutation w, there is a set EG(w) of semistandard Young
tableaux and a bijection

Red(w)↔ {(P,Q) : P ∈ EG(w), Q a standard tableau of shape shape(P )}.

The tableaux EG(w) are those semistandard tableaux whose column words—
obtained by reading up columns starting with the leftmost—are reduced words for
w. The (transposed) shapes of these tableaux give the Schur function expansion

Fw =
∑

P∈EG(w)

sshape(P )t ,

where λt is the conjugate of λ. Define the permutation statistic EG(w) =∑
awλ = |EG(w)|, which we call the Edelman-Greene number.
Stanley also characterized those w for which Fw is a single Schur function, or

equivalently for which EG(w) = 1: these are the vexillary permutations, those
avoiding the pattern 2143. Our main results can be viewed as generalizations of
this characterization. The first main theorem shows that EG(w) is well-behaved
with respect to pattern containment.

Theorem 4.4. Let v and w be permutations with w containing v as a pattern.
There is an injection ι : EG(v) ↪→ EG(w) such that if P ∈ EG(v), then shape(P ) ⊆
shape(ι(P )). Moreover, if P and P ′ have the same shape, then so do ι(P ) and
ι(P ′).

Let S∞ =
⋃
n≥0 Sn. An immediate corollary of Theorem 4.4 is that the sets

{w ∈ S∞ : EG(w) ≤ k} respect pattern containment; that is, EG(v) ≤ EG(w)
for all patterns v in w. Our second main result is a sort of converse.

Definition 1.1. Given a positive integer k, a permutation w ∈ Sn is k-vexillary
if EG(w) ≤ k.

For example, the 1-vexillary permutations are the vexillary permutations.
More information about these permutations and their enumeration can be found
in the Online Encyclopedia of Integer Sequences (OEIS) entry A005802. The
number of k-vexillary permutations in Sn for k = 2, 3, 4 appear in the OEIS as
A224318, A223034, A223905.

Like the vexillary permutations, the k-vexillary permutations can be charac-
terized by permutation avoidance. This is our second main theorem.

Theorem 1.2. For each integer k ≥ 1, there is a finite set Vk of permutations
such that w is k-vexillary if and only if w avoids all patterns in Vk.

For the 2-vexillary and 3-vexillary permutations, we have explicitly identified
the list of patterns characterizing these sets. We use these properties to prove a
conjecture of Ricky Liu on diagram varieties related to 3-vexillary permutation
diagrams. We note that permutation diagrams correspond to forests in the sense
of Liu if and only if the permutation avoids 4 patterns. Furthermore, we can
give a nice description of Fulton’s essential set for 3-vexillary permutations.
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Schur positive expansions of symmetric functions which are multiplicity-free
have been important in many cases related to representation theory and algebraic
geometry. For example, the Pieri rule for multiplying a Schur function by a
Schur function with just one row or column is multiplicity-free. More generally,
Stembridge addressed the question of when the product of two Schur functions
has a multiplicity-free expansion [33]. Thomas and Yong refined this work further
in [35].

As a corollary of Theorem 4.4, we show that the multiplicity-free Stanley
symmetric functions are indexed by a set of permutations that is closed under
pattern containment. We conjecture that these multiplicity-free permutations
can be characterized by avoiding a finite set of permutations in S6 ∪ · · · ∪ S11.
As with k-vexillary permutations, one can define a filtration on permutations by
bounding the multiplicities in the Stanley symmetric functions. It is shown that
each filtration level again respects pattern containment. These permutations are
also related to a new type of pattern on the code of a permutation. We also note
that 3-vexillary permutations are multiplicity-free.

In Section 2, we recall the connection between Stanley symmetric functions
and the representation theory of the symmetric group, along with the Lascoux-
Schützenberger recurrence for computing Stanley symmetric functions. We also
recall the definitions of pattern avoidance and containment. In Section 3, we
introduce the notion of a James-Peel tree for a general diagram following [12],
and prove a new decomposition theorem for general Specht modules based on
Pieri’s rule. Section 4 specializes these ideas to permutation diagrams, with
the Lascoux-Schützenberger tree as a key tool, and we prove Theorem 4.4. In
Section 5, we analyze in more detail the relationship between EG(v) and EG(w)
for v a pattern in w, and prove Theorem 1.2. Section 6 gives an application
of Theorem 4.4 to computing the cohomology class of certain subvarieties of
Grassmannians related to a conjecture of Ricky Liu. In Section 7, the multiplicity-
free and multiplicity-bounded permutations are discussed. Section 8 is devoted
to open problems.

2. Background

2.1. Permutation patterns

We first recall the definitions of pattern containment and avoidance for
permutations.

Definition 2.1. Let x = x(1) · · ·x(n) be a sequence of distinct real numbers.
The flatten map fl is defined by letting fl(x) be the unique v ∈ Sn such that
x(i) < x(j) if and only if v(i) < v(j).

Definition 2.2. A permutation w contains a permutation v if is a subword of
w which flattens to v (where a subword need not consist of letters consecutive
in w). If w does not contain v, then w avoids v. Frequently we call the smaller
permutation v a pattern.

3



Example 2.3. The permutation 2513764 contains the patterns 2143 (e.g. as
the subsequence 2174) and 23154. It avoids 1234.

2.2. Specht modules

Our proof of Theorem 4.4 utilizes the representation theory of Sn, specifically
the interpretation of Fw as the Frobenius characteristic of a certain generalized
Specht module, which we discuss next. We assume the reader is familiar with
the classical Sn representation theory described beautifully in [31].

Definition 2.4. A diagram is a finite subset of N× N.

We refer to the elements of a diagram as cells. The diagrams of greatest
interest for us here are permutation diagrams (sometimes called Rothe diagrams,
from [30]). Define the diagram of a permutation w ∈ Sn by

D(w) = {(i, w(j)) : 1 ≤ i < j ≤ n,w(i) > w(j)}.

We draw diagrams using matrix coordinates, so that (i, j) is in the ith row
from the top and the jth column from the left. The cells of a diagram will be
represented by ◦. In the case of a permutation diagram D(w), as a visual aid we
place a × at each point (i, w(i)) even though these are not in D(w). The cells of
D(w) are then the points in [n]× [n] not lying (weakly) below or right of any ×.

D(243165) =

◦ × · · · ·
◦ · ◦ × · ·
◦ · × · · ·
× · · · · ·
· · · · ◦ ×
· · · · × ·

The Ferrers diagrams of partitions are an even more basic class of diagrams.
The diagram associated to a partition λ = (λ1 ≥ · · · ≥ λ` ≥ 1) is

{(i, j) : 1 ≤ i ≤ `, 1 ≤ j ≤ λi},

and we will also denote it by λ.
A filling of a diagram D is a bijection T : D → {1, . . . , n}, where n = |D|.

There is a natural left action of Sn on fillings of D by permuting entries. The
row group R(T ) of a filling T is the subgroup of Sn consisting of permutations
σ which act on T by permuting entries within rows; the column group C(T ) is
defined analogously. The Young symmetrizer of a filling T is

yT =
∑

p∈R(T )

∑
q∈C(T )

sgn(q)qp, (2)

an element of C[Sn].

Definition 2.5. Given a diagram D and a choice of filling T , the Specht module
SD is the Sn-module C[Sn]yT , where n = |D|. The Schur function sD of D is
the Frobenius characteristic of SD.
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Replacing T with a different filling amounts to conjugating R(T ), C(T ), and
yT , meaning that the isomorphism type of SD is independent of the choice of T .

Remark 2.6. This definition generalizes the familiar definitions when D is the
Ferrers diagram of a partition. For general D, there is no known expression
sD =

∑
T x

T with T running over some nice set of fillings of D. When D is a
permutation diagram, [8] shows that the set of balanced labellings of D works,
but we will not need this fact.

Reordering the rows and columns of D leads to an isomorphic Specht module.

Definition 2.7. If a diagram D is obtained from a diagram D′ by permuting
rows and columns, then D and D′ are equivalent, written D ' D′. This includes
insertion of deletion of empty rows and columns.

For example, a permutation diagram D(w) is equivalent to a Ferrers diagram
exactly when w is vexillary (avoids the pattern 2143) [22].

Over C, the Specht modules of Ferrers diagrams form complete sets of
irreducible Sn-representations. Conversely, Theorem 3.1 below shows that if SD

is irreducible, then D is equivalent to a Ferrers diagram. For more on these
classical irreducible Specht modules, see [31] or [11].

In general, it is an open problem to find a reasonable combinatorial algorithm
for decomposing SD into irreducibles. Reiner and Shimozono do so in [28] for
percent-avoiding diagrams D: those with the property that if (i1, j1), (i2, j2) ∈ D
with i1 > i2, j1 < j2, then at least one of (i1, j2) and (i2, j1) is in D. This
includes the class of skew shapes and permutation diagrams. In a different
direction, Liu [20] decomposes SD when D is a diagram corresponding in a
certain sense to a forest (which we discuss in Section 6).

2.3. Stanley symmetric functions

Every permutation w can be written as a product of adjacent transpositions
si = (i, i+ 1). Let `(w) be the minimal length of any such product. Let Red(w)
be the collection of reduced words for w. Thus if a = (a1, a2, . . . , a`(w)) ∈ Red(w)
then sa1sa2 · · · sa`(w)

= w and this is a minimal length expression for w.
Given a reduced word a ∈ Red(w), let I(a) be the set of integer sequences

1 ≤ i1 ≤ · · · ≤ i`(w) such that if aj < aj+1, then ij < ij+1.

Definition 2.8. The Stanley symmetric function of w is

Fw =
∑

a∈Red(w)

∑
i∈I(a)

xi1 · · ·xi`(w)
.

