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Abstract 

Let Fc denote the basic quasi-symmetric functions, in Gessel's notation (1984) (C any com- 
position). The plethysm sz oFc is a positive linear combination of functions Fo. Under certain 
conditions, the image under the involution ~o of a quasi-symmetric function defined by equali- 
ties and inequalities of the variables is obtained by negating the inequalities. (~) 1998 Elsevier 
Science B.V. All fights reserved 

AMS Classification: 05E05 

O. In~oduefion 

Quasi-symmetric functions are a generalization of symmetric functions. They ap- 
pear in [1-4,8-12] in connection with enumeration of permutations, the Robinson- 
Schensted correspondence, reduced decompositions, (P, ¢o)-partitions, the descent alge- 
bra and noncommutative symmetric functions. 

We consider here the 2-ring structure of the ring of quasi-symmetric functions, i.e., 
the plethysm of a quasi-symmetric functions into a symmetric function. We show 
that the plethysm s~oFc is a positive linear combination of Fo's, which are the 
basic functions defined in [3]. We also study quasi-symmetric functions defined by 
inequality/equality conditions on the variables, and give a condition which ensures 
that the conjugate (image under the involution to) of these functions is obtained by 
reversing the inequalities, and exchanging strict and large inequalities (a well-known 
phenomenon for Schur functions). 
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The proofs use the theory of (P, og)-partitions, together with a generalization of it, 
and a result of [5], expressing the lexicographic order without using equality. 

1. Quasi-symmetric functions 

The ring QSym of quasi-symmetric functions is the free Z-module over the functions 
Mc E Z[[X]], X a totally ordered infinite set of commuting varibales, defined for any 
composition C = (Cl . . . . .  ck) by 

M C =  ~ XClI*''xCkk. 
Xl < ,.. <x k 

QSym has another basis (Fc), related to (Mc) by 

Fc = )-~MD, (1.1) 
D 

where the sum is over all compositions D which are finer than C, e.g., F21 ----M21"~-Mlll. 

These functions are also defined by the formula 

FC = 2 X  x " " "X n 

where the sum is subject to the conditions xi<~xi+x, and xi<x~+l if iES, the subset 
of {1 . . . . .  n - 1} associated to C. For these results, see [3]. Note that in [2], the Mc 
are called quasi-monomial functions and the Fc quasi-ribbon functions. 

2. Plethysm 

The ring Z[[X]] is a 2-ring, where the Adams operators ~'t are the continuous 
ring endomorphisms of Z[[X]] defined by ~q(x)--x t for all x in X. Then clearly 
~l(Mc)=Mtc, where lC=(lcl ..... lck). Hence QSym is a sub-2-ring. If  g is any 
symmetric function and F any quasi-symmetric function, we may thus define 0 o F, as 
in [6]. The reader who does not like 2-rings may proceed to the next paragraph, where 
we define directly goF, when F is a sum of monomials: this is the only case that we 
use in Theorem 2.1. 

If  F=~,i~imi(* ) is written as a sum of monomials, then ooF=g(mi, iEI), i.e. 
o o F  is obtained by replacing the variables of 9 by the monomials mi; this classical 
result may be seen as follows: the mappings g ~ - , g o F  and g~--~o(mi, i EI) are both 
algebra homomorphisms of the ring of symmetric functions into QSym. For g = pt, the 
lth power sum, one has ptoF=qll(F)=F(xt,  xEX)=Y]i~im~=pt(mi, iEI), so 
that both endomorphisms coincide on pt. Now, the pt generate the ring of symmetric 
functions, which implies the equality in general (one has to work over Q). 

Observe that since 0 is symmetric, the order chosen in the sum (*) is immaterial. It 
is this operation which we may call plethysm. 
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It is a classical result that for two Schur functions s~ and s,, the plethysm s~ os ,  
is a sum of Schur functions; see [7]. Since the functions Fc play, mutatis mutandis, 
the same role in the theory of quasi-symmetric functions and (P, og)-partitions that the 
Schur functions play in the theory of symmetric functions and tableaux, the following 
result solves a natural question about this plethysm. 

