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1. Introduction

Quasisymmetric polynomials have held a special place in algebraic combinatorics since their in-
troduction in [7]. They are the natural setting for many enumeration problems [16] as well as the
development of Dehn–Somerville relations [1]. In addition, they are related in a natural way to
Solomon’s descent algebra of the symmetric group [14]. In this paper, we follow [2, Ch. 11] and
view them through the lens of invariant theory. Specifically, we consider the relationship between
the two subrings Symn ⊆ QSymn ⊆ Q[x] of symmetric and quasisymmetric polynomials in variables
x = xn := {x1, x2, . . . , xn}. Let En denote the ideal in QSymn generated by the elementary symmetric
polynomials. In 2002, F. Bergeron and C. Reutenauer made a sequence of three successively finer con-
jectures concerning the quotient ring QSymn/En . A.M. Garsia and N. Wallach were able to prove the
first two in [6], but the third one remained open; we close it here (Corollary 10) with the help of
a new basis for QSymn introduced in [8].
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1.1. Motivating context

Recall that Symn is the ring Q[x]Sn of invariant polynomials under the permutation action of Sn

on x and Q[x]. One of the crowning results in the invariant theory of Sn is that the following state-
ments hold:

(S1) Q[x]Sn is a polynomial ring, generated, say, by the elementary symmetric polynomials En =
{e1(x), . . . , en(x)};

(S2) the ring Q[x] is a free Q[x]Sn -module;
(S3) the coinvariant space Q[x]Sn = Q[x]/(En) has dimension n! and is isomorphic to the regular

representation of Sn .

See [11, §§17, 18] for details. Analogous statements hold on replacing Sn by any pseudo-reflection
group. Since all spaces in question are graded, we may add a fourth item to the list: the Hilbert series
Hq(Q[x]Sn ) = ∑

k�0 dkqk , where dk records the dimension of the kth graded component of Q[x]Sn ,
satisfies

(S4) Hq(Q[x]Sn ) = Hq(Q[x])/ Hq(Q[x]Sn ).

Before we formulate the conjectures of Bergeron and Reutenauer, we recall another page in the
story of Symn and the quotient space Q[x]/(En). The ring homomorphism ζ from Q[xn+1] to Q[xn]
induced by the mapping xn+1 �→ 0 respects the rings of invariants (that is, ζ : Symn+1 � Symn is a
ring homomorphism). Moreover, ζ respects the fundamental bases of monomial (mλ) and Schur (sλ)
symmetric polynomials of Symn , indexed by partitions λ with at most n parts. For example,

ζ
(
mλ(xn+1)

) =
{

mλ(xn), if λ has at most n parts,
0, otherwise.

The stability of these bases plays a crucial role in representation theory [13]. Likewise, the associated
stability of bases for the coinvariant spaces (e.g., of Schubert polynomials [4,12,15]) plays a role in the
cohomology theory of flag varieties.

1.2. Bergeron–Reutenauer context

Given that QSymn is a polynomial ring [14] containing Symn , one might ask, by analogy
with Q[x], how QSymn looks as a module over Symn . This was the question investigated by Berg-
eron and Reutenauer [3]. (See also [2, §11.2].) They began by computing the quotient Pn(q) :=
Hq(QSymn)/ Hq(Symn) by analogy with (S4). Surprisingly, the result was a polynomial in q with non-
negative integer coefficients (so it could, conceivably, enumerate the graded space QSymn/(En)). More
astonishingly, sending q to 1 gave Pn(1) = n!. This led to the following two conjectures, subsequently
proven in [6]:

(Q1) The ring QSymn is a free module over Symn;
(Q2) The dimension of the “coinvariant space” QSymn/(En) is n!.

In their efforts to prove the conjectures above, Bergeron and Reutenauer introduced the notion
of “pure and inverting” compositions Bn with at most n parts. These compositions have the favor-
able property of being n-stable in that Bn ⊆ Bn+1 and that Bn+1 \ Bn are the pure and inverting
compositions with exactly n + 1 parts. They were able to show that the pure and inverting “quasi-
monomials” Mβ (see Section 2) span QSymn/(En) for small n case by case (and that they are n! in
number), but the general result remained open. Their final conjecture, which we prove in Corollary 10,
is as follows:

(Q3) The set of quasi-monomials {Mβ : β ∈ Bn} is a basis for QSymn/En .
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Fig. 1. The diagram associated to the composition (2,4,3,2,4).

The balance of this paper is organized as follows. In Section 2, we recount the details surrounding
a new basis {Sα} for QSymn called the quasisymmetric Schur polynomials. These behave particularly
well with respect to the Symn action in the Schur basis. In Section 3, we give further details sur-
rounding the “coinvariant space” QSymn/(En). These include a bijection between compositions α and
pairs (λ,β), with λ a partition and β a pure and inverting composition, that informs our main re-
sults. Section 4 contains these results—a proof of (Q3), but with the quasi-monomials Mβ replaced
by the quasisymmetric Schur polynomials Sβ . We conclude in Section 5 with some corollaries to the
proof. These include (Q3) as originally stated, as well as a version of (Q1) and (Q3) over the inte-
gers.