It is shown in [32] that Fw is indeed symmetric (but note that our Fw is
Stanley’s Gw−1). For a permutation w, let 1m × w = 12 · · ·m(w(1) +m)(w(2) +
m) · · · . The results of [2] show that Fw = limm→∞S1m×w, where Sv is a
Schubert polynomial as defined by Lascoux and Schützenberger in [18]. The
same result can also be seen by decomposing a Schubert polynomial into key
polynomials using the nilplactic monoid [17]. This implies Fw = F1m×w for all
m ≥ 1. Theorem 31 in [26] and Theorem 20 in [28] then imply the following
result, which is also implicit in [14].
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Theorem 2.9. Fw = sD(w) for all permutations w.

Stanley symmetric functions can be decomposed into Schur functions using a
recursion introduced in [18, 16]. Given a permutation w, let r be maximal with
w(r) > w(r + 1). Then let s > r be maximal with w(s) < w(r). Let tij denote
the transposition (i j), and define

T (w) = {wtrstrj : `(wtrstrj) = `(w) for some j};

or, if the set on the right-hand side is empty, then set T (w) = T (1× w) (which
in this case will equal {wtr+1,s+1tr+1,1}). The members of T (w) are called
transitions of w. The Lascoux-Schützenberger tree (L-S tree for short) is the
finite rooted tree of permutations with root w where the children of a vertex v
are:

• none, if v is vexillary (avoids 2143), and

• T (v) otherwise.

The finiteness of this tree is not immediately obvious [16], and we include a
short proof in Remark 5.16. More on the Lascoux-Schützenberger tree and its
relationship to Schubert polynomials and Stanley symmetric functions can be
found in [25].

Example 2.10. The Lascoux-Schützenberger tree of 321465 is

321465

321546

421356 341256 324156

The identity Fw = limm→∞S1m×w and Monk’s rule for Schubert polynomials
lead to the recurrence

Fw =
∑

v∈T (w)

Fv. (3)

This, the finiteness of the Lascoux-Schützenberger tree terminating in vexillary
leaves, and the fact that Fv is a Schur function exactly when v is vexillary, imply
that

Fw = sD(w) =
∑
v

sshape(v),

where v runs over the leaves of the L-S tree, and shape(v) denotes the partition
whose shape is equivalent to D(v). Here we use the fact that D(v) is equivalent
to a partition diagram if and only if v is vexillary.

Note that upon taking coefficients of x1x2 · · ·x` in the transition recurrence
(3), one obtains |Red(w)| =

∑
v∈T (w) |Red(v)|. Little [19] gives a bijective proof

of this equality.
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Remark 2.11. The reduced words of 1 × w are exactly those of w with all
letters shifted up by 1, and it is known that the same is true of the tableaux in
EG(1×w) compared to the tableaux in EG(w) since the algorithm only depends
on the relative sizes of the letters in the reduced words [6]. In particular, the
multiset of shapes are the same and Fw = F1×w. Since the L-S tree is finite,
there is some m such that in constructing the tree for 1m × w, we never need to
make the replacement of v by 1× v. Thus we will ignore this possible step in
what follows.

3. James-Peel moves and subdiagrams

Let D be a diagram. Given two positive integers a, b, let Ra→bD be the
diagram which contains a cell (i, j) if and only if one of the following cases holds:

• i 6= a, b and (i, j) ∈ D.

• i = b and either (a, j) ∈ D or (b, j) ∈ D.

• i = a and both (a, j), (b, j) ∈ D.

That is, Ra→bD is obtained by moving cells in row a to row b if the appropriate
position is empty. Similarly, we define Cc→dD by moving cells of D in column c
to column d if possible. For example,

D =
· ◦ · ◦
· · ◦ ◦ R2→1D =

· ◦ ◦ ◦
· · · ◦

We also define Ra→bT and Cc→dT for a filling T , in the same way. From
here through the proof of Theorem 3.5, we always view SD, SRa→bD, SCc→dD

as the specific left ideals in C[S|D|] generated by yT , yRa→bT , yCc→dT for a fixed
filling T of D following the notation in Section 2.

We call the operators Ra→b and Cc→d James-Peel moves, thanks to this
theorem due to James and Peel.

Theorem 3.1. [12, Theorem 2.4] Consider cells (i1, j1), (i2, j2) of the diagram
D such that (i1, j2), (i2, j1) /∈ D. Let DR = Ri1→i2D and DC = Cj1→j2D. Then
there is a surjective homomorphism φ : SD � SDR with SDC ⊆ kerφ.

We prove a generalization of this statement, and for the proof we will need
more explicit knowledge of the homomorphism φ. Given (i1, j1), (i2, j2) as in
Theorem 3.1, write TR = Ri1→i2T and TC = Cj1→j2T . Let Y and Z be sets of
coset representatives in C(TC) and R(TR), respectively, such that

C(TC) = Y (C(TC) ∩C(T ))

R(TR) = (R(TR) ∩R(T ))Z.

Define φ to be right multiplication by
∑
π∈Z π. Then Theorem 3.1 follows from

these identities using the Young symmetrizers (2):
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(a) yT
∑
π∈Z

π = yTR
(implies φ(SD) = SDR)

(b)
∑
π∈Y

sgn(π)π · yT = yTC
(implies SDC ⊆ SD)

(c) yTC

∑
π∈Z

π = 0 (implies SDC ⊆ kerφ).

Remark 3.2. Only (c) above depends on the existence of a pair of cells
(i1, j1), (i2, j2) as in Theorem 3.1. For arbitrary a, b, c, d we still get a sur-
jection SD � SRa→bD from (a), and a containment SCc→dD ⊆ SD from (b).
Over C, we also get an inclusion SRa→bD ↪→ SD.

Lemma 3.3. Suppose Ra→bCc→dD = Cc→dRa→bD. Let

φ : SD � SRa→bD

φ′ : SCc→dD � SRa→bCc→dD

be the surjections constructed above. Then

φ′ = φ|SCc→dD .

Proof. Fix a filling T of D and take sets of coset representatives Z,Z ′ with

R(Ra→bT ) = (R(Ra→bT ) ∩R(T ))Z

R(Ra→bCc→dT ) = (R(Ra→bCc→dT ) ∩R(Cc→dT ))Z ′

so that φ, φ′ are right multiplication by
∑
π∈Z π and

∑
π∈Z′ π respectively.

Applying a move Cc→d to a filling does not affect its row group, so

R(Ra→bT ) = R(Cc→dRa→bT ) = R(Ra→bCc→dT )

= (R(Ra→bCc→dT ) ∩R(Cc→dT ))Z ′

= (R(Cc→dRa→bT ) ∩R(Cc→dT ))Z ′

= (R(Ra→bT ) ∩R(T ))Z ′.

Thus we can take Z ′ = Z.

Definition 3.4. A subset D′ of a diagram D is a subdiagram if it is the
intersection of some rows and columns with D. That is, there are sets U, V ⊆ N
such that D′ = (U × V ) ∩D.

Given two diagrams D1 and D2 with D1 ⊆ [r]× [c], let

D1 ·D2 = D1 ∪ {(i+ r, j + c) : (i, j) ∈ D2}.
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Graphically, D1 ·D2 is the diagram

D1

D2

.

In this language, Theorem 3.1 applies when we have (1) · (1) as a subdiagram
in D. Our generalization of Theorem 3.1 applies to a subdiagram of the form
(p− 1, p− 2, . . . , 1) · (1). To simplify indexing, we will assume without loss of
generality that our subdiagram occurs in rows 1, . . . , p and columns 1, . . . , p.
Write δp for the staircase shape (p− 1, p− 2, . . . , 1).

Theorem 3.5. Suppose D contains δp · (1) as a subdiagram in rows 1, . . . , p and
columns 1, . . . , p. There is a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mp = SD

of SD by S|D|-submodules such that for each 1 ≤ j ≤ p, there is a surjection

Mj/Mj−1 � SRp→p−j+1Cp→jD.

Proof. Let Fj = Cp→jD and Gj = Rp→p−j+1Cp→jD. Set

Mj =

j∑
i=1

SFi ⊆ SD,

with the containment by Theorem 3.1.
Consider, for each j, the two surjections

φj : SD � SRp→p−j+1D

θj : SFj � SGj

given by Theorem 3.1. We have Rp→p−j+1Cp→jD = Cp→jRp→p−j+1D. Indeed,
this commutation property depends only on the subdiagram of D in rows
p− j + 1, p and columns j, p. By hypothesis this subdiagram is

· ·
· ◦

and either order of James-Peel moves results in the subdiagram

◦ ·
· · .

Therefore, Lemma 3.3 says that θj = φj |SFj .
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If 1 ≤ i < j, then (i, p − j + 1), (p, p) ∈ D and (i, p), (p, p − j + 1) /∈
D, so Theorem 3.1 implies that SFi ⊆ kerφj , hence Mj−1 ⊆ kerφj . Thus,
SFj ∩Mj−1 ⊆ SFj ∩ kerφj = ker θj , so θj descends to a surjection

SFj/(SFj ∩Mj−1) � SGj .

Since there is a canonical isomorphism

Mj/Mj−1 ' SFj/(SFj ∩Mj−1)

given by m+Mj−1 7→ m+ SFj ∩Mj−1 where m ∈ SFj , we are done.

Remark 3.6. Theorem 3.1 and hence Theorem 3.5 are actually valid over any
field, and lead to the existence of Specht series for certain Specht modules. A
Specht series for an Sn-module M is a filtration 0 = M0 ⊆M1 ⊆ · · · ⊆MN = M
where each quotient Mi+1/Mi is isomorphic to a (classical) Specht module Sλ.
Over C these are just composition series, but in general they are coarser, since
Specht modules are indecomposable but not necessarily irreducible in finite
characteristic.

We do not need this level of generality, so from now on we will work over C
and freely split exact sequences. In particular, the following holds.

Corollary 3.7. If D contains δp · (1) as a subdiagram in rows 1, . . . , p and
columns 1, . . . , p, then we have the inclusion

p⊕
j=1

SRp→p−j+1Cp→jD ↪→ SD (4)

as S|D|-modules over C.