Theorem 2.1. The quasi-symmetric function s~ o Fc is a sum o f  functions Fo. 

By standard formulas in 2-rings, this implies that g o F is a sum of functions Fo, if 
F is a sum of functions Fc and if 0 is a sum of Schur functions. 

Let G be a finite directed graph, with simple edges; let the set E of edges be 
partitioned into two disjoint subsets Es and Ew, and call an edge in Es (resp. Ew) strict 
(resp. weak). A G-partition is a function f : V ~ X such that for any vertices v, v' 
in V, one has f(v)<<,f(v ')  (resp. f ( v ) < f ( v ' ) )  if (v,v') is a weak (resp. strict) edge. 
Then, we define the quasi-symmetric function 

F ( G ) = ~  [-[ f (v) ,  (2.1) 
f vEV 

where the summation is over all G-partitions f .  
To such a graph G, associate the graph G' obtained by reverting the strict edges. 

Lemma 2.2. I f  G and G' are acyclic, then F(G) is a sum o f  Fc's. 

Proof. Since G is acyclic, there is a partial order ~<p on V, which is generated by 
the relations v ~vv ' ,  (v ,v ' )EE,  and which turns V into a poset P. Similarly, there is 
another partial order on V, generated by the edges of the graph G', and which may 
be extended into a linear order on V. Thus, there is a bijection co : V ~ { 1 . . . . .  n} such 
that: ( v, v' ) E Ew ~ ~O( v ) < ~o( v' ), and ( v, v' ) E Es ~ o~( v ) > co( v' ). 

Now, V = P is a labelled poset. Recall that a (P, o~)-partition is a function f : P ~ X  
such that if p ~< v q then f(p)<<, f (q ) ,  and if moreover o ( p ) >  ~o(q), then f ( p ) <  f (q) .  
We verify that P-~o-partitions and G-partitions coincide. 

Let f be a P-~o-partition. If  (v,v') is a weak edge, then v ~<p v', hence f (v)<~f(v ' ) .  
If (v,v') is a strict edge, then ~o(v)>co(v'), and v ~<pV'; thus f ( v ) < f ( v ' ) .  This shows 
that f is a G-partition. Conversely, if f is a G-partition, suppose that p ~< p q. Then, 
by construction of ~<v, there is a chain of vertices p=vo,  vl . . . . .  Vn=q such that 
each (1)/,I)i+l) is an edge in G. Then f(vi)<~f(vi+l), hence f ( p ) < . f ( q ) .  If  more- 
over o~(p)>co(q), then we cannot have co(vi)<o~(vi+l ) for each i, which implies that 
the edges (vi, Vi+l ) are not all weak; hence, some (vi, vi+l ) is strict and f ( v i )< f (v i+ l  ), 
and finally f ( p )  < f ( q ) .  

Now, by a result of Stanley [10] (see also [3]), the quasi-symmetric generating 
function of (P,~o), i.e the right-hand side of (2.1), where the summation if over all P -  
o~-partitions f ,  is equal to ~ Fc(~), where the summation is over all linear extensions 

of the poset P, and where C(~) is the descent composition of the corresponding 
permutation. The lemma follows. [] 
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Let G,H be graphs as before, with G = ( V , E ) ,  H = ( W , F ) .  Consider all graphs K 
with set of  vertices V × W and edges satisfying: there is a weak (resp. strict) edge 

from (v,w) to (v,w ~) in K if  (w,w r) is a weak (resp. strict) edge in H;  there is an 

edge from (v,w) to (v~,w) or from (v~,w) to (v,w), which may be weak or strict, if 

there is an edge from v to v ~ in G. See Fig. 1 for an example of  such graphs G,H 
and K. Strict edges are bold. 

Lemma 2.3. I f  the undirected graph underlying G is a tree and i f  H, H'  are acycfic, 
then the graphs K and K p are acyclic. 

