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Let Z denote the Leibniz–Hopf algebra, which also turns up as the Solomon
descent algebra and the algebra of noncommutative symmetric functions. As an
algebra Z=ZOZ1, Z2, ...P, the free associative algebra over the integers in countably
many indeterminates. The coalgebra structure is given by m(Zn)=;n

i=0 Zi é Zn − i,
Z0=1. Let M be the graded dual of Z. This is the algebra of quasi-symmetric
functions. The Ditters conjecture says that this algebra is a free commutative
algebra over the integers. In this paper the Ditters conjecture is proved. © 2001

Elsevier Science
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1. INTRODUCTION

Quasi-symmetric functions are a generalization of symmetric functions
introduced some 15 years ago to deal with the combinatorics of P-parti-
tions and the counting of permutations with given descent sets [6, 7]; see
also [19]. They also appear as the dual algebra over the integers of the
Leibniz–Hopf algebra (defined in Section 3 below).

The first statement of the Ditters conjecture dates from 1972 [2], where
it was formulated as Proposition 2.2. It states that this dual algebra over
the integers, i.e., the algebra of quasi-symmetric functions, is a free com-
mutative algebra over the integers. At that time quasi-symmetric functions
had not yet been invented, nor had the Solomon descent algebra.

The fact that this dual algebra is free polynomial over the integers is
crucial for the classification theory of noncommutative formal groups, via



a noncommutative version of p-typification, developed by Ditters and his
students; see [2, 18] and the references cited therein. One consequence of
the freeness of M is that the group of curves of a noncommutative formal
group has many functorial operations acting on it; see [12].

Perhaps even more importantly, the Leibniz–Hopf algebra is precisely
the same as the algebra of noncommutative symmetric functions as defined
in [5] and further developed in a slew of subsequent papers (one of which
is [13]). The fact that the symmetric functions constitute a free algebra in
the elementary symmetric functions is rather important. Thus the fact that
the algebra of quasi-symmetric functions is free over the integers is likely to
be of some significance.

Let Zc=Z[z1, z2, ...], with the same comultiplication, be the commuta-
tive quotient Hopf algebra of Z. The graded dual of this is the subalgebra,
Symm, of symmetric functions over the integers. This subalgebra of sym-
metric functions has a well-known representation theoretic interpretation
as follows: For each n let Sn be the symmetric group on n letters and R(Sn)
be the (Grothendieck) group of (finite-dimensional) complex representa-
tions of Sn. Then (as Hopf algebras)

Symm 5Â
n

R(Sn), (1.1)

where the multiplication is given by the ‘‘induction product’’

R(Sn)×R(Sm)Q R(Sn+m), (r, s)W IndSn+m
sn × Sm

(r×s). (1.2)

The quasi-symmetric functions have a similar representation theoretic
interpretation with the symmetric groups replaced with the Hecke algebras
at 0, Hn(0), and where two Hn(0)-modules are considered equivalent if they
have the same composition factors; see [13, 21].

In this paper I prove the Ditters conjecture.
Shortly after the publication of [2] it was remarked and acknowledged

(see [3, Chap. II, Section 5, p. 29]) that the proof of Proposition 2.2, i.e.,
what is now called the Ditters conjecture, had gaps. Since then there have
been quite a few purported proofs of the statement, both published and
unpublished. All have errors. For detailed remarks on the error in the
proofs in [17, 18] see [11]. The latest purported proof in [4] has at least
three major errors; the worst one is more or less the same as the one in
[17, 18].