2. Quasisymmetric polynomials

A composition of n is a sequence of positive integers summing to n. A polynomial in n variables
x = {x1, x2, . . . , xn} is said to be quasisymmetric if and only if for each composition (α1,α2, . . . ,αk), the
monomial xa1

1 xa2
2 · · · xak

k has the same coefficient as xα1
i1

xα2
i2

· · · xαk
ik

for all sequences 1 � i1 < i2 < · · · <

ik � n. For example, x2
1x2 + x2

1x3 + x2
2x3 is a quasisymmetric polynomial in the variables {x1, x2, x3}.

The ring of quasisymmetric polynomials in n variables is denoted QSymn . (Note that every symmetric
polynomial is quasisymmetric.)

It is easy to see that QSymn has a vector space basis given by the quasi-monomials

Mα(x) =
∑

i1<···<ik

xα1
i1

· · · xαk
ik

,

for α = (α1, . . . ,αk) running over all compositions with at most n parts. It is also evident that QSymn
is a ring. See [10] for a formula for the product of two quasi-monomials. We write l(α) = k for the
length (number of parts) of α in what follows. We return to the quasi-monomial basis in Section 5,
but for the majority of the paper, we focus on the basis of “quasisymmetric Schur polynomials” as its
known multiplicative properties assist in our proofs.

2.1. The basis of quasisymmetric Schur polynomials

A quasisymmetric Schur polynomial Sα is defined combinatorially through fillings of composition
diagrams. Given a composition α = (α1,α2, . . . ,αk), its associated diagram is constructed by placing
αi boxes, or cells, in the ith row from the top. (See Fig. 1.) The cells are labeled using matrix notation;
that is, the cell in the jth column of the ith row of the diagram is denoted (i, j). We abuse notation
by writing α to refer to the diagram for α.

Given a composition diagram α = (α1,α2, . . . ,α�) with largest part m, a composition tableau T of
shape α is a filling of the cells (i, j) of α with positive integers T (i, j) such that

(CT1) entries in the rows of T weakly decrease when read from left to right,
(CT2) entries in the leftmost column of T strictly increase when read from top to bottom,
(CT3) entries satisfy the triple rule:

Let (i,k) and ( j,k) be two cells in the same column so that i < j. If αi � α j then either
T ( j,k) < T (i,k) or T (i,k − 1) < T ( j,k). If αi < α j then either T ( j,k) < T (i,k) or T (i,k) <

T ( j,k + 1).
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1 1 1
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1 1 1
2
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1 1 1
3
4 4

2 1 1
3
4 4

2 2 1
3
4 4

2 2 2
3
4 4

Fig. 2. The composition tableaux encoded in the polynomial S(3,1,2)(x4) = x3
1x2x2

3 + x3
1x2x3x4 + x3

1x2x2
4 + x3

1x3x2
4 + x2

1x2x3x2
4 +

x1x2
2x3x2

4 + x3
2x3x2

4.

Assign a weight, xT to each composition tableau T by letting ai be the number of times i ap-
pears in T and setting xT = ∏

xai
i . The quasisymmetric Schur polynomial Sα corresponding to the

composition α is defined by

Sα(xn) =
∑

T

xT ,

the sum being taken over all composition tableaux T of shape α with entries chosen from [n]. (See
Fig. 2.) Each polynomial Sα is quasisymmetric and the collection {Sα: l(α) � n} forms a basis for
QSymn [8].

2.2. Sym action in the quasisymmetric Schur polynomial basis

We need several definitions in order to describe the multiplication rule for quasisymmetric Schur
polynomials found in [9]. First, given two compositions α = (α1, . . . ,αr) and β = (β1, . . . , βs), we say
α contains β (α ⊇ β) if r � s and there is a subsequence i1 > · · · > is satisfying αi1 � β1, . . . ,αis � βs .
The reverse of a partition λ is the composition λ∗ obtained by reversing the order of its parts. Sym-
bolically, if λ = (λ1, λ2, . . . , λk) then λ∗ = (λk, . . . , λ2, λ1). Let β be a composition, let λ be a partition,
and let α be a composition obtained by adding |λ| cells to β , possibly between adjacent rows of β .
A filling of the cells of α is called a Littlewood–Richardson composition tableau of shape α ⊇ β if it
satisfies the following rules:

(LR1) The ith row from the bottom of β is filled with the entries k + i.
(LR2) The content of the appended cells is λ∗ .
(LR3) The filling satisfies conditions (CT1) and (CT3) from Section 2.1.
(LR4) The entries in the appended cells, when read from top to bottom, column by column, from right

to left, form a reverse lattice word. That is, each prefix contains at least as many i’s as (i − 1)’s
for each 1 < i � k.

The following theorem provides a method for multiplying an arbitrary quasisymmetric Schur poly-
nomial by an arbitrary Schur polynomial.

