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CHROMATIC QUASISYMMETRIC FUNCTIONS AND

HESSENBERG VARIETIES

JOHN SHARESHIAN1 AND MICHELLE L. WACHS2

Abstract. We discuss three distinct topics of independent inter-
est; one in enumerative combinatorics, one in symmetric function
theory, and one in algebraic geometry. The topic in enumerative
combinatorics concerns a q-analog of a generalization of the Euler-
ian polynomials, the one in symmetric function theory deals with
a refinement of the chromatic symmetric functions of Stanley, and
the one in algebraic geometry deals with Tymoczko’s represen-
tation of the symmetric group on the cohomology of the regular
semisimple Hessenberg variety of type A. Our purpose is to explore
some remarkable connections between these topics.
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1. Introduction

Let H(z) :=
∑

n≥0 hnz
n, where hn is the complete homogeneous

symmetric function of degree n. The formal power series

(1.1)
(1− t)H(z)

H(tz)− tH(z)
,

has occurred in various contexts in the literature, including

• the study of a class of q-Eulerian polynomials
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• the enumeration of Smirnov words by descent number
• the study of the toric variety associated with the Coxeter com-
plex of the symmetric group.

We briefly describe these contexts now and give more detail in Sec-
tion 2 with definitions in Section 1.1. In [ShWa1, ShWa2] Shareshian
and Wachs initiated a study of the joint distribution of the Maho-
nian permutation statistic, major index, and the Eulerian permutation
statistic, excedance number. They showed that the q-Eulerian polyno-
mial defined by

∑

σ∈Sn

qmaj(σ)texc(σ)

can be obtained by taking a certain specialization of the coefficient of
zn in (1.1) known as the stable principal specialization. This enabled
them to derive the q-analog of a formula of Euler that is given in (2.9).
The work in [ShWa1] led Stanley to derive a refinement of a formula

of Carlitz, Scoville and Vaughan [CaScVa] for the enumerator of words
over the alphabet P with no adjacent repeats (see [ShWa2]). These
are known as Smirnov words. In Stanley’s refinement the Smirnov
words are enumerated according to their number of descents and the
enumerator is equal to the symmetric function obtained by applying
the standard involution ω on the ring of symmetric functions to (1.1).
In another direction, Stanley [St2, Proposition 7.7] used a formula

of Procesi [Pr] to show that (1.1) is the generating function for the
Frobenius characteristic of the representation of the symmetric group
Sn on the cohomology of the toric variety associated with the Coxeter
complex of type An−1.
The q-Eulerian polynomial, the Smirnov word enumerator, and the

Sn-representation on the cohomology of the toric variety all have very
nice generalizations. In this paper we discuss these generalizations and
explore the relationships among these generalizations and the ramifi-
cations of the relationships. The proofs of the results surveyed here
either have appeared in [ShWa2] or will appear in [ShWa4].
The generalization of the q-Eulerian numbers, as defined in [ShWa4],

is obtained by considering the joint distribution of a Mahonian statistic
of Rawlings [Ra] that interpolates between inversion number and major
index, and a generalized Eulerian statistic of De Mari and Shayman
[DeSh]. We discuss these generalized q-Eulerian numbers and a more
general version of them associated with posets in Section 3.
The generalization of the Smirnov word enumerator, as defined in

[ShWa4], is a refinement of Stanley’s well known chromatic symmet-
ric function [St5], which we call a chromatic quasisymmetric function.
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In Section 3 we report on results on the chromatic quasisymmetric
functions, which are proved in [ShWa4]. In particular we present a re-
finement of Gasharov’s [Ga] expansion of certain chromatic symmetric
functions in the Schur basis and a refinement of Chow’s [Ch] expansion
in the basis of fundamental quasisymmetric functions. We also present
a conjectured refinement of Stanley’s [St5] expansion in the power-sum
basis and a refinement of the conjecture of Stanley and Stembridge (see
[StSte, Conjecture 5.5] and [St5, Conjecture 5.1]) on e-positivity.
The generalization of the toric variety associated with the type A