The name ‘‘Ditters conjecture’’ for the statement was coined by me a few
years back. In [9], I referred to the statement as the Ditters–Scholtens
theorem. This was when I still believed the proof in [17, 18] to be correct.
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2. THE ALGEBRA OF QUASI-SYMMETRIC FUNCTIONS

Let X be a finite or infinite set (of variables) and consider the ring, of
polynomials, R[X], and the ring of power series, R[[X]], over a commu-
tative ring R with unit element, in the commuting variables from X. A
polynomial or power series f(X) ¥ R[[X]] is called symmetric if for any
two finite sequences of indeterminates X1, X2, ..., Xn and Y1, Y2, ..., Yn from
X and for any sequence of exponents i1, i2, ..., in ¥ N the coefficients in
f(X) of X i1

1 X
i2
2 · · ·X in

n and Y i1
1 Y

i2
2 · · ·Y in

n are the same.
The quasi-symmetric formal power series are a generalization intro-

duced by Gessel ([6]) in connection with the combinatorics of plane
partitions. This time one takes a totally ordered set of indeterminates, e.g.,
V={V1, V2, ...}, with the ordering that of the natural numbers, and the
condition is that the coefficients of X i1

1 X
i2
2 · · ·X in

n and Y i1
1 Y

i2
2 · · ·Y in

n are
equal for all totally ordered sets of indeterminates X1 < X2 < · · · < Xn and
Y1 < Y2 < · · · < Yn. Thus, for example,

X1X
2
2+X2X

2
3+X1X

2
3 (2.1)

is a quasi-symmetric polynomial in three variables that is not symmetric.
Products and sums of quasi-symmetric polynomials and power series are

again quasi-symmetric (obviously). Thus one has, for example, the ring of
quasi-symmetric power series

QsymZ(X) N (2.2)

in countably many commuting variables over the integers and its subring

QsymZ(X) (2.3)

of quasi-symmetric polynomials in countably many indeterminates, which
are the quasi-symmetric power series of bounded degree.

Given a word w=[a1, a2, ..., an] over N, also called a composition in this
context, consider the quasi-monomial function

Mw= C
i1 < · · · < in

Xa1
i1
Xa2

i2
· · ·Xan

in
(2.4)

defined by w. These form a basis over the integers of QsymZ(X).
The algebra of quasi-symmetric functions is dual to the Leibniz–Hopf

algebra, see below, or equivalently to the Solomon descent algebra, or more
precisely, to the direct sum

D=Â
n

D(Sn) (2.5)
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of the Solomon descent algebras D(Sn) of the symmetric groups, with a
new multiplication over which the direct sum of the original multiplications
is distributive. See [5, 15].

3. THE LEIBNIZ–HOPF ALGEBRA

The Leibniz–Hopf algebra over the integers is the free associative algebra
Z=ZOZ1, Z2, ...P over Z in countably many generators with the comulti-
plication

m(Zn)= C
i+j=n

Zi é Zj, Z0=1. (3.1)

Its graded dual over the integers is denoted M. It is not difficult to see
that this dual is precisely the algebra of quasi-symmetric functions over the
integers. Indeed, for any composition c=(i1, ..., in), define mc by the dual
basis formula

Omc, ZdP=dc, d, (3.2)

where Zd=Zj1
Zj2

· · ·Zjm
for a composition d=(j1, ..., jm). It is now a

simple exercise to check that the mc multiply exactly as the quasi-symmetric
monomials Mc, defined above in Section 2. Explicitly, for instance, writing
simply c for the element mc corresponding to the composition c, one has
for the multiplication of the two compositions [a, b] and [c, d];

[a, b] [c, d]=[a, b, c, d]+[a, c, b, d]+[a, c, d, b]+[c, a, b, d]

+[c, a, d, b]+[c, d, a, b]+[a+c, b, d]+[a+c, d, b]

+[c, a+d, b]+[a, b+c, d]+[a, c, b+d]+[c, a, b+d]

+[a+c, b+d]. (3.3)

The first six terms of this multiplication are the terms of the more
familiar shuffle algebra, whose name derives from the familiar rifle shuffle
in card playing. I call the multiplication of compositions defined by the
multiplication of quasi-symmetric functions the overlapping shuffle mul-
tiplication. The illustration is that during a rifle shuffle of the two words
(=compositions) two cards, one from each word, may stick together; in
that case their labels are added. This gives the additional seven terms in the
example (3.3) above.
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Over the rationals the Leibniz–Hopf algebra is isomorphic to the
Lie–Hopf algebra

U=ZOU1, U2, ...P, m(Un)=1 é Un+Un é 1. (3.4)

Let N be the graded dual of U over the integers. This is the so-called
shuffle algebra. An important theorem in the theory of free Lie algebras,
for example, states that the algebra N éZ Q is a commutative free poly-
nomial in the Lyndon words; see e.g. [16]. It is not true that N is a free
polynomial over the integers. The Ditters conjecture states that the algebra
M, in contrast, is a free polynomial commutative over the integers. This
would make it a rather more beautiful version of N, in the sense that M is
a Z−Q form of N (i.e., M éZ Q 4N éZ Q) with the property that M is
a free polynomial algebra while N is not.