Proposition 1. (See [9].) In the expansion

sλ(x) · Sα(x) =
∑
γ

Cγ
λα Sγ (x), (1)

the coefficient Cγ
λα is the number of Littlewood–Richardson composition tableaux of shape γ ⊇ α with ap-

pended content λ∗ .

3. The coinvariant space for quasisymmetric polynomials

Let B ⊆ A be two Q-algebras with A a free left module over B . This implies the existence of a
subset C ⊆ A with A � B ⊗ C as vector spaces over Q. In the classical setting of invariant theory
(where B is the subring of invariants for some group action on A), this set C is identified as coset
representatives for the quotient A/(B+), where (B+) is the ideal in A generated by the positive part
of the graded algebra B = ⊕

k�0 Bk .
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Now suppose that A and B are graded rings. If A is free over B , then the Hilbert series of C is
given as the quotient Hq(A)/ Hq(B). Let us try this with the choice A = QSymn and B = Symn . It is
well known that the Hilbert series for QSymn and Symn are given by

Hq(QSymn) = 1 + q

1 − q
+ · · · + qn

(1 − q)n
(2)

and

Hq(Symn) =
n∏

i=1

1

1 − qi
. (3)

Let Pn(q) = ∑
k�0 pkqk denote the quotient of (2) by (3). It is easy to see that

Pn(q) =
n−1∏
i=1

(
1 + q + · · · + qi) n∑

i=0

qi(1 − q)n−i,

and hence Pn(1) = n!. It is only slightly more difficult (see (0.13) in [6]) to show that Pn(q) satisfies
the recurrence relation

Pn(q) = Pn−1(q) + qn([n]q! − Pn−1(q)
)
, (4)

where [n]q! is the standard q-version of n!. Bergeron and Reutenauer use this recurrence to show
that pk is a nonnegative integer for all k � 0 and to produce a set of compositions Bn satisfying
pk = #{β ∈ Bn: |β| = k} for all n. In particular, |Bn| = n!.

Let (En) be the ideal in QSymn generated by all symmetric polynomials with zero constant term
and call Rn := QSymn/(En) the coinvariant space for quasisymmetric polynomials. From the above discus-
sion, Rn has dimension at most n!. If the set of quasi-monomials {Mβ ∈ QSymn: β ∈ Bn} are linearly
independent over Symn , then it has dimension exactly n! and QSymn becomes a free Symn-module of
the same dimension.

3.1. Destandardization of permutations

To produce a set Bn of compositions indexing a proposed basis of Rn , first recognize the [n]q!
in (4) as the Hilbert series for the classical coinvariant space Q[x]/(En) from (S3). The standard set
of compositions indexing this space are the Artin monomials {xα1

1 · · · xαn
n : 0 � αi � n − i}, but these

do not fit into the desired recurrence (4) with n-stability. In [5], Garsia developed an alternative
set of monomials indexed by permutations. His “descent monomials” (actually, the “reversed” descent
monomials, see [6, §6]) were chosen as the starting point for the recursive construction of the sets Bn .
Here we give a description in terms of “destandardized permutations.”

In what follows, we view partitions and compositions as words in the alphabet N = {0,1,2, . . .}.
For example, we write 2543 for the composition (2,5,4,3). The standardization st(w) of a word w
of length k is a permutation in Sk obtained by first replacing (from left to right) the �1 1s in w
with the numbers 1, . . . , �1, then replacing (from left to right) the �2 2s in w with the numbers �1 +
1, . . . , �1 +�2, and so on. For example, st(121) = 132 and st(2543) = 1432. The destandardization d(σ )

of a permutation σ ∈ Sk is the lexicographically least word w ∈ (N+)k satisfying st(w) = σ . For
example, d(132) = 121 and d(1432) = 1321. Let D(n) denote the compositions {d(σ ): σ ∈ Sn}. Finally,
given d(σ ) = (α1, . . . ,αk), let r(σ ) denote the vector difference (α1, . . . ,αk) − (1k) (leaving in place
any zeros created in the process). For example, r(132) = 010 and r(1432) = 0210. Up to a relabeling,
the weak compositions r(σ ) are the ones introduced by Garsia in [5]. They are enumerated by [n]q!
as follows. A descent in a permutation σ , written in one-line notation, is a position i where σi > σi+1.
The major index maj(σ ) records the sum of the positions i where a descent occurs within σ . It is
well known (and readily verified recursively) that the coefficient of qm in [n]q! is the number of
permutations σ ∈ Sn with maj(σ ) = m. Since the descent positions are preserved by the operators d
and r, the same statistics hold for D(n) and their weak-composition counterparts.
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D(1) = {1} B0 = {0}
D(2) = {11,21} B1 = {0}
D(3) = {111,211,121,221,212,321} B2 = {0,21}
D(4) = {1111,2111,1211,1121,2211,2121,1221,2112,1212,2221,2212,2122, B3 = {0,21,211,

3211,3121,1321,3221,2321,3212,2312,2132,3321,3231,3213,4321} 121,221,212}

Fig. 3. The sets D(n) and Bn for small values of n. Compositions 1n + Bn−1 are underlined in D(n) .