Observe that Cj→jD = Rj→jD = D for all j and D, so for j = 1 and j = p
in (4), only one move changes the diagram.

Example 3.8. Take

D = D(4261735) =

◦ ◦ ◦ · ·
◦ · · · ·
◦ · ◦ · ◦
· · · · ·
· · ◦ · ◦

where we have omitted the last empty rows and columns. The subdiagram
in rows 1, 2, 5 and columns 1, 2, 5 is (2, 1) · (1). Apply Corollary 3.7 to this
subdiagram. The three diagrams appearing on the left side of (4) are then

R5→1D =

◦ ◦ ◦ · ◦
◦ · · · ·
◦ · ◦ · ◦
· · · · ·
· · ◦ · ·

R5→2C5→2D =
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

C5→1D =

◦ ◦ ◦ · ·
◦ · · · ·
◦ · ◦ · ◦
· · · · ·
◦ · ◦ · ·
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Corollary 3.7 now says S(3,3,3)⊕SR5→1D⊕SC5→1D ↪→ SD. Applying Theorem 3.1
to the cells (2, 1) and (5, 3) in R5→1D gives S(4,3,2)⊕S(4,3,1,1) ↪→ SR5→1D. Using
the cells (1, 2) and (3, 5) in C5→1D, Theorem 3.1 gives S(4,2,2,1) ⊕ S(3,3,2,1) ↪→
SC5→1D. In fact, all these inclusions are isomorphisms:

SD ' S(3,3,3) ⊕ S(4,3,2) ⊕ S(4,3,1,1) ⊕ S(4,2,2,1) ⊕ S(3,3,2,1).

One can check this using the Lascoux-Schützenberger tree, or by computing the
Edelman-Greene tableaux of 4261735:

1 2 3
2 4 5
3 5 6

1 2 3
2 4 5
3 6
5

1 2 3 5
2 4
3 6
5

1 2 3 5
2 4 6
3
5

1 2 3 5
2 4 6
3 5

.

Note that when Corollary 3.7 is applied to the diagram δp · (1) itself, the
resulting partitions are exactly those arising from applying Pieri’s rule to expand
sδps(1) in terms of Schur functions. Indeed, it follows readily from the group

algebra definitions that SD1·D2 ' Ind
S|D1|+|D2|
S|D1|×S|D2|

SD1 ⊗ SD2 , and hence that

sD1·D2 = sD1sD2 . We can therefore view Corollary 3.7 as applying Pieri’s rule
to a subdiagram of D. See the discussion surrounding Example 3.17 for an
expansion on this idea.

Definition 3.9. Given a diagram D contained in [m]× [n], define

Dmax = (Rm→1 · · ·R2→1)(Rm→2 · · ·R3→2) · · · (Rm→m−1)D

Dmin = (Cn→1 · · ·C2→1)(Cn→2 · · ·C3→2) · · · (Cn→n−1)D.

These diagrams are both equivalent to partitions—an identification we will
freely make—and satisfy SD

max

, SD
min

↪→ SD by Remark 3.2. To be precise,
Dmin is equivalent to the partition obtained by sorting the row lengths of D
(the number of cells in each row), and Dmax to the conjugate of the partition
obtained by sorting the column lengths. This second description implies the
following lemma.

Lemma 3.10. If I is any sequence of James-Peel row moves, then Dmax =
(ID)max. Likewise, if J is a sequence of column moves, then Dmin = (JD)min.

The partitions Dmin and Dmax play a special role in the structure of SD. In
the case D = D(w), the next lemma is Theorem 4.1 from [32].

Lemma 3.11. Let D be any diagram and λ a partition. If Sλ ↪→ SD, then
Dmin ≤ λ ≤ Dmax in dominance order. Also, SD

min

and SD
max

appear in SD

with multiplicity one.

Proof. We will prove the part of the statement referring to Dmin, with the proof
for Dmax being analogous. Induct on `(Dmin), the number of non-empty rows of
D. The lemma is obvious when D is a single row. Let H be a nonempty row
of D with minimal length, and set E = D \H. Then D is the image of E ·H
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under James-Peel moves—push H to its original row, then each cell individually
to its original column—so SD ↪→ SE·H .

Suppose Sµ ↪→ SD ↪→ SE·H . Since sE·H = sEsH , Pieri’s rule says µ is
obtained from some λ with Sλ ↪→ SE by adding |H| cells to it, no two in the
same column. By construction, Dmin is obtained by appending a row of length
|H| to Emin. The induction hypothesis gives Emin ≤ λ. To show Dmin ≤ µ,
let α, β be the partitions equivalent to Dmin and Emin. Observe that for all
1 ≤ m ≤ `(Emin),

m∑
i=1

αi =

m∑
i=1

βi ≤
m∑
i=1

λi ≤
m∑
i=1

µi, (5)

while if m = `(Emin) + 1 = `(Dmin), both sides of (5) are equal to |D|, since
`(µ) ≤ `(λ) + 1 ≤ `(Emin) + 1.

By induction, SE
min

appears with multiplicity one in SE . Since Pieri’s rule
is multiplicity-free, SD

min

appears with multiplicity one in SE·H , hence with
multiplicity at most one in SD. Furthermore, SD

min

does actually appear in SD,
because Dmin is the image of D under James-Peel moves, and so it appears with
multiplicity one.

James-Peel moves and Corollary 3.7 present one possible way to decompose a
Specht module into irreducibles. In general it is not known if an arbitrary Specht
module can be decomposed by finding some appropriate tree of James-Peel
moves, as the inclusion in Corollary 3.7 may not be an isomorphism. The way
we prove Theorem 4.4 is to find such a decomposition for the case of D(w).
The usefulness of James-Peel moves for us comes from the fact that they are
well-behaved with respect to subdiagram inclusion, and pattern inclusion for
permutations corresponds to subdiagram inclusion on the level of permutation
diagrams.

To be more precise about this, we make the following definition.

Definition 3.12. A James-Peel tree for a diagram D is a rooted tree T with
vertices labeled by diagrams and edges labeled by sequences of James-Peel moves,
satisfying the following conditions:

• The root of T is D.

• If B is a child of A with a sequence JP of James-Peel moves labeling the
edge A—B, then B = JP(A).

• If A has more than one child, these children arise as a result of applying
Corollary 3.7 to A. That is, A contains δp · (1) as a subdiagram in rows
i1 < · · · < ip and columns j1 < · · · < jp, and each edge leading down from
A is labeled Rip→ip−k+1

Cjp→jk for some distinct values 1 ≤ k ≤ p (not all
such k need appear).

See Examples 3.17 and 3.20 later in this section for examples of James-Peel
trees. Note that the vertex labels are completely determined by the root and
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the edge labels. When a vertex is labeled by a permutation diagram D(w),
sometimes we will refer to it simply as w.

Corollary 3.7 and Remark 3.2 immediately imply the following lemma.

Lemma 3.13. If D has a James-Peel tree T with leaves A1, . . . , Am, then⊕
i S

Ai ↪→ SD as S|D|-modules over C.

Definition 3.14. A James-Peel tree T for D is complete if its leaves A1, . . . , Am
are equivalent to Ferrers diagrams of partitions, and if SD '

⊕
i S

Ai .

In [12], an algorithm is given which constructs a complete James-Peel tree
when D is a skew shape. More generally, Reiner and Shimozono [27] construct
a complete James-Peel tree for any column-convex diagram: a diagram D for
which (a, x), (b, x) ∈ D with a < b implies (i, x) ∈ D for all a < i < b. In the next
section we construct a complete James-Peel tree for the diagram of a permutation,
so it’s worth noting that neither of these classes of diagrams contains the other.
For example, D(37154826) is not equivalent to any column-convex or row-convex
diagram, while the column-convex diagram

◦ ◦ · ·
◦ · ◦ ·
◦ · · ◦

is not equivalent to the diagram of any permutation. The James-Peel trees
constructed in [12] and [27] are binary trees based on moves from Theorem 3.1.
By Corollary 3.7, the James-Peel trees constructed here do not need to be binary;
a vertex can have an arbitrary number of children.

Remark 3.15. Theorem 3.5 shows that a complete James-Peel tree for D yields
a Specht series for SD over any field. In particular, Theorem 4.2 below shows
that SD(w) always has a Specht series.

Definition 3.16. Given a James-Peel tree T ′ for a subdiagram D′ of D, the
induced James-Peel tree T for D is defined as follows. Start with T an unlabeled
tree isomorphic to T ′, with φ : T ′ → T an isomorphism. Give each edge
φ(A1)—φ(A2) of T the same label as the edge A1—A2 of T ′. Label the root
φ(D′) of T with D, and label the rest of the vertices according to the James-Peel
moves labeling the edges in T .

Observe that the first two conditions of Definition 3.12 clearly hold for T as
constructed. The subdiagram of D′ needed in the third condition for T ′ and D′

works just as well for T and D, when viewed as a subdiagram of D. Thus, T is
a James-Peel tree for D.

The notion of an induced James-Peel tree provides a convenient way to
discuss a generalization of Theorem 3.5 from the case of a subdiagram δp · (1) to
that of any subdiagram λ · (k) with λ a partition. Recall the classical Pieri rule:

sλs(k) =
∑
µ

sµ,

13



where µ runs over all partitions obtained by adding k cells to λ, no two in the
same column. That is, let hstripsk(λ) be the set of length `(λ) + 1 compositions
α of k such that αi ≤ λi − λi−1 for i > 1. Then sλs(k) =

∑
α∈hstripsk(λ)

sλ+α,
where λ+ α is entrywise addition.

The moves in Theorem 3.5 realize Pieri’s rule on δp ·(1) in terms of James-Peel
moves. Suppose we have a James-Peel tree T for λ · (k) whose leaves are the
partitions λ+α for α ∈ hstripsk(λ). If D contains λ ·(k) as a subdiagram, we can
take the James-Peel tree for D induced by T . This amounts to realizing Pieri’s
rule on the subdiagram λ · (k) using James-Peel moves, generalizing Theorem 3.5.