4. LYNDON WORDS AND FORMULATION OF THE STRONG
DITTERS CONJECTURE

Let the elements of Ng, i.e., the words over N, be ordered lexicographi-
cally, where any symbol is larger than nothing. Thus [a1, a2, ..., an] >
[b1, b2, ..., bm] if and only if there is an i such that a1=b1, ..., ai − 1=
bi − 1, ai > bi (with, necessarily, 1 [ i [ min{m, n}), or n > m and a1=b1, ...,
am=bm.

A proper tail of a word [a1, ..., an] is a word of the form [ai, ..., an] with
1 < i [ n. (The empty word and one-symbol words have no proper tails.)

A word is Lyndon if all its proper tails are larger than the word itself.
For example, the words [1, 1, 3], [1, 2, 1, 3], and [2, 2, 3, 2, 4] are all
Lyndon and the words [2, 1], [1, 2, 1, 1, 2], and [1, 3, 1, 3] are not
Lyndon. The set of Lyndon words is denoted LYN.

Obviously all of these definitions make sense for any totally ordered set
and not just for the set of natural numbers.

Now consider Ng as a semigroup under the concatenation product.

4.1. Theorem (Chen–Fox–Lyndon Factorization [1, 14]). Every word
w in Ng factors uniquely into a decreasing concatenation product of Lyndon
words,

w=v1 f v2 f · · · f vk, vi ¥ LYN, v1 \ v2 \ · · · \ vk. (4.2)

For example,

[2, 3, 1, 3, 1, 4, 1, 3, 1, 1]=[2, 3] f [1, 3, 1, 4] f [1, 3] f [1] f [1]. (4.3)

One efficient algorithm for finding the Chen–Fox–Lyndon factorization of
a word is the block decomposition algorithm from [17].
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The Lyndon words are the right kind of thing for the shuffle algebra
over the rational numbers, Q, and also for the algebra of quasi-symmetric
functions (also called the overlapping shuffle algebra; see [11]) over Q.
Indeed, both of these algebras are free polynomial over Q with as their
generators the words from LYN. However, over the integers LYN most
definitely is not a free generating set for the algebra of quasi-symmetric
functions.

A word w=[a1, a2, ..., an] ¥ Ng is called elementary if the greatest
common divisor of its symbols is 1, gcd{a1, a2, ..., an}=1. A concatenation
power of w (or star power) is a word of the form

wgm=w f w f · · · f w
z

m factors

. (4.4)

Let ESL denote the set of words which are star powers of elementary
Lyndon words. For instance, the words [1, 1, 1, 1], [1, 2, 1, 2], and
[1, 2, 1, 4] are in ESL (but the first two are not Lyndon), and the words
[4], [2, 4] are not in ESL but are in LYN.

The strong Ditters conjecture now states that the elements of ESL form a
free (communicating) generating set for the overlapping shuffle algebra M
over the integers.

Let the weight of a word w=[a1, a2, ..., an] be equal to a1+a2+·· ·+an.
The elements of ESL of weight [ 6 area

[1];

[1, 1];

[1, 1, 1], [1, 2];

[1, 1, 1, 1], [1, 1, 2], [1, 3];

[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3];

and

[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 1, 2],

[1, 2, 3], [1, 3, 2], [1, 5].