Bergeron and Reutenauer define their sets Bn recursively in such a way that

• B0 := {0},
• 1n + Bn−1 ⊆ D(n) and D(n) is disjoint from Bn−1, and
• Bn := Bn−1 ∪ D(n) \ (1n + Bn−1).

Here, 1n + Bn−1 denotes the vector sums {(1n) + d: d ∈ Bn−1}. Note that the compositions in D(n)

all have length n. Moreover, 1n+1 + D(n) ⊆ D(n+1) . Indeed, if σ = σ ′1 is a permutation in Sn+1 with
suffix “1” in one-line notation, then (1n+1) + d(st(σ ′)) = d(σ ). That (4) enumerates Bn is immedi-
ate [6, Proposition 6.1]. We give the first few sets Bn and D(n) in Fig. 3.

3.2. Pure and inverting compositions

We now give an alternative description of the compositions in Bn introduced by Bergeron and
Reutenauer which will be easier to work with in what follows. Call a composition α inverting if and
only if for each i > 1 (with i less than or equal to the largest part of α) there exists a pair of indices
s < t such that αs = i and αt = i − 1. For example, 13112312 is inverting while 21123113 is not. Any
composition α admits a unique factorization

α = γ kik · · · 2i2 1i1 (i j � 1), (5)

such that γ is a composition that does not contain any of the values from 1 to k, and k is maximal
(but possibly zero). We say α is pure if and only if this maximal k is even. (Note that if the last part
of a composition is not 1, then k = 0 and the composition is pure.) For example, 5435211 is pure
with k = 2 while 3231 is impure since k = 1.

Proposition 2. (See [3].) The set of inverting compositions of length n is precisely D(n) . The set of pure and
inverting compositions of length at most n is precisely Bn.

We reprise the proof of Bergeron and Reutenauer, for the sake of completeness.

Proof. Let D(n) denote the set of inverting compositions of length n. The destandardization procedure
makes it clear that D(n) ⊆ D(n). For the reverse containment, we use induction on n to show that
|D(n)| = n!. (The base case n = 1 is trivially satisfied.) Let α = (a1, . . . ,an−1) be one of the (n − 1)!
compositions in D(n−1) . We construct n distinct compositions by inserting a new part between posi-
tions k and k + 1 in α (for all 0 � k < n − 1). Define this part mk(α) by

mk(α) = max
({ai: i � k} ∪ {1 + a j: j > k}).

To reverse the procedure, simply remove the rightmost maximal value appearing in the inverting com-
position of length n. Conclude that applying the procedure to D(n−1) results in n! distinct elements
in D(n) . Finally, since the reverse map from D(n) to D(n−1) is an n to 1 map, we get that |D(n)| = n!.

Turning to Bn , we argue that Bn ∩ D(n) are the pure compositions in D(n) of length n � 0. This
will complete the proof, since by construction and the previous paragraph, the compositions Bn are
inverting. (Indeed, Bn ⊆ ⋃

0�i�n D(i) , setting D(0) = {0}.) We argue by induction on n. (The base case
n = 0 is trivially satisfied.) Note that if α ∈ D(n) is impure, then k is odd in the factorization (5),
and α′ := α − (1n) is pure. That is, α′ ∈ Bn−1 ⊆ Bn . These are precisely the compositions eliminated
from D(n) in constructing Bn , for Bn := Bn−1 ∪ D(n) \ (1n + Bn−1). In other words, if α ∈ D(n) is pure,
then α ∈ Bn . �
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λ = 1 4 2 1 1 4 5 2 4 1 1
β = 2 4 3 1 1 3 4 2 3

φ(λ,β) = 3 8 5 2 2 7 9 4 7 1 1

Fig. 4. An example of the map φ : PB13,49 → C13,49.

3.3. A bijection

Let Cn,d be the set of all compositions of d into at most n parts and set PBn,d := {(λ,β):
λ a partition, β ∈ Bn, |λ| + |β| = d, and l(λ) � n, l(β) � n}. We define a map φ : PBn,d → Cn,d as
follows.

Let (λ,β) be an arbitrary element of PBn,d . Then φ((λ,β)) is the composition obtained by
adding λi to the ith largest part of β for each 1 � i � l(λ), where if β j = βk and j < k, then β j
is considered smaller than βk . If l(λ) > l(β), append zeros after the last part to lengthen β before
applying φ. (See Fig. 4.)

Proposition 3. The map φ is a bijection between PBn,d and Cn,d.

Proof. We prove this by describing the inverse φ−1 algorithmically. Let α be an arbitrary composition
in Cn,d and set (λ,β) := (∅,α).

(1) If β is pure and inverting, then φ−1(α) := (λ,β).
(2) If β is impure and inverting, then set φ−1(α) := (λ + (1n), β − (1n)).
(3) If β is not inverting, then let j be the smallest part of β such that there does not exist a pair

of indices s < t such that βs = j and βt = j − 1. Let m be the number of parts of β which are
greater than or equal to j. Replace β with the composition obtained by subtracting 1 from each
part greater than or equal to j and replace λ with the partition obtained by adding 1 to each of
the first m parts.