In fact we only need the case λ = δp, k = 1, so rather than state and prove a
precise theorem, we will be content with giving an example of such a tree.

Example 3.17. Take λ = (3, 1, 1), k = 2. In each non-leaf vertex, we have
shaded the cells to which Theorem 3.5 is being applied.

• • ◦ · ·
• · · · ·
◦ · · · ·
· · · ◦ •

◦ ◦ • ·
◦ · · ·
◦ · · ·
◦ · · •

◦ ◦ ◦
◦ · ·
◦ · ·
◦ · ◦

C4→3

◦ ◦ ◦ ◦
◦ · · ·
◦ · · ·
◦ · · ·

R4→1

C5→1

◦ ◦ • ·
◦ ◦ · •
◦ · · ·

◦ ◦ ◦
◦ ◦ ◦
◦ · ·

C4→3

◦ ◦ ◦ ◦
◦ ◦ · ·
◦ · · ·

R2→1

R4→2C5→2

◦ ◦ ◦ ◦ ◦
◦ · · · ·
◦ · · · ·

R4→1

The main example of induced James-Peel trees for us will come from permu-
tation patterns. The connection is that if w contains a pattern v, then D(v) is
(up to reindexing) a subdiagram of D(w). Specifically, if the pattern v appears
in positions i1, . . . , ik of w, then D(v) is the subdiagram of D(w) induced by the
rows i1, . . . , ik and columns w(i1), . . . , w(ik).

Let M(D) denote the multiset of partitions of n = |D| such that SD '⊕
λ∈M(D) S

λ. Given partitions λ, µ, let λ + µ be the partition (λ1 + µ1, λ2 +

µ2, . . .), padding λ or µ with 0’s as necessary. Let λ ∪ µ be the partition whose
parts are the (multiset) union of the parts of λ and of µ.

Lemma 3.18. Suppose D1, D2 are subdiagrams of D, each with a complete
James-Peel tree, and such that D1 = (U × V ) ∩ D and D2 = (U c × V c) ∩ D.
Let F1 = (U c × V ) ∩D and F2 = (U × V c) ∩D. Then there is a well-defined
injection ι : M(D1)×M(D2)→M(D) given by

ι(λ, µ) = (λ ∪ Fmin
1 ) + (Fmax

2 ∪ µ).
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Proof. Without loss of generality we can assume U = {1, 2, . . . , i} and V =
{1, 2, . . . , j} by permuting rows and columns of D if necessary. Let T1, T2 be
complete James-Peel trees for D1, D2. Then we can further assume that the
leaves of T1, T2 are all partition diagrams by doing extra James-Peel moves to
sort the rows and columns.

Let T be the James-Peel tree for D induced from T1, with φ : T1 → T
an isomorphism as in Definition 3.16. Since D contains D1 = φ−1(D) as a
subdiagram, each vertex A of T contains φ−1(A) as a subdiagram. In particular,
each leaf B of T has the block form

B =
λ F ′2
F ′1 D2

, (6)

where λ is the shape of φ−1(B), F ′1 is the image of F1 under moves Cc→d, and
F ′2 the image of F2 under moves Ra→b.

Using the block form (6), we next add a single child to each leaf B of T .
By Lemma 3.10, (F ′1)min = (F1)min and (F ′2)max = (F2)max. Thus, there is a
sequence IB of upward row moves involving only rows in U , and a sequence JB
of leftward column moves involving only columns in V , such that JB(F ′1) = Fmin

1

and IB(F ′2) = Fmax
2 . Since the upper-left block is a partition diagram, it is

unaffected by the James-Peel moves IB and JB . Since no cell of D2 lies in a row
in U or a column in V , JB and IB do not change D2 either. Thus, we can define

B̃ = IBJB(B) =
λ Fmax

2

Fmin
1 D2

.

To each leaf B of T , attach the child B̃ via an edge labeled IBJB. Note, the
result is still a James-Peel tree for D. We will abuse notation and again call this
tree T .

We modify T one more time by augmenting each leaf with an induced tree for
D2. Specifically, to each leaf B̃ of T , attach the James-Peel tree for B̃ induced
by T2. As above, each leaf C of the new tree descending from B̃ now has block
form

C =
λ F ′′2
F ′′1 µ

, (7)

where λ, µ are a pair of shapes in M(D1)×M(D2), F ′′1 is the result of applying
row moves to Fmin

1 and F ′′2 is the result of applying column moves to Fmax
2 .

Notice that the upper-right and lower-left block of B̃ and C are equivalent, since
both are equivalent to partitions. The upper-left block of B̃ and C are exactly
the same since the induced tree for B̃ does not touch the first i rows and j
columns. Again, we abuse notation by calling this tree T .

Finally, we modify T once again so the leaves all have block form with 4
partition shapes. Assume C is a descendant of B̃ with block diagonal shapes
λ, µ as in (7) above. Let IC be the sequence of upward James-Peel row moves
needed to sort the rows of F ′′1 into the partition shape Fmin

1 , and let JC be the
sequence of leftward column moves needed to sort the columns of F ′′2 into the
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partition shape Fmax
2 . Note, such moves will not change the shapes λ and µ

when applied to C since they are partitions. Thus, one can define

C̃ := ICJC(C) =
λ Fmax

2

Fmin
1 µ

, (8)

with all four subdiagrams equal to honest left- and top-justified Ferrers diagrams.
For each leaf C of T , attach C̃ = ICJC(C) as a child.

Observe that the resulting tree T is a James-Peel tree for D, and the leaves
are in bijection with the multiset M(D1)×M(D2). One can also see that if a

leaf C̃ of T has diagonal shapes λ and µ, then

C̃max = (λ ∪ Fmin
1 ) + (Fmax

2 ∪ µ),

and the shape of C̃max only depends on λ, µ, F1, F2 and not on B or C. Thus, we
define ι(λ, µ) to be the partition of shape C̃max which is in M(D) by Lemma 3.11
and Lemma 3.13. This gives a well-defined injection of multisets ι : M(D1)×
M(D2)→M(D) as intended.

For the most part we will only need a simpler version of this lemma.

Corollary 3.19. Suppose D has a subdiagram D′ with a complete James-Peel
tree. There is an injection ι : M(D′) ↪→ M(D) such that λ ⊆ ι(λ). Moreover,
ι(λ) depends only on λ: if λ appears k times in M(D′), then ι(λ) appears at
least k times in M(D).

In particular, taking D = D(w) and D′ = D(v) for v a pattern in w,
Corollary 3.19 together with the equalities

sD(w) = Fw =
∑

P∈EG(w)

sshape(P )t

will immediately imply Theorem 4.4 once we show that D(w) always has a
complete James-Peel tree.

Example 3.20. Take the diagram D = D(316524). Rows 5,6 and column 6 are
empty, so we omit them in the following picture:

D =

◦ ◦ · · ·
· · · · ·
· ◦ · ◦ ◦
· ◦ · ◦ ·

.

Let D1 be the subdiagram on rows 1,2,3 and columns 1,2,3,4 which corresponds
to the pattern 31524 = fl(31624), so D1 ' D(31524).

A complete James-Peel tree T1 for D1 is

D1

A1

R3→1

A2

C4→1
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where A1 ' (3, 1), A2 ' (2, 2). The James-Peel tree T1 for D1 induces the
following James-Peel tree T for D

D

B31

R3→1

B22

C4→1

where B31 = R3→1D and B22 = C4→1D with

B31 =

◦ ◦ · ◦ ◦
· · · · ·
· ◦ · · ·
· ◦ · ◦ ·

B22 =

◦ ◦ · · ·
· · · · ·
◦ ◦ · · ◦
◦ ◦ · · ·

Following the proof of Lemma 3.18, we next apply leftward column moves
to the lower left subdiagrams F ′1 to get (F ′1)min, and upward row moves to the
upper right subdiagrams (F ′2) to get (F ′2)max:

B̃31 = C4→1B31 =

◦ ◦ · ◦ ◦
· · · · ·
· ◦ · · ·
◦ ◦ · · ·

B̃22 = R3→1B22 =

◦ ◦ · · ◦
· · · · ·
◦ ◦ · · ·
◦ ◦ · · ·

.

At this point we would apply James-Peel moves to the lower right subdiagram,
but it is empty so there are no moves to do. Finally, we apply leftward column
moves and rightward row moves to make all four subdiagrams into Ferrers
diagrams (up to trailing empty rows and columns):

C̃31,∅ = R3→2C4→3C2→1B̃31 =

◦ ◦ ◦ · ◦
◦ · · · ·
· · · · ·
◦ ◦ · · ·

C̃22,∅ = R3→2B̃22 =

◦ ◦ · · ◦
◦ ◦ · · ·
· · · · ·
◦ ◦ · · ·

.

Now, taking unions before additions as the order of operations:

(C̃31,∅)
max = (3, 1) ∪ (2) + (1) ∪ ∅ = (3, 2, 1) + (1) = (4, 2, 1),

(C̃22,∅)
max = (2, 2) ∪ (2) + (1) ∪ ∅ = (2, 2, 2) + (1) = (3, 2, 2).

For the injection ι : M(D1) ↪→ M(D) we therefore take ι(3, 1) = (4, 2, 1) and
ι(2, 2) = (3, 2, 2). Indeed, sD1

= F31524 = s32/1 = s31+s22, while sD = F316524 =
s322 + s331 + s421.
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4. Transitions as James-Peel moves

Recall the following notation from Section 2. Given a permutation w, take r
maximal with w(r) > w(r + 1), then s > r maximal with w(s) < w(r). The set
of transitions of w is

T (w) = {wtrstrj : `(wtrstrj) = `(w)}, (9)

or else T (1 × w) if the set on the right is empty. Note that wtrstrj ∈ T (w) if
and only if w(j) < w(s) and there is no j < j′ < r with w(j) < w(j′) < w(s).