(4.5)

5. THE SHUFFLE ALGEBRA

There is a second Hopf algebra structure on the free associative algebra
in countably many indeterminates over Z; i.e., there is a second way to make
the ring ZOZ1, Z2, ...P into a Hopf algebra. This was briefly mentioned in
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Section 3 above. This structure is actually rather better known and it plays
a most important role in the theory of free Lie algebras and related
matters; see e.g. [16]. In order to avoid notational confusion, let

U=ZOU1, U2, ...P (5.1)

be another copy of the free associative algebra in countably many variables
over Z, and let the comultiplication be defined by

m(Um)=1 é Un+Un é 1. (5.2)

Let N be the graded dual algebra of U. This is the shuffle algebra. The
shuffle multiplication is the same as the overlapping shuffle multiplication
except that overlaps are not allowed. Thus for example

[a, b] ×sh [c, d]=[a, b, c, d]+[a, c, b, d]+[a, c, d, b]

+[c, a, b, d]+[c, a, d, b]+[c, d, a, b],

which is just the first six terms of (3.3), and

[1] ×sh [1]=2[1, 1],
(5.3)

[1] ×sh [1] ×sh [1]=6[1, 1, 1],

[1] ×osh [1]=2[1, 1]+[2],
(5.4)

[1] ×osh [1] ×osh [1]=6[1, 1, 1]+3[1, 2]+3[2, 1]+[3].

A well-known theorem says that over the rationals the shuffle algebra is a
free polynomial. More precisely, let Q[LYN] be the free commutative
polynomial ring over the set LYN of Lyndon words, then (cf. e.g. [16]) we
have

5.5. Theorem (Shuffle Algebra Structure Theorem). Né Q=Q[LYN],
the free commutative algebra over Q in the symbols from LYN.

Note that nothing like this is true over the integers. Indeed, by the
second examples of the shuffle multiplication above (see (5.3)), N é Z/(2)
has nilpotents and so N cannot be a free algebra over Z. From this point
of view the overlapping shuffle algebra M is a rather nicer ‘‘version’’ of N.
Here the word ‘‘version’’ refers to the fact that over the rational numbers,
Q, M and N become isomorphic.
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The proof of the shuffle algebra structure theorem is a straightforward
application of the following theorem concerning shuffle products in
connection with Chen–Fox–Lyndon factorization.

5.6. Theorem. Let w ¥ Ng be a word on the natural numbers and
let w=v1 f v2 f · · · f vm be its Chen–Fox–Lyndon factorization. Then all
words that occur with nonzero coefficient in the shuffle product
v1 ×sh v2 ×sh · · · ×sh vm are lexicographically smaller or equal to w, and w
occurs with a nonzero integer coefficient in this product.

Given this result, the proof of the shuffle algebra theorem proceeds as
follows: Order all words lexicographically. Consider some nonempty word w.
With induction, [1] being the smallest nonempty word, we can assume that
all words lexicographically smaller than w have been written as polyno-
mials in the elements of LYN. Take the Chen–Fox–Lyndon factorization
w=v1 f v2 f · · · f vm of w and consider, using Theorem 5.6,

v1 ×sh v2 ×sh · · · ×sh vm=aw+(remainder). (5.7)

By Theorem 5.6, the coefficient a is nonzero and all the words in (remainder)
are lexicographically smaller than w, and hence ¥ Q[LYN]. It follows
that also w ¥ Q[LYN]. This proves generation; i.e., the surjectivity of the
natural map Q[LYN] QN. Injectivity follows by counting. The map is
homogeneous, both algebras are graded, and dimQ(Q[LYN]n)=dimQ(Nn).
Indeed, these numbers are given by a recursive relation

1−2t
1−t

=D
.

n=1
(1−tn)bn,

where bn is the number of Lyndon words of weight n. See e.g. [16, 17] for
more details.

6. THE OVERLAPPING SHUFFLE ALGEBRA OVER
THE RATIONALS

As already stated, the overlapping shuffle algebra and the shuffle algebra
become isomorphic over the rationals. Given that the shuffle algebra over
the rationals is free polynomial there are of course many possible algebra
homomorphisms. There is a particularly nice one which comes from a
Hopf algebra isomorphism between Z é Q and U é Q, as follows.