(4) Repeat Steps (1)–(4) until φ−1 is obtained, that is, until Step (1) or (2) above is followed.

Notice that the composition β − (1n) in Step (2) is pure and inverting, since subtracting one from
each part will change k from an even number to an odd number without affecting the inversions.

To see that φφ−1 = 1, consider an arbitrary composition α. If α is pure and inverting, then
φφ−1(α) = φ(∅,α) = α. If α is impure and inverting, then φ(φ−1(α)) = φ(((1l(α)),α − (1l(α)))) = α.
Finally, consider a composition α which is not inverting. Note that the largest entry in α is decreased
at each iteration of Step (3). Therefore the largest entry in the partition records the number of times
the largest entry in α is decreased. Similarly, for each i � l(λ), the ith largest entry in α is decreased
by one λi times. This means that the ith largest part of α is obtained by adding λi to the ith largest
part of β and therefore φφ−1 = 1.

To see that φ−1φ = 1, consider an arbitrary pair (λ,β) such that β is a pure and inverting com-
position of length less than or equal to n, λ is a partition of length less than or equal to n, and
|λ| + |β| = d. Apply the map φ to obtain a composition α = φ(λ,β) of d of length less than or equal
to n. Let � be the length of λ and let m be the size of the least part of α which was modified during
the procedure mapping (λ,β) to α. (Recall that if two parts are equal, the part to the right is consid-
ered to be larger.) Let k be the index of this part, so that αk = m. No part αi with i < k is equal to m
(by construction) and no part α j with j > k is equal to m − 1 for otherwise β j � βk and hence β j
would have been modified before βk , a contradiction on the assumption that αk is the smallest part
of α which was modified during the map φ. Thus α violates the inverting condition at level m. The
parts of α smaller than m do not violate the inverting condition since they appear as in β . Therefore
the map φ−1 begins by subtracting one from each of the parts of α which are greater than or equal
to m. Note that these are precisely the � largest parts of α, since � of the parts were modified and
the smallest of the modified parts is αk . In particular, any parts of α obtained from β by adding 1
during the map φ are returned to their initial values during this step.

The next step in φ−1 repeats the procedure described in the above paragraph replacing λ with
λ − (1�). Therefore, the next step subtracts one from each of the parts of α which were modified by
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α �→
(

λ

β

)
:

∅
3 8 5 2 2 7 9 4 7 1 1 → 1 1 1 1 1 1

3 7 4 2 2 6 8 3 6 1 1

↓
3 1 3 3 1 3

3 5 4 2 2 4 6 3 4 1 1 ← 2 1 2 2 1 2
3 6 4 2 2 5 7 3 5 1 1

↓
3 1 3 4 1 3

3 5 4 2 2 4 5 3 4 1 1 → 1 4 2 1 1 4 5 2 4 1 1
2 4 3 1 1 3 4 2 3

→
(

54442211111
243113423

)
.

Fig. 5. The map φ−1 : C13,49 → PB13,49 applied to α = 38522794711. Parts j from Step (3) of the algorithm are marked with a
double underscore.

the addition of a part λi of λ such that λi > 1. Since 1 was subtracted from each of these parts during
the first step and 1 was subtracted from each of these parts during the second step, the end result
after two steps is that 2 is subtracted from each part of α modified by the addition of a part of λ

greater than or equal to 2. Continuing in this manner, each of the parts of λ are removed from the
composition α until the original composition β is produced, together with the original partition λ.
Therefore φ−1φ = 1 so that the map φ is a bijection. �

Fig. 5 illustrates the algorithmic description of φ−1 as introduced in the proof of Proposition 3 on
α = 38522794711.

4. Main theorem

Let Bn be as in Section 3 and set Bn := {Sβ : β ∈ Bn}. We prove the following.

Theorem 4. The set Bn is a basis for the Symn-module Rn.

To prove this, we analyze the quasisymmetric polynomials QSymn,d in n variables of homogeneous
degree d. Note that QSymn = ⊕

d�0 QSymn,d . Therefore, if Cn,d is a basis for QSymn,d , then the collec-
tion

⋃
d�0 Cn,d is a basis for QSymn . First, we introduce a useful term order.

4.1. The lexrev order

Each composition α can be rearranged to form a partition λ(α) by arranging the parts in weakly
decreasing order. Recall the lexicographic order �lex on partitions of n, which states that λ �lex μ if
and only if the first nonzero entry in λ − μ is positive. For two compositions α and γ of n, we say
that α is larger then γ in lexrev order (written α � γ ) if and only if either

• λ(α) �lex λ(γ ), or
• λ(α) = λ(γ ) and α is lexicographically larger than γ when reading right to left.

For instance, we have

4 � 13 � 31 � 22 � 112 � 121 � 211 � 1111.