Coxeter complex is the regular semisimple Hessenberg variety of type
A first studied by De Mari and Shayman [DeSh] and further studied
by De Mari, Procesi and Shayman [DePrSh]. Tymoczko [Ty3] de-
fined a representation of the symmetric group on the cohomology of
this Hessenberg variety, which generalizes the representation studied
by Procesi and Stanley. This generalization is described in more detail
in Section 5.
In Section 4 we present the following extension of the relation be-

tween q-Eulerian polynomials and Smirnov words. As noted above, we
can associate to a finite poset P a generalized q-Eulerian polynomial,
which will be denoted by AP (q, t). Let XG(x, t) denote the chromatic
quasisymmetric function of a graph G.

Theorem 1.1 (Corollary 4.18). Let G be the incomparability graph of
a poset P on [n]. Then

AP (q, t) = (q; q)n ps(ωXG(x, t)),

where ps denotes stable principal specialization.

In Section 5 we discuss the following conjectured generalization of
relationship between Smirnov words and the representation of the sym-
metric group on the cohomology of the toric variety.

Conjecture 1.2 (Conjecture 5.3). Let G be the incomparability graph
of a natural unit interval order P . Then

ωXG(x, t) =

|E(G)|
∑

j=0

chH2j(H(P ))tj,

where ch denotes the Frobenius characteristic and H2j(H(P )) denotes
Tymoczko’s representation of Sn on the degree 2j cohomology of the
Hessenberg variety H(P ) associated with P .

This conjecture has the potential of providing solutions to several
open problems such as,
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(1) Our conjecture that the generalized q-Eulerian polynomials are
unimodal (Conjecture 3.3). This would follow from Theorem 1.1
and the hard Lefschetz theorem applied to Tymoczko’s repre-
sentation on the cohomology of the Hessenberg variety.

(2) Tymoczko’s problem of finding a decomposition of her repre-
sentation into irreducibles [Ty3]. Such a decomposition would
be provided by the expansion of the chromatic quasisymmetric
functions in the Schur function basis given in Theorem 4.13.

(3) Stanley and Stembridge’s well-known conjecture that the chro-
matic symmetric functions (for unit interval orders) are e-positive
[StSte, St5]. This would be equivalent to Conjecture 5.4 that
Tymoczko’s representation is a permutation representation in
which each point stabilizer is a Young subgroup.

1.1. Preliminaries. We assume that the reader is familiar with some
basic notions from combinatorics and symmetric function theory. All
terms used but not defined in this paper are defined in [St3] or [St4].
Let σ ∈ Sn, where Sn denotes the symmetric group on [n] :=

{1, 2, . . . , n}. The excedance number of σ is given by

exc(σ) := |{i ∈ [n− 1] : σ(i) > i}|.

The descent set of σ is given by

DES(σ) := {i ∈ [n− 1] : σ(i) > σ(i+ 1)}

and the descent number and major index are

des(σ) := |DES(σ)| and maj(σ) :=
∑

i∈DES(σ)

i.

It is well-known that the permutation statistics exc and des are equidis-
tributed on Sn. The common generating functions for these statistics
are called Eulerian polynomials. That is, the Eulerian polynomials are
defined as

An(t) :=
∑

σ∈Sn

tdes(σ) =
∑

σ∈Sn

texc(σ).

Any permutation statistic with generating function An(t) is called an
Eulerian statistic. The Eulerian numbers are the coefficients of the
Eulerian polynomials; they are defined as

an,j := |{σ ∈ Sn : des(σ) = j}| = |{σ ∈ Sn : exc(σ) = j}|,

for 0 ≤ j ≤ n− 1.
It is also well-known that the major index is equidistributed with

the inversion index defined as

inv(σ) = |{(i, j) ∈ [n]× [n] : i < j and σ(i) > σ(j)}|
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and that
∑

σ∈Sn

qmaj(σ) =
∑

σ∈Sn

qinv(σ) = [n]q!,

where

[n]q := 1 + q + · · ·+ qn−1 and [n]q! := [n]q[n− 1]q . . . [1]q.