Consider the expression

1+Z1t+Z2t2+Z3t3+·· ·=exp(U1t+U2t2+U3t3+·· · ). (6.1)
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This gives an expression for each Zi in terms of the U1, ..., Ui with rational
coefficients, and hence defines an algebra homomorphism

b: Z é Q QU é Q. (6.2)

6.3. Theorem. The algebra homomorphism b is an isomorphism of
Hopf algebras and hence its dual defines an isomorphism of algebras
bg: N é Q QM é Q.

For details, cf. [8]. This proves of course that M é Q is free polynomial
and gives a set of generators which is, however, neither the set LYN nor the
set ESL.

It is also not difficult to adapt the proof that N é Q is free polynomial
on LYN to a proof that M é Q is free polynomial on LYN. The only
modification needed is to change a bit the ordering on words that is used.
The ordering which works here is the following:

wP vZ length(w) > length(v)

or (length(w)=length(v) and w \ v (lexicographically)). (6.3)

7. THE LOCAL VERSION OF THE STRONG DITTERS
CONJECTURE

There is a p-adic analogue of the strong Ditters conjecture, and the first
step in establishing the Ditters conjecture is to prove these local versions
for all prime numbers p.

Let us start with the formulation. A word w=[a1, ..., an] on N is
p-elementary, where p is a prime number, if the gcd of the a1, ..., an is not
divisible by p. A p-star-power of a word is a word of the form

w=v f · · · f v
z

pr factors

. (7.1)

The set ESL(p) is the set of words which are p-star-powers of p-elementary
Lyndon words.

7.2. Theorem (p-adic Analogue of the Strong Ditters Conjecture).

M é Z(p)=Z(p)[ESL(p)].

That is, M é Z(p) is the free commutative algebra on ESL(p) over Z(p).
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To prove this we first need some information on binomial and multi-
nomial coefficients. Extend the usual definition of the binomial coefficients
in the standard way:

R n
m
S=0 if m > n, R

n

0
S=1 for n \ 0.

7.3. Proposition. Consider the p-adic expansion of two natural numbers
m and n,

n=a0+a1 p+· · ·+ak pk,
ai, bj ¥ {0, 1, ..., p−1}. (7.4)

m=b0+b1 p+· · ·+bk pk,

Then the value of the binomial coefficient modulo p is equal to

R n
m
S — R

a0

b0

S Ra1

b1

S · · ·R
an

bn

S . (7.5)

In particular, if bi [ ai for all i, this binomial coefficient is nonzero modulo p.

7.6. Corollary. The multinomial coefficient

1 n
pk · · · pk

z
ak times

pk − 1 · · · pk − 1

z
ak − 1 times

1 · · · 1
z
a0 times

2 (7.7)

is nonzero modulo p.

Proof of the Proposition. For 0 [ n [ p−1 things are clear. Now let
n \ p and write down the p-adic expansion of n and m as in the formula-
tion of the proposition and let

n1=a0+a1 p+· · ·+ak − 1 pk − 1, m1=b0+b1 p+· · ·+bk − 1 pk − 1. (7.8)

We have the modulo p

(x+y)n=(x+y)akpk
(x+y)n1 — (xpk

+ypk
)ak (x+y)n1.

Writing things out gives

(x+y)n=3R
ak

0
S (xpk

)ak (ypk
)0+·· ·

+R
ak

i
S (xpk

)ak − i (ypk
) i+·· ·+(xpk

)0 (ypk
)ak 4

×3R
n1

0
S xn1y0+·· ·+R

n1

i
S xn1 − iy i+·· ·+R

n1

0
S x0yn1 4 .
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It follows that

R n
m
S — R

ak

bk

S R n1

m1

S ,

and with induction the desired result follows.

7.9. Lemma (Cardinality of the Sets ESL(p)). The number of elements
in ESL(p) of weight n is bn; i.e., it is the same as that in LYNn, the set of
Lyndon words of weight n.

Proof. Let w=[a1, a2, ..., am] be a Lyndon word of weight n. Let p r be
the largest power of the prime number p that divides the greatest common
divisor gcd(a1, ..., am). Now assign to w the word

v f v f · · · f v
z

pr factors

, v=[a1/p r, a2/pr, ..., am/p r].