Upon taking diagrams of permutations, each transition corresponds to a
sequence of James-Peel moves.

Lemma 4.1. Given a permutation w, let r, s be as above and take w′ = wtrstrj ∈
T (w). Then

D(w′) = Rr→jCw(s)→w(j)D(w) = Cw(s)→w(j)Rr→jD(w).

Proof. We will show that the change in passing from D(w) to D(w′) is described
by Figure 1. That is, we move the cells in each shaded region of D(w) in Figure 1

w(j) w(s) w(r)
j × · · · · ·

...
r · ◦ ×

s · × ·

−−→

w(j) w(s) w(r)
j ◦ × ·

...
r × · · · · ·

s · · ×

Figure 1: Effect of a maximal transition on permutation diagrams

into the corresponding (formerly cell-free) shaded region of D(w′), and also
move the cell (r, w(s)), denoted by ◦ above, to (j, w(j)). Here only the region
[j, r]× [w(j), w(s)] together with row s and column w(r) have been drawn. We

will show that the rest of the diagram remains unchanged. We use · · · and
...

to denote a sequence of empty cells of arbitrary length. As usual, we place
an × at coordinates (i, w(i)) in D(w) and (i, w′(i)) in D(w′). The condition
that wtrstrj is a maximal transition says that there is no × in the rectangle
(j, r)× (w(j), w(s)).

Consider row by row the effect on diagrams of passing from w to w′. It is
clear that rows k < j of D(w′) match those of D(w). Rows k > s also match:
indeed, they are all empty.

In row j, by passing from D(w) to D(w′), we could only gain cells. Specifically,
a cell is gained in column w(k) if and only if the following equivalent conditions
hold:

• w(j) < w(k) < w(s) and k > j, or w(k) = w(j)
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• w(j) < w(k) < w(s) and k > r, or w(k) = w(j)

• (r, w(k)) ∈ D(w) and w(j) < w(k), or w(k) = w(j).

On the other hand, in row r, we could only lose cells. A cell is lost in column
w(k) if and only if the following equivalent conditions hold:

• w(j) < w(k) < w(r) and k > r

• w(j) < w(k) < w(s) and k > r, or w(k) = w(s)

• (r, w(k)) ∈ D(w) and w(j) < w(k), or w(k) = w(s).

Thus, the effect of passing from w to w′ on rows j and r is to move all cells in
row r between columns w(j) and w(s) up to row j, and to move (r, w(s)) to
(j, w(j)).

Now say j < k < r. The only column in which a cell could be gained in row k
is column w(j), which happens if and only if the following equivalent conditions
hold:

• w(k) > w(j)

• w(k) > w(s)

• (k,w(s)) ∈ D(w).

Conversely, if there is a cell in row k and column w(s) of D(w), there is no such
cell in D(w′).

We now have that within the region [j, r] × [w(j), w(s)], one does obtain
D(w′) from D(w) by performing the indicated James-Peel moves. To show that
in fact D(w′) = Rr→jCw(s)→w(j)D(w), we must show that these James-Peel
moves do not move any cells outside of [j, r]× [w(j), w(s)]. That is:

(i) If (k,w(s)) ∈ D(w) for k < j or k > r, then (k,w(j)) ∈ D(w).

(ii) If (r, w(k)) ∈ D(w) for w(k) < w(j) or w(k) > w(s), then (j, w(k)) ∈ D(w).

For (i), rows k > r are empty, so assume k < j and (k,w(s)) ∈ D(w). Then
w(k) > w(s) > w(j) and k < j give (k,w(j)) ∈ D(w). For (ii), (r, w(s)) is
the rightmost cell in row r by the choice of r, s, so assume w(k) < w(j) and
(r, w(k)) ∈ D(w). Then (j, w(k)) ∈ D(w), because j < r < k and w(k) <
w(j).

Theorem 4.2. For a permutation w, the diagram D(w) has a complete James-
Peel tree.

Proof. Induct on the Lascoux-Schützenberger tree of w. If w is vexillary, the
tree with one vertex D(w) and no edges is a complete James-Peel tree for
D(w). Otherwise, let v1, . . . , vp be the transitions of w, say vi = wtrstrji
where s > r > j1 > · · · > jp. Then w(j1) < · · · < w(jp) < w(s) < w(r), so
fl(w(jp) · · ·w(j1)w(r)w(s)) = p · · · 1(p+ 2)(p+ 1), and D(p · · · 1(p+ 2)(p+ 1)) is
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exactly (p− 1, . . . , 1) · (1) after removing an empty row and column. Thus, D(w)
contains (p − 1, . . . , 1) · 1 as a subdiagram in rows {jp, . . . , j2, r} and columns
{w(j1), . . . , w(jp−1), w(s)}.

Let

Di =


Rr→jiCw(s)→w(ji)D(w) if 1 < i < p,

Cw(s)→w(j1)D(w) if i = 1, and

Rr→jpD(w) if i = p.

The diagrams Di are exactly those produced by Corollary 3.7, and
⊕p

i=1 S
Di ↪→

SD(w).
Let T be the James-Peel tree with root D(w) and children Di, where D(w)

is connected to Di by an edge labeled with the appropriate James-Peel move(s).
Next, connect D1 to a child E1 = Rr→j1D1 by an edge labeled Rr→j1 , and
Dp to a child Ep = Cw(s)→w(jp)Dp by an edge labeled Cw(s)→w(jp). The leaves
E1, D2, . . . , Dp−1, Ep of T are now exactly D(v1), . . . , D(vp) by Lemma 4.1. By
induction on the L-S tree, each D(vi) has a complete James-Peel tree; attach it
to the leaf D(vi) of T .

The tree T is still a James-Peel tree for D(w). By construction, its leaves
are the diagrams of the leaves of the Lascoux-Schützenberger tree of w. The
equation sD(w) =

∑
v sshape(v) from Section 2, with v running over the leaves of

the L-S tree, implies that T is complete.

Remark 4.3. One can also define Schur modules and flagged Schur modules
of diagrams, as in [28]. These are GL(N)- and B-modules, respectively, with
B ⊆ GL(N) a Borel subgroup, and correspond to Specht modules by Schur-Weyl
duality. Kraśkiewicz and Pragacz proved that the character of the flagged Schur
module of D(w) is the Schubert polynomial Sw, and their proof uses essentially
the techniques of Theorems 4.2, 4.1, and 3.5, although in different language [15].

Let JP (w) be the James-Peel tree for D(w) constructed in Theorem 4.2.
Corollary 3.19 and Theorem 4.2 now yield our first main result.

Theorem 4.4. Let v, w be permutations with w containing v as a pattern. There
is an injection ι : EG(v) ↪→ EG(w) such that if P ∈ EG(v), then shape(P ) ⊆
shape(ι(P )). Moreover, if P and P ′ have the same shape, then so do ι(P ) and
ι(P ′).

Corollary 4.5. If a permutation w is k-vexillary and v is a pattern in w, then
v is k-vexillary.

Corollary 4.6. If v is a pattern in w and Fw is multiplicity-free, so is Fv. More
generally, if 〈Fw, sλ〉 ≤ k for all λ then 〈Fv, sµ〉 ≤ k for all µ.

Remark 4.7. Theorem 4.4 shows the existence of an injection EG(v) ↪→ EG(w)
which respects inclusion of shapes for v a pattern contained in w, but an explicit
map on tableaux is lacking. The Edelman-Greene correspondence shows that
this is equivalent to an injection Red(v) ↪→ Red(w) which is an inclusion on
the shapes of Edelman-Greene insertion tableaux. Tenner’s characterization of

20



vexillary permutations yields an explicit injection in the case where v is vexillary
[34].

Remark 4.8. We note that Crites, Panova, and Warrington have studied the
connection between the shape of a permutation under the RSK correspondence
and pattern containment [5]. The injection given in Theorem 4.4 on shapes is
quite different since the Edelman-Greene tableaux of a permutation are based on
the reduced words instead of the one-line notation. At this time, we are unaware
of a connection between their work and our injection.

So far we have only used Corollary 3.19, but the full strength of Lemma 3.18
yields another interesting result.

Theorem 4.9. Let w ∈ Sn be a permutation and I ⊆ [n]. If u1 is the subsequence
of w in positions I, and u2 the subsequence in positions [n] \ I, then

EG(w) ≥ EG(fl(u1)) · EG(fl(u2)).

5. k-vexillary permutations

In this section we show that the property of k-vexillarity is characterized
by avoiding a finite set of patterns for any k. The key step is to remove some
inessential moves from the James-Peel tree for D(w), namely those which only
permute rows or columns.

If D is an arbitrary diagram, and σ, τ are permutations, let (σ, τ)D be the
diagram {(σ(i), τ(j)) : (i, j) ∈ D}. Given a James-Peel tree T for D, let (σ, τ)T
denote the James-Peel tree for (σ, τ)D obtained by replacing every James-Peel
move Rx→y labeling an edge of T by Rσ(x)→σ(y), and every move Cx→y by
Cτ(x)→τ(y), and relabeling vertices accordingly. Whenever a move labeling an
edge e of a James-Peel tree just permutes rows or columns, we can eliminate
that move from the tree at the cost of relabeling rows and columns of James-Peel
moves below e, as follows.

Definition 5.1. Given a James-Peel tree T of a diagram D, define the reduced
James-Peel tree red(T ) of D inductively.

• If D has no children in T , then red(T ) = T .

• If D has just one child F , and D = (σ, τ)F for some σ, τ ∈ S∞, then let T1
be the subtree of T below F with root F . Then red(T ) = (σ, τ) red(T1).

• If D has at least two children F1, F2, . . . , Fp or D has one child F1 not
equivalent to D, then let Ti be the subtree of T below Fi with root Fi.
Then red(T ) is T with each Ti replaced by red(Ti).