Any permutation statistic equidistributed with maj and inv is called a
Mahonian permutation statistic.
Let R be a ring with a partial order relation, e.g., Q with its usual

total order. Given a sequence (a0, a1, . . . , an) of elements of R we say
that the sequence is palindromic with center of symmetry n

2
if aj = an−j

for 0 ≤ j ≤ n. The sequence is said to be unimodal if

a0 ≤ a1 ≤ · · · ≤ ac ≥ ac+1 ≥ ac+2 ≥ · · · ≥ an

for some c. The sequence is said to be positive if ai ≥ 0 for each i.
We say that the polynomial A(t) := a0 + a1t+ · · ·+ ant

n ∈ R[t]− {0}
is positive, palindromic and unimodal with center of symmetry n

2
if

(a0, a1, . . . , an) has these properties.
Let ΛQ be the ring of symmetric functions in variables x1, x2, . . .

with coefficients in Q and let b be any basis for ΛQ. If f is a symmet-
ric function whose expansion in b has nonnegative coefficients, we say
that f is b-positive. This induces a partial order relation on the ring ΛQ

given by f ≤b g if g−f is b-positive. We use this partial order to define
b-unimodality of sequences of symmetric functions in ΛQ and polyno-
mials in ΛQ[t]. Similarly, when we say that a sequence of polynomials
in Q[q1, . . . , qm] or a polynomial in Q[q1, . . . , qm][t] is unimodal, we are
using the partial order relation on Q[q1, . . . , qm] defined by f(q) ≤ g(q)
if g(q)− f(q) has nonnegative coefficients.
The bases for ΛQ that are relevant here are the Schur basis (sλ)λ∈Par,

the elementary symmetric function basis (eλ)λ∈Par, the complete homo-
geneous symmetric function basis (hλ)λ∈Par, and the power-sum sym-
metric function basis (z−1

λ pλ)λ∈Par, where Par is the set of all integer
partitions,

zλ :=
∏

i

mi(λ)! i
mi(λ)

and mi(λ) is the number of parts of λ equal to i. These are all integral
bases in that every symmetric function in the ring ΛZ of symmetric
functions over Z is an integral linear combination of the basis elements.
The next two propositions give basic tools for establishing unimodal-

ity.
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Proposition 1.3 (see [St2, Proposition 1]). Let A(t) and B(t) be posi-
tive, palindromic and unimodal polynomials in Q[t] with respective cen-
ters of symmetry cA and cB. Then

(1) A(t)B(t) is positive, palindromic and unimodal with center of
symmetry cA + cB.

(2) If cA = cB then A(t) + B(t) is positive, palindromic and uni-
modal with center of symmetry cA.

Proposition 1.4. Let b := (bλ)λ be a basis for ΛQ. The polyno-
mial f(t) ∈ ΛQ[t] is b-positive, palindromic and b-unimodal with center
of symmetry c if and only if each coefficient aλ(t) in the expansion
f(t) =

∑

λ aλ(t)bλ is positive, palindromic and unimodal with center of
symmetry c.

For example, from Proposition 1.3 (1) we see that [n]t! is posi-

tive, palindromic and unimodal with center of symmetry n(n+1)
4

. From
Propositions 1.3 and 1.4 we have that [5]t[2]th(5,2) + [4]t[3]th(4,3) is h-
positive, palindromic and h-unimodal with center of symmetry 5/2.
Recall that the Frobenius characteristic ch is a ring isomorphism

from the ring of virtual representations of the symmetric groups to ΛZ.
It takes the irreducible Specht module Sλ to the Schur function sλ. As
is customary, we use ω to denote the involution on ΛQ that takes hi to
ei. Recall ω(sλ) = sλ′ for all λ ∈ Par, where λ′ denotes the conjugate
shape.
For any ring R, let QR be the ring of quasisymmetric functions in

variables x1, x2, . . . with coefficients in R. For n ∈ P and S ⊆ [n− 1],
let D(S) be the set of all functions f : [n] → P such that

• f(i) ≥ f(i+ 1) for all i ∈ [n− 1], and
• f(i) > f(i+ 1) for all i ∈ S.