This sets up a bijective correspondence between LYNn and ESL(p)n, the
set of words in ESL(p) of weight n.

7.10. Proof of the p-adic Ditters conjecture. We use the same ordering
of words as at the end of Section 5 above; i.e., length first and then
lexicographic ordering on words of equal length. Let SL(p) be the set of all
p-star powers of Lyndon words; i.e., words of the form

w=vgpk
, v ¥ LYN. (7.11)

The first step is to prove that all words can be written as polynomials in the
elements of SL(p). Let w be a word over N. With induction we can assume
that all smaller words can be written as polynomials in SL(p) and by
induction on weight that all nontrivial products of weight [ weight(w) can
be so written. Let

w=vgn1
1 f vgn2

2 f · · · f vgnm
m , vi ¥ LYN, v1 > v2 > · · · > vm, (7.12)

be its Chen–Fox–Lyndon factorization. Consider products of the form

D
k1

i=1
vgn1i

1 D
k2

i=1
vgn2i

2 · · · D
km

i=1
vgnmi

m , (7.13)

where the products are overlapping shuffle products and where
nj1+·· ·+njkj

=nj, j=1, ..., m. The largest word occurring in such a
product (in the ordering we are using) will be the word w, independent of
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how the various star powers are broken up. However, the coefficient of w
will depend on how the star powers of the vj are broken up. Indeed, the
coefficient will be the product of multinomial coefficients;

R n1

n11 · · · n1k1

S R n2

n21 · · · n2k2

S · · · R
nm

nm1 · · · nmkm

S . (7.14)

For instance, if one takes nij=1, -i, j (which is what is done to prove
M é Q=Q[LYN]; see Section 5 above), the coefficient is n1! n2! · · · nm! ;
and if one takes the other extreme, k1=k2=·· ·=km=1, the coefficient
is 1. Here, for our present purposes, we break up each nj according to its
p-adic expansion. That is, if n=a0+a1 p+· · ·+ak pk, ai ¥ {0, 1, ..., p−1},
then it is partitioned (broken up) into

pk, pk, ..., pk

z
ak parts

, pk − 1, ..., pk − 1

z
ak − 1 parts

, ..., p, ..., p
z

a1 parts

, 1, ..., 1
z

a0 parts

. (7.15)

Then Corollary 7.6 above says that in this case the coefficient is nonzero
modulo p; i.e., it is an invertible element of Z(p). This proves that also w
can be written as a polynomial in SL(p).

Now, for a given weight n, let w1, w2, ..., wm be all the words of that
weight that are in SL(p) but are not p-elementary. So, if wi=[ai1, ..., aiki

],
p | gcd{ai1, ..., aiki

}. Let

bij=p−1aij, vi=[bi1, ..., biki
]. (7.16)

Now consider the overlapping shuffle powers vp
i . It is easy to see that these

are of the form

vp
i =wi+p (something of weight n). (7.17)

By what has been proved, each of these somethings of weight n can
be written as polynomials in the SL(p). Do so. Now calculate modulo
nontrivial products and the elements of ESL(p). The result will be m
congruence relations;

a11w1+·· ·+a1mwm — 0

x (7.18)

am1w1+·· ·+ammwm — 0,

where the matrix A=(aij) has the property A — Im modp. This means that
the determinant of the matrix A is invertible in Z(p), so that the w1, ..., wm

can be eliminated. This proves that the elements from ESL(p) suffice to
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generate all of M é Z(p) over Z(p). Using Lemma 7.9 above on the cardi-
nality of ESL(p), the same sort of counting argument as that used before
in Section 4 finishes the proof.

In more detail, let F be the free graded algebra over Z(p) with bn

generators of weight n. Let cn be the rank of the free Z(p) module of ele-
ments of weight n. The cn are of course recursively determined by the bn,
but the precise formula is not important here. The algebra Z(p)[ESL(p)]
viewed as the free commutative algebra over Z(p) generated by the symbols
from ESL(p) is of course the same thing as F. By what has been proved
the natural homomorphism

Z(p)[ESL(p)]`a
M é Z(p)

that sends a symbol from ESL(p) to the corresponding element from
M é Z(p) is surjective.