Remark. Extend lexrev to weak compositions of n of length at most n by padding the beginning of α
or γ with zeros as necessary, so l(α) = l(γ ) = n. Viewing these as exponent vectors for monomials
in x provides a term ordering on Q[x]. However, it is not good term ordering in the sense that
it is not multiplicative: given exponent vectors α, β , and γ with α � γ , it is not necessarily the
case that α + β � γ + β . This is likely the trouble encountered in [3] and [6] when trying to prove
the Bergeron–Reutenauer conjecture (Q3). We circumvent this difficulty by working with the Schur
polynomials sλ and the quasisymmetric Schur polynomials Sα . We consider leading polynomials Sγ

instead of leading monomials xγ . The leading term Sγ in a product sλ · Sα is readily found.
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4.2. Proof of main theorem

We claim that the collection Cn,d = {sλSβ : |λ| + |β| = d, l(λ) � n, l(β) � n, and β ∈ Bn} is a basis
for QSymn,d , which in turn implies that Bn is a basis for Rn . To prove this, we make use of a special
Littlewood–Richardson composition tableau called the super filling. Consider a composition β and a
partition λ = (λ1, . . . , λk). If l(λ) > l(β) then append l(λ) − l(β) zeros to the end of β . Fill the cells in
the ith row from the bottom of β with the entries k + i. Append λi cells to the ith longest row of β .
(If two rows of β have equal length, the lower of the rows is considered longer.) These new cells are
then filled so that their entries have content λ∗ as follows. Fill the new cells in the jth longest row
with the entries λk− j+1 unless two rows are of the same length. If two rows are the same length, fill
the lower row with the lesser entries. The resulting filling is called the super filling S(λ,β).

Proposition 5. The super filling S(λ,β) obtained from composition β and partition λ is a filling satisfy-
ing (LR1)–(LR4).

Proof. The super filling S(λ,β) satisfies (LR1) and (LR2) by construction. We must prove that the fill-
ing also satisfies (LR3) and (LR4). Note that since S(λ,β) satisfies (CT1) by construction, we need only
prove that the entries in the filling satisfy the triple condition (CT3) and the lattice condition (LR4).
In the following, let α be the shape of S(λ,β).

To prove that the filling S(λ,β) satisfies (CT3), consider an arbitrary pair of cells (i,k) and ( j,k)

in the same column. If αi � α j then βi � β j , since the entries from λ are appended to the rows
of β from largest row to smallest row. Therefore if (i,k) is a cell in the diagram of β then T ( j,k) <

T (i,k) = T (i,k − 1) regardless of whether or not ( j,k) is in the diagram of β . If (i,k) is not in the
diagram of β then ( j,k) cannot be in the diagram of β since βi � β j . Therefore T ( j,k) < T (i,k) since
the smaller entry is placed into the shorter row, or the lower row if the rows have equal length.

If αi < α j then βi � β j . If T (i,k) � T ( j,k) then (i,k) is not in the diagram of β . If ( j,k + 1) is in
the diagram of β then T (i,k) < T ( j,k + 1) since the entries in the diagram of β are larger than the
appended entries. Otherwise the cell ( j,k + 1) is filled with a larger entry than (i,k) since the longer
rows are filled with larger entries and α j > αi . Therefore the entries in S(λ,β) satisfy (CT3).

To see that the entries in S(λ,β) satisfy (LR4), consider an entry i. We must show that an arbitrary
prefix of the reading word contains at least as many i’s as (i − 1)’s. (Note that this is true when the
prefix chosen is the entire reading word since λ∗

i � λ∗
i−1.) Let ci be the rightmost column of S(λ,β)

containing the letter i and let ci−1 be the rightmost column of S(λ,β) containing the letter i − 1.
Note that all entries not in the diagram of β in a given row are equal. If ci > ci−1 then every prefix
will contain at least as many i’s as (i − 1)’s since there will always be at least one i appearing before
any pairs i, i − 1 in reading order. If ci = ci−1, then the entry i will appear in a higher row than the
entry i − 1 and hence will be read first for each column containing both an i and an i − 1. Therefore
the reading word is a reverse lattice word and hence the filling satisfies (LR4). �
Proof of Theorem 4. Order the compositions of d into at most n parts by the lexrev order. To define
the ordering on the elements of Cn,d , note that their indices are pairs of the form (λ,β), where λ

is a partition of some k � d and β is a composition of d − k which lies in Bn . We claim that the
leading term in the quasisymmetric Schur polynomial expansion of sλSβ is the polynomial Sφ(λ,β) .
To see this, recall from Proposition 1 that the terms of sλSβ are given by Littlewood–Richardson
composition tableaux of shape α ⊇ β and appended content λ∗ , where α is an arbitrary composition
shape obtained by appending |λ| cells to the diagram of β so that conditions (CT1) and (CT3) are
satisfied.