Definition 5.2. A rooted tree is bushy if every non-leaf vertex has at least two
children.
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Lemma 5.3. If T is a complete James-Peel tree for D, then red(T ) is a complete
James-Peel tree for D. Furthermore, red(T ) is bushy.

Proof. Note that red(T ) is still a James-Peel tree for D. Because equivalent
diagrams have isomorphic Specht modules, if T is complete then so is red(T ).

Next, for any vertex A of T , the subtree of T below A is itself a complete
James-Peel tree for A. In particular, SA is determined by the leaves below it.
Therefore, if A has only a single child B in T , then SA and SB are isomorphic.

Now suppose T is not bushy. The only way this can happen is if T has a
vertex A with only one child B, but A and B are not equivalent. There is a
James-Peel move relating A,B (or a sequence of moves, but we can consider
them one at a time), say B = Ra→bA. If one of rows a and b of A is contained
in the other, then Ra→bA is simply A with those two rows interchanged, so rows
a or b are not comparable under inclusion since A and B are not equivalent.
There are cells (a, j1), (b, j2) ∈ A with (a, j2), (b, j1) /∈ A. By Theorem 3.1,
SB ⊕ SCj1→j2A ↪→ SA. As SCj1→j2A 6= 0, SB is not isomorphic to SA. This
contradicts the previous paragraph, so T must be bushy.

Lemma 5.4. The number of edges in a bushy tree with k leaves is at most
2k − 2.

Proof. This follows by induction on the number of leaves.

Recall JP (w) is the James-Peel tree for D(w) constructed in Theorem 4.2,
and let RJP (w) = red(JP (w)). The vertex D(w) and its children in the tree
JP (w) are shown in Figure 2. Here the vi = vtrstrji are the transitions of v,

D(v)

A

D(v1)

R

C

D(v2)

RC

· · · D(vp−1)

RC

B

D(vp)

C

R

Figure 2: Part of the James-Peel tree JP (w).

with j1 > · · · > jp. The rows of D(v) involved in row moves are r, j1, . . . , jp, and
the columns involved in column moves are v(s), v(j1), · · · , v(jp). In Figure 2, we
have elongated two of the paths for the proofs to come.

Lemma 5.5. Suppose v has transitions v1, . . . , vp as above. Then D(v1) is
equivalent to Cv(s)→v(j1)D(v), and D(vp) is equivalent to Rr→jpD(v).

Proof. By Lemma 4.1,

D(v1) = Cv(s)→v(j1)Rr→j1D(v)
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and
D(vp) = Rr→jpCv(s)→v(jp)D(v).

It suffices to check that column v(s) of D(v) contains column v(jp), and that
row r contains row j1. Suppose the first of these fails, meaning that there is
(i, v(jp)) ∈ D(v) with (i, v(s)) /∈ D(v). Choose the maximal such i. Then vtrstri
is a transition of v, which is impossible since i < jp. The argument for the row
containment is analogous.

Thus, upon passing to RJP (w), the edges A—D(v1) and B—D(vp) are
contracted. For a diagram D, write [D] for the equivalence class of diagrams
containing D. We use this notation below when we have a diagram equivalent
to D but do not need to specify exactly what the diagram is. The vertex D(w)
and its children in the tree RJP (w) are shown in Figure 3.

[D(v)]

[D(v1)]

C

[D(v2)]

RC

· · · [D(vp−1)]

RC

[D(vp)]

R

Figure 3: Part of the reduced James-Peel tree RJP (w).

Although it is true that both moves on the edges labeled RC survive in
RJP (w), we will not check this. It is unimportant for our purposes, which will
be to use the number of James-Peel moves performed in the graph RJP (w) to
obtain an upper bound on EG(w). We therefore will speak of R-edges, C-edges,
and RC-edges of RJP (w), each non-leaf vertex having exactly one R-edge and
one C-edge leading to children.

Now suppose T is a subtree of RJP (w) with the same root. Let R(T ) be
the union of {a, b} over all Ra→b appearing in T , and C(T ) the union of {c, d}
over all Cc→d appearing in T . Write R(T ) ∪ w−1C(T ) = {i1 < · · · < ir}, and
define the permutation associated to this tree

wT = fl(w(i1) · · ·w(ir)).

Remark 5.6. In Section 2 we noted that, for convenience, w could be replaced
by 1m × w to remove the necessity of sometimes replacing v by 1 × v in the
Lascoux-Schützenberger tree. The definition of wT above is then an abuse of
notation, since we are really taking a subsequence of 1m × w. However, rows
and columns 1, . . . ,m of D(w) are empty, so are not affected by the James-Peel
moves in RJP (w) or T . This means that the subsequence defining wT occurs
entirely after the mth position of 1m × w, so we are free to shift it down by m
and consider it as a subsequence of w. This applies also to Theorems 5.9 and
5.10 below.
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We would like to bound the number of letters of wT in terms of the number
of leaves of T . Such a bound depends on the sizes of R(T ) and C(T ), so the
following definition is convenient to get good bounds.

Definition 5.7. A subtree T of RJP (w) with root D(w) is colorful if each
non-leaf vertex of T has at least the two children corresponding to its R-edge
and its C-edge. Thus, colorful implies bushy.

Lemma 5.8. Let T be a subtree of RJP (w) rooted at D(w) with k leaves. Then
k ≤ EG(wT ) ≤ EG(w). If T is colorful, then wT ∈ Sm for some m ≤ 4k − 4.

Proof. Up to relabeling rows and columns to account for flattening, the tree T
is a (not necessarily complete) James-Peel tree for D(wT ) , so k ≤ EG(wT ).
Theorem 4.4 implies EG(wT ) ≤ EG(w).

Suppose T is colorful. The number of letters in wT is at most |R(T )|+|C(T )|.
Consider the vertex indexed by D(v) in the full tree JP (w). Say vi = vtrstrji
are the transitions of v, with j1 > · · · > jp. The rows of D(v) involved in
row moves are r, j1, . . . , jp, and the columns involved in column moves are
v(s), v(j1), · · · , v(jp). However, Rr→j1D(v) ' D(v) and Cv(s)→v(jp)D(v) ' D(v)
by Lemma 5.5, so these edges are contracted in the reduced tree, so row j1 and
column v(jp) will not contribute to R(T ) and C(T ) respectively. Thus, if a
vertex F (which is equivalent to some D(v)) of T has p children, then the edges
leading down from F contribute at most p elements to each of R(T ) and C(T ).
Summing over all vertices,

|R(T )|+ |C(T )| ≤ 2 deg(D(w)) +
∑
F∈T

F 6=D(w)

2(deg(F )− 1)

= 2

[∑
F∈T

deg(F )

]
− 2|V (T )|+ 2

= 4|E(T )| − 2(|V (T )| − 1)

= 2|E(T )|
≤ 4k − 4,

with the last inequality by Lemma 5.4.

In particular, taking T = RJP (w) in Lemma 5.8 gives the following theorem.

Theorem 5.9. Any permutation w contains a pattern v ∈ Sm such that
EG(w) = EG(v), for some m ≤ 4 · EG(w)− 4.

More generally, Lemma 5.8 lets us show that k-vexillarity is characterized by
avoiding a finite set of patterns.

Theorem 5.10. Let w be a permutation with EG(w) > k. Then w contains a
pattern v ∈ Sm such that EG(v) > k, for some m ≤ 4k.
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Proof. By Lemma 5.8, it suffices to exhibit a colorful subtree of RJP (w) rooted
at D(w) with k + 1 leaves. Construct such a tree T as follows. First take T to
have only the vertex D(w). Add the two children of D(w) corresponding to the
R-edge and the C-edge. Continue adding the remaining children of D(w) until
T has k + 1 leaves, or until all children have been added. If all children of D(w)
have been added and T has fewer than k + 1 leaves, then since RJP (w) has at
least k + 1 leaves, there is a leaf F of T with at least two children. Now repeat
this process starting with F in place of D(w). Iterating, eventually T will have
k + 1 leaves, and is colorful by construction.

Corollary 5.11. A permutation w is k-vexillary if and only if it avoids all
non-k-vexillary patterns in Sm for 1 ≤ m ≤ 4k.

For k = 2, we can explicitly find all non-2-vexillary patterns in Sm for
1 ≤ m ≤ 8 and eliminate those containing a smaller non-2-vexillary pattern to
find a minimal list.

Theorem 5.12. A permutation w is 2-vexillary if and only if it avoids all of
the following 35 patterns.

21543 231564 315264 5271436 26487153 54726183 64821537
32154 241365 426153 5276143 26581437 54762183 64872153
214365 241635 2547163 5472163 26587143 61832547 65821437
214635 312645 4265173 25476183 51736284 61837254 65827143
215364 314265 5173264 26481537 51763284 61873254 65872143

This process is also feasible for k = 3 or 4, in which case we need to look at
non-3-vexillary (resp. non-4-vexillary) patterns up through S12 (resp. S16). In
both cases we find that the bound in Corollary 5.11 is not sharp.

Theorem 5.13. A permutation w is 3-vexillary if and only if it avoids a list of
91 patterns in S6 ∪ S7 ∪ S8, and 4-vexillary if and only if it avoids a list of 2346
patterns in

⋃12
i=6 Si. For the full lists of patterns, see

http://www.math.washington.edu/~billey/papers/k.vex.html.

The 3-vexillary permutations have some interesting properties. First, in
Section 7 we will show their Stanley symmetric functions are always multiplicity-
free. Second, their essential sets are relatively simple.

In [10], Fulton defined the essential set of a permutation w, Ess(w), to be
the set of southeast corners of the connected components of the diagram D(w).
He showed that the rank conditions for the Schubert variety indexed by w need
only be checked at cells in the essential set. See [29, Prop.4.6] for an alternative
description of the essential set using minimal bigrassmannian elements not below
w in Bruhat order.