Both algebras are torsion free, and after tensoring with the rationals the
dimensions of their homogeneous parts of weight n are equal by the lemma
above and the isomorphism between the overlapping shuffle algebra and
the shuffle algebra of Section 5. It follows that a is an isomorphism because
surjective homomorphisms between free Z(p) modules of equal rank are
necessarily isomorphisms.

8. PROOFS OF THE MAIN THEOREM

Using the p-adic theorem of Section 6 above, I give in this final section
two proofs of the main theorem in the following slightly more precise
formulation:

8.1. Theorem. The algebra of quasi-symmetric functions over the
integers is a free (graded) commutative algebra over the integers with for
each n=1, 2, ... precisely bn generators of weight n.

8.2. Corollary. Every primitive element in the Leibniz–Hopf algebra
ZOZP can be extended to a divided power sequence of infinite length and
every divided power series of finite length n can be extended to one of infinite
length.

For the meanings of the terms in the corollary, see below.

First Proof. Let Mn be the graded part of weight n of M. By the fact
that Mn is a free Abelian group and by the structure theorem for M éZ Q
from Section 5 above, we know that Mn is a free Abelian group of rank cn.
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Let Gn be defined by the short exact sequence

Â
n − 1

j=1
(Mj éMn − j)QMn Q Gn Q 0, (8.3)

where the first arrow is given by multiplication. Each Gn is a finitely gen-
erated Abelian group. Tensoring with Z(p) (which is right exact) gives the
corresponding exact sequence for M é Z(p) and it follows from the p-adic
version of the Diners conjecture proved above that Gn éZ Z(p) is a free Z(p)

module of rank bn for each prime number p. This implies that Gn is a free
Abelian group of rank bn and proves that the algebra of symmetric func-
tions can be generated by a set of homogeneous elements yn, 1, yn, 2, ..., yn, bn

,
n=1, 2, ..., giving a homogenous surjective ring homomorphism

Z[Y]`a
M, (8.4)

where Z[Y] is the graded ring generated by symbols Yn, in
, n=1, 2, ... ;

in=1, ..., bn of weight n. However, the homogenous parts of weight n of
Z[Y] and M both are free Abelian groups of rank cn. It follows immedi-
ately that the homogeneous components, an: Z[Y]n QMn, of a are iso-
morphisms and hence that a itself is an isomorphism.

The second proof of the theorem uses the notions of free coalgebras and
divided power sequences in coalgebras. This proof is more difficult and
perhaps less elegant. I include it here because it seems to offer a better
chance to obtain explicit generators; that is, to make progress toward
proving the strong Ditters conjecture.

Let B be a free graded module over the integers or over Z(p) (or over any
ring R) whose homogeneous summands are of finite rank, and let Bg be its
graded dual. The graded cofree coalgebra over the integers, CoF(B),
determined by B is the graded dual of the free associative graded algebra,
Fr(Bg), over the integers generated by Bg. It can be characterized by a
universal property that is dual to that of free associative algebras as follows
(though this is not important here): It comes with a canonical map
p: CoF(B)Q B, the graded dual of the canonical map Bg

Q Fr(Bg), and
satisfies the following property: For every graded map of a graded coalge-
bra C to the module B, C0

j B, there is a unique morphism of graded
coalgebras C0

k CoF(B) such that pk=j.
The graded cofree coalgebra CoF(B) can be explicitly described as

follows: Take the tensor module

T(B)=Â
.

i=0
Bé i=Z À B À Bé 2 À Bé 3 À · · · . (8.5)
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There are natural isomorphisms

ji, j: Bé i é Bé j
Q B é (i+j), i, j=0, 1, 2, ... . (8.6)

Using these, the comultiplication on T(B) is defined by

m(b1 é b2 é · · · é bn)=C
n

i=0
j−1

i, n − i(b1 é b2 é · · · é bn). (8.7)

The cofree coalgebra CoF(B) has a unique group-like element, viz. 1 ¥ Z
(which is the dual of the augmentation of Fr(Bg)). The primitives of
CoF(B), i.e., the elements such that m(x)=1 é x+x é 1, are the elements
of B … T(B).