To form the largest possible composition (in lexrev order), one must first append as many cells as
possible to the longest row of β , where again the lower of two equal rows is considered longer. The
filling of this new longest row must end in an L := l(λ), since the reading word of the Littlewood–
Richardson composition tableau must satisfy (LR4). No entry smaller than L can appear to the left
of L in this row, since the row entries are weakly decreasing from left to right. This implies that the
maximum possible number of entries that could be added to the longest row of β is λ1. Similarly,
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4 13 31 22 112 121 211

s4

s31

s1 · S21

s22

s211

S121

S211

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · · · ·
· 1 1 · · · ·
· · 1 1 · · 1
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 6. The transition matrix for n = 3, d = 4.

the maximum possible number of entries that can be added to the second longest row of β is λ2
and so on. If l(λ) > l(β), append the extra parts of λ (from least to greatest, top to bottom) after
the bottom row of β . The resulting shape is precisely the shape of S(λ,β) which is equal to φ(λ,β)

since β is a pure and inverting composition. Therefore there is at least one Littlewood–Richardson
composition tableau of shape φ(λ,β) since S(λ,β) is a Littlewood–Richardson composition tableau
by Proposition 5.

The shape of the Littlewood–Richardson composition tableau S(λ,β) corresponds to the largest
composition appearing as an index of a quasisymmetric Schur polynomial in the expansion of sλSβ ,
implying that Sφ(λ,β) is indeed the leading term in this expansion. Since φ is a bijection, the entries
in Cn,d span QSymn,d and are linearly independent. Therefore Cn,d is a basis for QSymn,d and hence
Bn is a basis for the Symn-module Rn . �
Remark 6. Note that in the proof of Theorem 4, the entries appearing in the filling of shape φ(λ,α)

are uniquely determined by the lattice condition (LR4). This implies that Cφ(λ,α)
λ,α = 1. This fact allows

us to work over Z, a slightly more general setting than working over Q. (See Section 5.3 for details.)

The transition matrix between the basis C3,4 and the quasisymmetric Schur polynomial basis for
QSym3,4 is given in Fig. 6.

5. Corollaries and applications

5.1. Closing the Bergeron–Reutenauer conjecture

The relationship between the monomial basis and quasisymmetric Schur basis was investigated
in [8, Thm. 6.1 & Prop. 6.7]. We recall the pertinent facts.

Proposition 7. (See [8].) The polynomials Mγ are related to the polynomials Sα as follows:

Sα =
∑
γ

Kα,γ Mγ , (6)

where Kα,γ counts the number of composition tableaux T of shape α and content γ . Moreover, Kα,α = 1 and
Kα,γ = 0 whenever λ(α) <lex λ(γ ).

We need a bit more to prove Conjecture (Q3).

Lemma 8. In the notation of Proposition 7, Kα,γ = 0 whenever λ(α) = λ(γ ) and α �= γ .

Proof. We argue by induction on the largest part of α such that if λ(α) = λ(γ ), and T is a composi-
tion tableau with shape α and content γ , then α = γ .

The base case is trivial, for if the largest part of α is 1, then α = γ = (1d) for some d. Now suppose
α has largest part l. We claim that all rows i in T of length l must be filled only with i’s. This claim
finishes the proof. Indeed, we learn that αi = γi for all such i. Thus we may apply the induction
hypothesis to the new compositions α′ and γ ′ obtained by deleting the largest parts from each.
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To prove the claim, suppose row i of T has length l and is not filled with all i’s. Let (i,k) be the
rightmost cell in row i containing the entry i. The i in column k + 1 must appear in a lower row,
say row j, by condition (CT1) since the entries above row i in the first column must be less than i.
This implies that T (i,k) = T ( j,k + 1). But T ( j,k) � T ( j,k + 1) and hence T ( j,k) � T (i,k), so (CT3) is
violated regardless of which row is longer. Therefore row i must be filled only with i’s and the claim
follows by induction. �
Theorem 9. In the expansion Mα = ∑

γ K̃α,γ Sγ , K̃α,α = 1 and K̃α,γ = 0 whenever α ≺ γ .

Proof. From Proposition 7 and Lemma 8, we learn that Kα,γ = 0 whenever α ≺ γ . (The proposition
handles the first condition in the definition of the lexrev order and the lemma handles the second
condition.) Now arrange the integers Kα,γ in a matrix K , ordering the rows and columns by �. The
previous observation shows that this change of basis matrix is upper-unitriangular. Consequently, the
same holds true for K̃ = K −1. �

We are ready to prove Conjecture (Q3). Let Bn and Rn be as in Section 4.

Corollary 10. The set {Mβ : β ∈ Bn} is a basis for the Symn-module Rn.

Proof. We show that the collection Mn,d = {sλMβ : |λ| + |β| = d, l(λ) � n, l(β) � n, and β ∈ Bn}
is a basis for QSymn,d , which in turn implies that {Mβ : β ∈ Bn} is a basis for Rn . We first claim
that the leading term in the quasisymmetric Schur polynomial expansion of sλMβ is indexed by the
composition φ(λ,β). The corollary will easily follow.

Applying Theorem 9, we may write sλMβ as

sλMβ = sλSβ +
∑
β�γ

K̃β,γ sλSγ .