Fulton also showed how to characterize vexillary permutations by their
essential sets. The SW-NE order on N2 is the partial order defined by (i1, j1) ≤
(i2, j2) if i1 ≥ i2 and j1 ≤ j2 (one should think of matrix coordinates here). Fulton
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showed that w is vexillary if and only if Ess(w) is a chain in the NW-SE order.
Thus, the essential set lies along a lattice path going from the southwest corner
of the diagram to the northeast using only north and east steps. Equivalently,
Ess(w) has no antichain of size 2 when w is vexillary.

One can characterize permutations whose essential set consists of two non-
intersecting such lattice paths in terms of pattern avoidance.

Lemma 5.14. The essential set Ess(w) has no antichain of size 3 in NW-SE
order if and only if w avoids the following 25 patterns.

214365 3251746 35172864 35281746 53182764
2416375 3251764 35182746 35281764 53271846
2417365 4216375 35182764 53172846 53271864
3152746 4216735 35271846 53172864 53281746
3152764 35172846 35271864 53182746 53281764

Corollary 5.15. If a permutation is 3-vexillary, then its essential set has no
antichain of size 3.

Proof. None of the patterns in Lemma 5.14 are 3-vexillary, so this follows from
Corollary 4.5.

Remark 5.16. The essential set can be used to give a short proof that the
Lascoux-Schützenberger tree is finite. The L-S tree can contain only finitely many
w with more than one maximal transition, for example because Fw =

∑
v Fv for

v running over transitions of w, and the coefficient of x1 · · ·x` in Fw is always
positive. Hence it suffices to show that there are only finitely many w in the tree
with exactly one maximal transition.

Suppose w has exactly one maximal transition v = wtrstrj , where r is the
largest index of a non-empty row in Ess(w). Then j must be r−1 and w(j) must
be w(s)−1, since otherwise there would be either no maximal transitions or more
than one. Lemma 4.1 shows that D(v) = D(w) \ {(r, w(s))}∪{(r− 1, w(s)− 1)},
and one can then check that likewise Ess(v) = Ess(w) \ {(r, w(s))} ∪ {(r −
1, w(s)− 1)}. The same argument holds if w must be replaced by 1× w in the
algorithm. Thus, in passing from w to v, the rightmost element of the lowest
non-empty row of the essential set moves either leftward or upward.

If one wants to compute or bound EG(w), the Lascoux-Schützenberger tree is
almost certainly more efficient than using our pattern characterizations. However,
pattern characterizations lend themselves nicely to comparison, as exemplified in
the proof of Corollary 5.15. The connection to patterns also leads to enumerative
results relating to EG(w), since there has been much work done on enumerating
permutations avoiding a given set of patterns, for example [4].

6. Diagram varieties

Let Gr(k, n) denote the Grassmannian variety of k-planes in Cn. For a
diagram D contained in a k × (n− k) rectangle, let Ω◦D be the set of k-planes
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given as row spans of the matrices

{(Ik|A) : A ∈Mk×(n−k), Aij = 0 if (i, j) ∈ D}.

Here Ik is the k × k identity matrix. Let ΩD be the closure of Ω◦D in Gr(k, n).
We call ΩD the diagram variety associated to D (suppressing the dependence on
k and n).

Recall that partitions contained in a k × (n− k) rectangle are in bijection
with k-subsets of [n]. Specifically, λ corresponds to the set

Bλ = {n− k + i− λi : 1 ≤ i ≤ k}.

Write
Bλ = {b1 < · · · < bk} and [n] \Bλ = {c1 < · · · < cn−k},

and define a permutation wλ of [n] in one-line notation by wλ = b1 · · · bkc1 · · · cn−k.
Taking the standard basis e1, . . . , en of Cn, define a complete flag F• by

Fi = 〈e1, . . . , ei〉.

The Schubert cell is defined as

X◦λ = {X ∈ Gr(k, n) : dim(X ∩ Fi) > dim(X ∩ Fi−1) if and only if i ∈ Bλ},

and its closure in the Zariski topology on Gr(k, n) is the Schubert variety Xλ

[11]. The codimension of Xλ is |λ| as defined. In particular, the diagram variety
Ωλ indexed by the Ferrers diagram for λ can be written as Ωλ = Xλwλ since
right multiplication by a permutation matrix permutes columns of the matrices
in Xλ. Thus diagram varieties generalize the Schubert varieties up to change of
basis.

Let σλ be the cohomology class in H2|D|(Gr(k, n),Z) associated to Ωλ. One
has the following classical facts about the Schubert classes σλ (see [11]).

• The classes σλ for λ varying over all partitions contained in (kn−k) form a
Z-basis of H∗(Gr(k, n),Z).

• Let Λ denote the ring of symmetric functions over Z in infinitely many
variables. Then σλ 7→ sλ defines an isomorphism of rings

φ : H∗(Gr(k, n),Z)
∼−→ Λ/〈sλ : λ 6⊆ (kn−k)〉.

The second fact suggests a relationship to Specht modules. For example,
consider the skew shape λ · µ as defined following Definition 3.4:

λ

µ

.
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Suppose λ · µ is contained in (kn−k). The multiplicity of the irreducible Sν in
Sλ·µ is the Littlewood-Richardson coefficient cνλµ. This is also the coefficient of
sν in the Schur expansion of sλ·µ = sλsµ, hence the coefficient of σν in σλ·µ [10].

Every closed subvariety of the Grassmannian has an associated cohomology
class [9]. In particular, each diagram variety ΩD has an associated class σD
which can be expressed as a symmetric function via φ. Liu studied diagram
varieties and their cohomology classes in [21], and made the following conjecture,
which generalizes the remarks above.

Conjecture 1 (Liu [21]). Let D ⊆ (kn−k). If the generalized Schur function
sD associated to D expands into classical Schur functions as

sD =
∑
λ

cDλ sλ,

then the cohomology class for ΩD has the same expansion coefficients

σD =
∑
λ

cDλ σλ.

Thus, the map φ sends σD to sD.

Remark 6.1. One can show that if D is contained in (kn−k), then so is any λ
with Sλ ↪→ SD (this is obvious when D has a complete James-Peel tree).

Let D∨ denote the complement of D in the rectangle (kn−k). Conjecture 1
is known to be true in several special cases.

Theorem 6.2 ([21, Proposition 5.5.3]). Conjecture 1 holds when D∨ is a skew
shape λ/µ.

Given a diagram D in [k]× [n− k], Liu constructs a bipartite graph GD =
([k], E, [n− k]) where E contains an edge (i, j) if and only if (i, j) ∈ D.

Theorem 6.3 ([21, Theorem 5.4.3]). Conjecture 1 holds for a diagram D
provided GD∨ is a forest.

A key tool in Liu’s proof of Theorem 6.3 is an analogue of Theorem 3.1,
albeit with a weaker conclusion. Given α1, α2 ∈ H∗(Gr(k, n)), write α1 ≤ α2 if
α2 − α1 is a nonnegative linear combination of the Schubert classes σλ.

Theorem 6.4 ([21, Proposition 5.3.3]). Let D be a diagram, and (i1, j1), (i2, j2) ∈
D such that (i1, j2), (i2, j1) /∈ D. Then

σ(Ri1→i2
D)∨ , σ(Cj1→j2

D)∨ ≤ σD∨ .

Like the Schur function sD, the class σD only depends on D up to equivalence.

Lemma 6.5. If D,D′ are equivalent diagrams, then σD = σD′ .
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Proof. Permuting columns of D corresponds to a change of basis of Cn, which
does not change σD since multiplication by an element of GLn induces a rational
equivalence on varieties in Gr(k, n) [9]. As for rows, identify a permutation v
with a permutation matrix. If (I|A) is a matrix representing a point of ΩD, then
(I|vA) represents the same k-plane as (v−1I|A), and so by permuting the first k
basis vectors according to v, we see that σD is not affected by permuting rows
of D.

Liu proves a weaker result than Conjecture 1 in the case of diagram varieties
for the complement of a permutation diagram.

Proposition 6.6 ([21, Proposition 5.5.4]). Under the Plücker embedding ΩD(w)∨ ↪→
Gr(k, n) ↪→ P(n

k)−1, the degree of ΩD(w)∨ is dimSD(w) = |Red(w)|.

Remark 6.7. Note that this is what the degree must be if Conjecture 1 is to
hold. This is because σ(1) is the class of a hyperplane intersected with Gr(k, n)
in the Plücker embedding, so the degree of ΩD∨ is the coefficient of σ(kn−k) in

σD∨ · σ|D|(1) [9]. When D = λ is a partition, it is easy to see using Pieri’s rule that

this coefficient is the number of standard Young tableaux of shape λ, which is
the dimension of Sλ. The claim for general D follows by linearity.

Theorem 6.8. If w is multiplicity-free, then Conjecture 1 holds for ΩD(w)∨ .

Proof. Magyar [24] showed that for any diagram D (contained in a fixed rect-
angle), if sD =

∑
λ aλsλ then sD∨ =

∑
λ aλsλ∨ . In particular, sD(w)∨ is

multiplicity-free if w is. Suppose sλ∨ appears in sD(w)∨ . Then λ is the image
of D(w) under a sequence of James-Peel moves, by Theorem 4.2. Theorem 6.4
then shows that σλ∨ ≤ σD(w)∨ . Since sD(w)∨ is multiplicity-free, this implies
φ−1(sD(w)∨) ≤ σD(w)∨ . Equality now follows from Proposition 6.6.

Theorems 6.2 and 6.3 prove Conjecture 1 when D∨ is equivalent to a skew
shape or a forest, and we note that for permutation diagrams, these conditions
have nice statements in terms of pattern-avoidance as well. It is shown in [2]
that if w is 321-avoiding, then D(w) is equivalent to a skew shape. Klein, Lewis,
and Morales have shown that D(w)∨ is equivalent to a skew shape exactly when
w avoids a list of 9 patterns.