A divided power sequence of length n (resp. of length .) over a group-like
element 1 in a coalgebra C is a sequence of elements d1, d2, ..., dn (resp.
d1, d2, ...) such that

m(dm)=1 é dm+C
m − 1

i=1
di é dm − i+dm é 1, m=1, 2, ... . (8.8)

Note that d1 is primitive. In CoF(B) every primitive element b can be
extended to a divided power sequence of infinite length. Indeed, one such
sequence is

b, b é b, b é b é b, ... . (8.9)

If H is a Hopf algebra, there is a natural multiplication on the set DSP(H)
of divided power sequences of infinite length given by

(d1, d2, d3, ...), (d
−

1, d
−

2, d
−

3, ...)

W (d1+d
−

1, d2+d1d
−

1+d
−

2, d3+d2d
−

1+d1d
−

2+d
−

3, ...), (8.10)

and this turnsDSP(H) into a (functorial) group. There are also Verschiebungs
operators

Vn: (d1, d2, ...)W (0, ..., 0
z

n − 1

, d1, 0, ..., 0z
n − 1

, d2, ...). (8.11)

Using these, multiplication, and the fact that CoF(B) is a Hopf algebra (in
many ways; CoF(B) being the dual of the free associative algebra Fr(Bg)),
it now easily follows that any divided power sequence of length n can be
extended to one of infinite length. This is seen by induction because if

d1, d2, ..., dn and d1, d2, ..., d
−

n (8.12)
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are two different divided power sequences that agree up to degree n−1,
then the difference of the last terms, dn −d

−

n, is a primitive.
The cofree cocommutative graded coalgebra, CCoF(B), over B, is the

subcoalgebra of CoF(B) of symmetric tensors. It is the graded dual of the
commutative free algebra generated by Bg as the maximal commutative
quotient of Fr(Bg).

8.13. Remark. The free commutative coalgebra over B, which satisfies
the same universal property for not necessarily graded coalgebras and
morphisms is not CoF(B), but a certain recursive completion; see [10] for
details.

Given these preparations we can now give a second proof of the main
theorem. This proof proceeds by first proving Corollary 8.2 about divided
power sequences.

Second proof. Consider the Leibniz–Hopf algebra Z=ZOZP and its
various localizations Z é Z(p). Let d1, d2, ..., dn be a divided power
sequence of length n \ 1 in the Leibniz–Hopf algebra. It suffices to prove
that every such sequence can be extended to one of length n+1. By what
has been said above, for every prime number p this can be done in
Z é Z(p). This gives the divided power sequences

d1, d2, ..., dn, d
(p)
n+1=t−1

p a
(p), a (p) ¥Z, (p, tp)=1. (8.14)

Let pmax be the largest prime number dividing t2. Then (t2, ..., tpmax )=1 and
so there exist integers d2, ..., dpmax such that

d2t2+d3t3+·· ·+dpmax tpmax=1. (8.15)

Multiply this equation with t2 to get numbers cp that are multiples of tp for
all primes from 3 through pmax inclusive such that

c3+c5+·· ·+cpmax — t2 mod(t2
2). (8.16)

Now the differences (t−1
p a

(p)−t−1
2 a

(2)) are primitives (in the algebra Z é Q
because of the freeness of M éZ Q) and it follows that the sequence

d1, d2, ..., dn, a (8.17)

with

a=t−1
2 a

(2)+C
p | t2

cp(t
−1
p a

(p)−t−1
2 a

(2)) (8.18)
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is a divided power series of length n+1, and because of the properties of
the coefficients cp it is in fact defined over the integers. This concludes the
proof of Corollary 8.2.

The theorem itself now follows by a straightforward imitation of
the proof given in [20] of the structure of irreducible cocommutative
Hopf algebras over fields of characteristic zero. See Theorem 13.0.1 in
Chapter 13 of [20]. Given the corollary, one can also repair the original
proof of Ditters in [2].
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