Note that for any composition γ , the leading term of sλ Sγ is indexed by φ(λ,γ ). This follows by the
same reasoning used in the proof of Theorem 4. To prove the claim, it suffices to show that β � γ �⇒
φ(λ,β) � φ(λ,γ ).

Assume first that λ(β) = λ(γ ). Let i be the greatest integer such that βi > γi . The map φ adds λ j

cells to βi and λk cells to γi , where λ j � λk . Therefore βi + λ j > γi + λk . Since the parts of φ(λ,β)

and φ(λ,γ ) are equal after part i, we have φ(λ,β) � φ(λ,γ ).
Next assume that λ(β) � λ(γ ). Consider the smallest i such that the ith largest part β j of β is not

equal to the ith largest part γk of γ . The map φ adds λi cells to β j and to γk , so that β j +λi > γk +λi .
Since the largest i − 1 parts of φ(λ,β) and φ(λ,γ ) are equal, we have λ(φ(λ,β)) � λ(φ(λ,γ )).

We now use the claim to complete the proof. Following the proof of Theorem 4, we arrange the
products sλMβ as row vectors written in the basis of quasisymmetric Schur polynomials. The claim
shows that the corresponding matrix is upper-unitriangular. Thus Mn,d forms a basis for QSymn,d , as
desired. �
5.2. Triangularity

It was shown in Section 4 that the transition matrix between the bases C and {Sα} is triangular
with respect to the lexrev ordering. Here, we show that a stronger condition holds: it is triangular
with respect to a natural partial ordering on compositions. Every composition α has a corresponding
partition λ(α) obtained by arranging the parts of α in weakly decreasing order. A partition λ is said
to dominate a partition μ iff

∑k
i=1 λi �

∑k
i=1 μi for all k. Let Cα

λ,β be the coefficient of Sα in the
expansion of the product sλSβ .

Theorem 11. If λ(α) is not dominated by λ(φ(λ,β)), then Cα
λ,β = 0.
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Proof. Let (λ,β) be an arbitrary element of PBn,d and let α be an arbitrary element of Cn,d . Set
γ := φ(λ,β). If γ � α then Cα

λ,β = 0 (by the proof of Theorem 4) and we are done.
Hence, assume that α � φ(λ,β) = γ and that λ(α) is not dominated by λ(γ ). Let k be the smallest

positive integer such that
∑k

i=1 λ(α)i >
∑k

i=1 λ(γ )i . (Such an integer exists since λ(α) is not dom-

inated by λ(γ ).) Therefore
∑k

i=1 λ(α)i − ∑k
i=1 λ(β)i >

∑k
i=1 λ(γ )i − ∑k

i=1 λ(β)i and there are more
entries in the longest k rows of α ⊇ β then there are in the longest k rows of γ ⊇ β . This implies
that there are more than

∑k
i=1 λi entries from α ⊇ β contained in the longest k rows of α, since

there are
∑k

i=1 λi entries in the longest k rows of γ ⊇ β . This implies that in a Littlewood–Richardson
composition tableau of shape α ⊇ β , the longest k rows must contain an entry less than L − k + 1
where L = l(λ).

The rightmost entry in the ith longest row of α ⊇ β must be L − i + 1 for otherwise the filling
would not satisfy the reverse lattice condition. This means that the longest k rows of α must contain
only entries greater than or equal to L − i + 1, which contradicts the assertion that an entry less than
L − k + 1 appears among the k longest rows of α. Therefore there is no such Littlewood–Richardson
composition tableau of shape α and so Cα

λ,β = 0. �
5.3. Integrality

Up to this point, we have been working with the symmetric and quasisymmetric polynomials
over the rational numbers, but their defining properties are equally valid over the integers. Briefly,
bases for Symn(Z) and QSymn(Z) are the Schur polynomials sλ and the monomial quasisymmetric
polynomials Mα , respectively. See [13] and [10] for details.

Lemma 12. The polynomials {Sα: l(α) � n} form a basis of QSymn(Z).

Proof. Lemma 8 states that the change of basis matrix K from {Sα} to {Mα} is upper-unitriangular
and integral. In particular, K is invertible over Z, meaning that {Sα} is a basis for QSymn(Z). �

One consequence of the proof of Theorem 4 is that Cφ(λ,β)
λ,β = 1. (See Remark 6.) We exploit this

fact below to prove stronger versions of Conjectures (Q1) and (Q3).

Corollary 13. The algebra QSymn(Z) is a free module over Symn(Z). A basis is given by {sλSβ : β ∈ Πn,

l(λ) � n, and l(β) � n}. Replacing Sβ by Mβ results in an alternative basis.

Proof. Theorem 4 combines with Proposition 1 (and the fact that Cφ(λ,β)
λ,β = 1) to establish an upper-

unitriangular, integral change of basis matrix C between {Sα: l(α) � n} and {sλSβ : β ∈ Πn, l(λ) � n,
and l(β) � n}. Since the former is an integral basis for QSymn(Z), so is the latter. Composition of K ,
C and K −1 establishes the result for the monomial quasisymmetric polynomials. �
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