We also have the following result for forests.

Theorem 6.9. The graph GD(w) is a forest if and only if w avoids 3412, 4312,
3421, and 4321.

The permutations avoiding these four patterns have been studied by Elizalde
in the context of almost increasing permutations [7].

Proof. Clearly, if D(w) is such that the graph GD(w) is a forest, then so are all
its subdiagrams. Therefore, w cannot contain 3412, 4312, 3421, or 4321, as one
easily checks that none of these have graphs which are forests.

For the converse, suppose that G = GD(w) is not a forest. Take a sequence
of distinct cells b1, . . . , bm ∈ D forming a cycle in G. Choose i so that bi = (p, q)
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with q maximal, then with p maximal for that q. The three cells bi−1, bi, bi+1

then form the pattern
◦

◦ ◦ in D(w). Since D(w) is northwest, it therefore

contains
◦ ◦
◦ ◦

as a subdiagram. After adding × to these rows and columns as usual for a
permutation diagram, we must end up with one of the four following subdiagrams:

◦ ◦ × ·
◦ ◦ · ×
× · · ·
· × · ·

◦ ◦ ◦ ×
◦ ◦ × ·
× · · ·
· × · ·

◦ ◦ × ·
◦ ◦ · ×
◦ × · ·
× · · ·

◦ ◦ ◦ ×
◦ ◦ × ·
◦ × · ·
× · · ·

Then in the positions of w corresponding to these four rows, one finds a pattern
3412, 4312, 3421, or 4321.

Remark 6.10. For w ∈ Sn, the diagram D(w)∨ contains {(i, j) : w(i) ≤ j ≤ n},
which is equivalent to the partition shape (n, n− 1, . . . , 1). Therefore GD(w)∨

cannot be a forest if n ≥ 3.

7. Multiplicity-bounded Permutations

We will say a permutation w is multiplicity-free provided all nonzero coeffi-
cients of the Stanley symmetric function Fw are 1. See A224287 in the OEIS for
the number of multiplicity-free permutations in Sn as a function of n. By Corol-
lary 4.6, we know the multiplicity free permutations respect pattern containment
in the classical sense. We now discuss a new type of pattern containment which
these permutations also respect, using the code of a permutation. We follow up
with another variation on the theme of bounding the multiplicities in a Stanley
symmetric function which generalizes vexillary permutations.

Lemma 7.1. Every 3-vexillary permutation is multiplicity-free.

Proof. Apply Lemma 3.11 to D(w).

The following conjecture has been tested through S12, and one direction
follows from Corollary 4.6. For the minimal list of 189 patterns up to S11, see

http://www.math.washington.edu/~billey/papers/k.vex.html.

Conjecture 2. The set of multiplicity-free permutations is closed under taking
patterns, and the minimal patterns all occur in Sn for n ≤ 11.

Recall the inversion set of w ∈ Sn is

Inv(w) = {(i, j) : 1 ≤ i < j ≤ n and wi > wj}.

The code of w is the vector code(w) = (c1, . . . , cn) such that ck is the number of
inversions (k, j) for any k < j ≤ n. Equivalently, ck is the number of cells on row
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k of D(w). An inverse operation code−1(c1, . . . , cn) is obtained by multiplying
out the reduced expression (sc1 . . . s2s1)·(sc2+1 . . . s3s2) · · · (scn+n−1 · · · sn) where
each factor is a consecutive decreasing string of adjacent transpositions. Adding
additional zeros at the beginning or the end of the code will not change the
corresponding Stanley symmetric function. Furthermore, for every vector of
nonnegative integers there exists a permutation with this vector as its code plus
possibly some additional terminal 0’s.

For example, code−1(3, 0, 5, 1) = (s3s2s1) · (s7s6s5s4s3) · (s4) = 41832567 and
code(41832567) = (3, 0, 5, 1, 0, 0, 0, 0).

Definition 7.2. We will say a permutation w contains a permutation v as
a simple code pattern provided code(w) = (c1, . . . , cn), there exists an i such
that ci = 0, and code−1(c1, . . . , ĉi, . . . , cn) = v. Say w contains v as a code
pattern provided there exists a sequence of permutations u(1), . . . , u(k) such that
w = u(1), v = u(k) and each u(i) contains u(i+1) as a simple code pattern. In
this case, |D(v)| = |D(w)|.

Lemma 7.3. If w contains v as a code pattern, then SD(v) ↪→ SD(w) as a
submodule and Fw − Fv is Schur positive.

Proof. Without loss of generality, assume that w ∈ Sn contains v ∈ Sn as a simple
code pattern, and the code of v is obtained from the code of w by removing ck = 0
and adding a zero at the end. Since ck = 0, w(k) = min{w(k), w(k+1), . . . , w(n)}.
Let D be D(w) with the empty row k removed, so SD ' SD(w).

Recall that the code of a permutation is given by the number of elements
in the diagram on each row. Going from a code vector to the corresponding
diagram is easy. Starting at the first row, fill in the appropriate number of cells
left justified. Place an × in the next position and cross out everything below it
and to its right. For the next row, starting from the leftmost available position
that has not already been crossed out, greedily place the appropriate number of
cells moving left to right. Once the cells are placed in the row, put an × in the
next available position and cross out everything below and to the right of the ×.
Continue until only fixed points are added to the permutation. Thus, the first
k − 1 rows and w(k)− 1 columns of D and D(v) are identical since the codes of
v, w agree in the first k − 1 positions.

It remains to show that there exists a sequence of James-Peel moves taking D
to D(v) which only modifies cells southeast of (k,w(k)). Let j1 < j2 < · · · < ja
be the occupied columns of D(w) southeast of (k,w(k)). Let j0 = w(k). Observe
that D(w) is empty in column j0 below row k but may contain cells above
row k. We claim that for i > k and 1 ≤ l ≤ a, (i, jl) ∈ D(w) if and only if
(i, jl−1) ∈ D(v) by construction of the diagram from the code. So we can shift
the occupied columns of D(w) southeast of (k,w(k)) over left by applying Cj1→j0
to D and then applying Cj2→j1 , etc. Furthermore, for i < k, if (i, jl) ∈ D then
(i, jl−1) ∈ D, and D and D(v) agree above row k, so applying each Cjl→jl−1

D
does not change any cells above row k. Thus,

D(v) = Cja→ja−1 · · ·Cj2→j1Cj1→j0D.
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We conclude that SD(v) ↪→ SD(w) by Lemma 3.13.

Corollary 7.4. Suppose w contains v as a code pattern. If w is multiplicity
free, then so is v.

Next we generalize multiplicity-free permutations to a filtration of permuta-
tions.

Definition 7.5. A permutation w is k-multiplicity-bounded provided that each
awλ ≤ k in the expansion Fw =

∑
λ awλsλ. Thus, 1-multiplicity-bounded is the

same as multiplicity-free.

For each k ≥ 1, the set of all k-multiplicity-bounded permutations respects
pattern containment by Corollary 4.6. If one could bound the size of the
minimal patterns which are not k-multiplicity-bounded, then one would prove
the following conjecture.

Conjecture 3. The k-multiplicity-bounded permutations are defined by avoiding
a finite set of permutation patterns.

8. Future work

We were led to Theorem 4.4 by trying to study pattern containment for
diagrams. In particular, we observed in experiments that the conclusion of Corol-
lary 3.19 holds for arbitrary diagrams and subdiagrams. Is this always true?
Corollary 3.19 holds when the subdiagram is (equivalent to) a permutation dia-
gram, a skew shape, or a column-convex diagram, since these diagrams all admit
complete James-Peel trees. The algorithm given by Reiner and Shimozono in [28]
for decomposing Specht modules shows that the conclusion of Corollary 3.19 also
holds when D is percent-avoiding and D′ = D ∩ {i : a ≤ i ≤ b}× {j : c ≤ j ≤ d}
for some a, b, c, d.

We have no simpler characterizations of the lists of patterns arising from
Corollary 5.11 and Theorems 5.12 and 5.13. One necessary condition for w
to be non-k-vexillary but contain only k-vexillary patterns is that every w(i)
participates in some 2143 pattern. Otherwise, the ith row and w(i)th column
of D(w) are contained in or contain every other row and column, and so they
do not participate in the James-Peel moves of RJP (w). This is far from
sufficient, however. Magnusson and Úlfarsson [23] have developed an algorithm
for characterizing sets of permutations in terms of avoiding mesh patterns, but
this algorithm does not seem to simplify our patterns appreciably. One might try
even more general notions of patterns, such as marked mesh patterns. Bridget
Tenner has noted that some 2-vexillary patterns do collapse. In these cases
though, the algorithms for detecting pattern containment require checking for
the original patterns.

In [3], vexillary elements of types B,C,D in the hyperoctahedral group are
defined as those whose Stanley symmetric function is equal to a single Schur
P - or Q-function (P in types B,D, and Q in type C), and it is shown that the
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vexillary elements are again characterized by avoiding a finite set of patterns.
Computer calculations show that Corollary 4.5 with k = 2 holds in B9 for types
B,C and in D8; moreover, the 2-vexillary patterns in B9 of types B,C are
characterized by avoiding sets of patterns in B3 ∪ · · · ∪B8. The main obstacle
to extending our proofs to these other root systems is the apparent lack of an
analogue of the Specht module of a diagram. In a recent preprint [1], Fulton and
Anderson give a different variation on vexillary permutations in types B,C,D,
and one might ask if there is a reasonable notion of k-vexillary in their setting.

Klein, Lewis and Morales have recently defined another generalization of
vexillary permutations. For w ∈ Sn, let D(w) be its permutation diagram. It is
shown in [13], that the rows and columns of D(w) can be rearranged to form the
complement of a skew shape if and only if w avoids 9 patterns. They call these
skew vexillary permutations. Under what conditions can the rows and columns
of an arbitrary diagram be rearranged into a skew shape or the complement of a
skew shape?
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