Proof. Suppose there is a closed path in K:(vo, Wo)---+(Vl,Wl)-~".---~(Vn, W n ) :  
(vo, wo), where the (1)i, Wi) are distinct for i = 0  . . . .  , n -  1. Then for each i, either 

vi = vi+l or wi =wi+l;  in the first case, there is an edge wi ~Wi+l in H.  
Hence, there is a closed path in H,  except if  all wi are equal. In this case, we have 

a path in the undirected graph underlying G:vo, vl . . . . .  vn = v0, and the vi are distinct 
for i = 0 . . . . .  n -  1. Since G is a tree, we must have n = 0. Hence, there is no closed 

path in K. 
For K' ,  observe that it is obtained from G and H ' ,  exactly as K was obtained from 

G and H. This shows that K '  is acyclic. [] 

Let A,B be totally ordered sets. Order A × B lexicographically, that is 

( a , b ) < ( d , b ' )  ¢:~ a<a '  or ( a = d  and b<b') .  

A fundamental observation of Gordon [5] is that the weak and strict lexicographical 

order may be defined without using the symbol =. Indeed 

(a,b)<(a~,b ') ¢:~ (a<a '  and b>>.b') or (a<<.d and b<b ' )  

and 

(a,b)<~(a',b') ¢=~ (a<.a' and b<.b') or ( a <  a '  and b>b') .  

Observe that the two cases in both right-hand sides are mutually exclusive, since so 
are the conditions on b and b'. 
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The lexicographic order on A n is defined recursively. Then the previous observations 
imply the following lemma. 

Lemma 2.4. There exist 2" sequences (R1 . . . . .  Rn), with each Ri in {<,  ~<, > ,  9} ,  

such that the condition (al . . . . .  an)<(bl . . . . .  bn) (resp. (al . . . . .  a,)<<.(bl . . . .  ,b , ) )  is 
equivalent to the disjoint union of  the 2" conditions: 

alRlbl and a2R2b2 and . . .and  a,R,b,. (2.2) 

Proof of Theorem 2.1. (1) Let mi, i E 1, be a family of totally ordered monomials. 
Then for any quasi-symmetric function F, the function F(mi, i E I )  is well-defined. 
Take as a family of monomials those appearing in the function Fo (which is multipli- 
city-free by (1.1)). Then s2OFD:SA(mi, iEI).  Since s). is a sum of Fc [3,10,12], it 
is enough to show that Fc(mi, i E I )  is a sum of FE's. We order monomials of equal 
degree, written as an increasing product of variables, by lexicographic order. 

Then denote Fc oFD =Fc(mi, i El ) .  
(2) There exist graphs G and H, whose underlying undirected graphs are paths such 

that F(G)=Fc ,  F(H) =FD. Indeed, we may take W = {1 . . . . .  n}, with (i , i+ 1) a weak 
(resp. strict) edge in H if iq~S (resp. iES ) ,  where S is the subset of (1 , . . . ,n  - 1} 
associated to the composition D. 

Then Fo = ~ f  f ( 1 ) . . ,  f (n ) ,  where the sum is over all H-partitions f .  
(3) Order the H-partitions by lexicographic order: f<<.g if ( f (1)  . . . . .  f(n))<<. 

(g(1) . . . . .  g(n)) in lexicographic order. Then Fc o Fo = Fc(fi(1 ) . . .  f i(n)),  i E I, where 
fi, i E I, are these H-partitions in order. 

Since by Lemma 2.4, the lexicographic order is a disjoint union of relations of the 
form (2.2), we deduce that Fc OFD is a sum of functions F(K), where K is obtained as 
in Lemma 2.3. By Lemma 2.2 this implies that I ' (K) is a sum of FE's and concludes 
the proof. [] 

We illustrate the proof of Theorem 2.1 by the computation of F21 oF2 (with the 
notations of the latter proof). We have F21 - - / ' (G)  and F2 = F(H),  where G and H 
are shown in Fig. 2. 

By using the equations before Lemma 2.4, we find that F21 oF2 is the sum of the 
F(K) for K being each of the four graphs shown in Fig. 3. 

Indeed, we have F21 oF2 : ~albla2b2a3b3 where the sum is over all al,az, a3,bl, 
b2,b3 in X such that ai <<.bi and (al,bl)<<.(a2,b2)<(a3,b3). But the latter condition is 
equivalent to ((al ~<a2 and bl ~<b2) or (al <a2 and bl >b2)) and ((a2 <a3 and b2/>b3) 
or (a2 ~<a3 and b2 <b3)), which in turn is equivalent to the (disjoint) union of the four 
conditions 

or 

(al ~<a~ and bl ~<b2 and a2<a3 and b2>~b3) 

(al ~<a2 and bl ~<b2 and a2~a3 and b2<b3) 
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(al <a2 and bl >b2 and a2<a3 and b2>~b3) 

(al <a2 and bl >b2 and a2<.a3 and b2<b3), 

corresponding to the four graphs in Fig. 3. 

3. Conjugation 

It is well-known that if s~ is a Schur function, then co(s~), the conjugate of s~, with 
the notations of  [7], is obtained from s~ by interchanging strict and large 
inequalities in the combinatorial definition of  s~. For example, if 2 = 32, we have 
s~= ~-]~abcde, where the summation condition is a<~b<<.c, d<~e, a<d,  b<e; next, 
o~(s~) = s~, = s2z i = ~ abcde, where the condition is a < b < e, d < e, a ~< d, b ~< e. 

Note that, since s~ is symmetric, the previous condition may be replaced by a > b > c, 
d > e, a/> d, b t> e. We say that this condition is obtained from the first by conjugation 

(i.e. replace < by I> and ~< by >) .  
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I 

n = 9  

C = (2 ,1 ,4 ,2 )  

I(C)={2,3,7 } 

co(C) = (1,2,1,1,3,1) 

I(~(C)) = {8,6,5,4,1 } 

Fig. 4. 

Note that the notation co here has nothing to do with the co in (P, co)-partitions. We 
apologize for this possible ambiguity. 

We extend this to quasi-symmetric functions. Define co: QSym ~ QSym by 

co(Fc ) = F, occ) , (3.1) 

where co(C) is the composition defined by: I(C) and i(co(C)) are complementary 
subsets of {1 . . . . .  n - 1}, where ICI = n ,  I(C) is {eL,el + c2 . . . . .  Cl + . . .  + ck-1} if 
C =  (cl . . . . .  ck), I(C)---I(C) and C the reverse of C. Equivalently, C and co(C), when 
represented by skew shapes, are transpose each of another. See Fig. 4. 

It has been shown by Gessel (1990, unpublished manuscript; see also [1,8]) that co 
is an involutive antomorphism of QSym, extending the classical automorphism co of 
the ring of symmetric functions [7]. 

We say that a quasi-symmetric function F is defined by a set o f  equality and 
inequality conditions if F = ~ X l . . . x , ,  where the summation is over all xi's in X 
satisfying a set of conditions, each of the form xiRxj, with R E { < ,  ~<, >,  ~>, =} (the 
set depends only on F). 

For example, each Schur function, each Fc or Mc is of this form (e.g. M21 is defined 
by the conditions xl =x2, x2 <x3). The sign of the set of conditions is ( - 1 )  k, where k 
is the number of equalities in the set. The conjugate of the set is obtained, as above, 
by replacing each xi <J9 by xi >~xj and xi <~xj by xi > xj. 

Let C be as above a set of conditions on the variables Xl . . . . .  xn. We define two 
graphs, with directed and undirected edges, with vertices 1, 2 . . . . .  n, as follows: there 
is an undirected edge i -  j in G and G' if xi =:9 is in C, and a directed edge i--~j in 
G (resp. G') ifxi<<.xj or xi<xj (resp. ifxi<<.xj or xi>xj) is in C. 

We say that such a graph is acyclic if there is no closed simple path in it, where a 
path is a compatible sequence of edges (such a graph looks like the streets in a city, 
with one and two-way streets); the path i -  j -  i (i ~ j )  is not considered as a simple 
closed path. 
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Theorem 3.1. Let C be a set of equalities and inequalities, F its associated quasi- 
symmetric function, and ( -  1 )k its sign. I f  the graphs G, G' defined above are acyclic, 
then (-1)k~o(F) is defined by the conjugate set. 

Remark. The reader may verify that the condition of acyclicity implies that for each 
i ~ j ,  one has at most one inequality or equality between xi and xj in C. 

Examples. (1) By Fig. 1, (-o(F2142)=F121131, which are, respectively, defined by the 
conditions xl <.x2 <x3 ~<x4 ~<x5 ~<x6 ~X7 <X8 ~X9 and x9 <x8 ~<x7 <x6 <x5 <x4 ~<x3 ~< 
X2 <Xl. 

(2) By [7], ~o(pk) = (--1)k-lpk, and Pk is defined by the conditions xl =x2 . . . . .  x~. 
( 3 ) More generally, by [ 1,9], co(Mc ) = ( -  1 )lCI - ~(c) )--~O Mz~, where the summation 

is over all compositions D which are less fine than C, and/3 is the reversal of D. For 
example, a~(M231 ) = (-1)6-3(M132 -q- M42 -q- M15 + M6), which may be written 

~o ( ~ abcdef ~ = -  ~ xyztuv-  xyztuv 
k a=b < c = d = e  < f /I  x < y : z = t  < u=v x=  y = z = t  < u=v 

- ~ xyztuv - ~ xyztuv 
x < y = z = t = u = v  x = y = z = t = u = v  

= - ~ xyztuv 
x <~ y = z = t  <~ u=v 

= - ~ abedef. 
a=b >>.c=d=e >~ f 

(4) The theorem applies to all inequality conditions defined by graphs G satisfying 
the hypothesis of Lemma 2.2. In particular, to P - o  g-partitions and Young diagrams. 

We use again the definitions of Section 2. 

Lemma 3.2. Let G be a directed graph, with weak and strict edges. Let og(G) be the 
graph obtained by reversing the edges and exchanging strict and weak edges. I f  G 
and G' are acyclic, then F(og(G))= og(F(G)). 

Proof. We use the proof of Lemma 2.2, and conclude that F(G)= )--~ Fc(~), where 
the sum is over all linear extensions of P. 

Similarly, taking the reverse poset with the same labelling, we find that F(og(G))= 
~ Fc(~), with the same summation condition, where ~ is the reversal of ~. Now, 
C(~)=¢o(C(a)), hence (3.1) implies that F(aJ(G))=og(F(G)). [] 

Proof of Theorem 3.1 (Induction on the number k of equalities). (1) If  k =  0, then 
F=F(G) ,  with the notations of (2.1), where the edges of G corresponding to weak 
(resp. strict) inequalities are weak (resp. strict.). 

Then the graph of the conjugate set of C is ~(G), obtained as in Lemma 3.2. Thus, 
the theorem follows in this case. 
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(2) Suppose now that there is an equality xi =~. in C. We define two sets of equal- 
ities and inequalities, C1 and C2, by replacing xi = ~  by xi <~xj and xi < 9  respectively. 
Let FI,F2 be the corresponding functions. Then F =F1 - F 2 .  Now, the acyclicity of 
the graphs G, G ~ implies that of G1, G' l, G2, G~. Hence, by induction, ( -  1 )k- 109(F l ) 
and (-1)k-l~o(F2) are defined by the sets of conditions 09(Cl) and 09(C2) respec- 
tively. Now, these sets are obtained from 09(C) by replacing in it xi =~. by xi >xj 
and xi ~xj. Hence the functions F',F~,F~ corresponding to 09(C), ~O(Cl ), 09(C2) satisfy 
F ' = F ~ -  F~. Since, as we saw, 09(F1)=(--1)k-lFl, ~o(F2)=(-1)k-lF~, we obtain 
09(F) = co(F1 ) - o~(F2 ) = ( -  1 )k- 1 (F~ - F~ ) = ( -  1 )kF', which is what was to be shown. 
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