Recall Gessel’s fundamental quasisymmetric function

Fn,S :=
∑

f∈D(S)

xf ,

where xf := xf(1)xf(2) · · ·xf(n). It is straightforward to confirm that
Fn,S ∈ QZ. In fact (see [St4, Proposition 7.19.1]), {Fn,S : S ⊆ [n−1]} is
a basis for the free Z-module of homogeneous degree n quasisymmetric
functions with coefficients in Z.
See [St4] for further information on symmetric functions, quasisym-

metric functions and representations.
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2. q-Eulerian numbers and toric varieties

It is well known that the Eulerian numbers (an,0, an,1, . . . , an,n−1)
form the h-vector of the Coxeter complex ∆n of the symmetric group
Sn. Danilov and Jurciewicz (see [St2, eq. (26)]) showed that the jth
entry of the h-vector of any convex simplicial polytope P is equal to
dimH2j(V(P )) where V(P ) is the toric variety associated with P and
H i(V(P )) is the degree i singular cohomology of V(P ) over C. (In odd
degrees cohomology vanishes.) It follows that

(2.1) an,j = dimH2j(V(∆n)),

for all j = 0, . . . , n− 1.
It is also well known that the Eulerian numbers are palindromic and

unimodal. Although there are elementary ways to prove this result,
palindromicity and unimodality can be viewed as consequences of the
hard Lefschetz theorem applied to the toric variety V(∆n).
The classical hard Lefschetz theorem states that if V is a projective

smooth variety of complex dimension n then there is a linear operator φ
on H∗(V) sending each H i(V) to H i+2(V) such that for 0 ≤ i ≤ 2n−2,
the map φn−i : H i(V) → H2n−i(V) is a bijection. It follows from this
that the sequence of even degree Betti numbers and the sequence of odd
degree Betti numbers are palindromic and unimodal. Since V(∆n) is a
smooth variety, it follows that the Eulerian numbers form a palindromic
and unimodal sequence. See [St1, St2] for further information on the
use of the hard Lefschetz theorem in combinatorics.

2.1. Action of the symmetric group. The symmetric group Sn

acts naturally on the Coxeter complex ∆n and this induces a repre-
sentation of Sn on cohomology of the toric variety V(∆n). Procesi
[Pr] derived a recursive formula for this representation, which Stanley
[St2, see Proposition 12] used to obtain the following formula for the
Frobenius characteristic of the representation,

(2.2) 1 +
∑

n≥1

n−1
∑

j=0

chH2j(V(∆n))t
jzn =

(1− t)H(z)

H(tz)− tH(z)
.

(See [Ste1, Ste2, DoLu, Le] for related work on this representation.)
This is a symmetric function analog of the classical formula of Euler,

(2.3) 1 +
∑

n≥1

n−1
∑

j=0

an,jt
j z

n

n!
=

(1− t)ez

etz − tez
.

An immediate consequence of (2.2) is that chH2j(V(∆n)) is h-positive,
which is equivalent to saying that the linear representation of Sn on
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H2j(V(∆n)) is obtained from an action on some set in which each point
stabilizer is a Young subgroup. Formula (2.2) has a number of addi-
tional interesting, but not so obvious, consequences. We discuss some
of them below.
Stembridge [Ste1] uses (2.2) to characterize the multiplicity of each

irreducible Sn-module in H2j(V(∆n)) in terms of marked tableaux. A
marked tableau of shape λ is a semistandard tableau of shape λ with
entries in {0, 1, . . . , k} for some k ∈ N, such that each a ∈ [k] occurs at
least twice in the tableau, together with a mark on one occurrence of
each a ∈ [k]; the marked occurrence cannot be the leftmost occurrence.
The index of a marked a is the number of occurrences of a to the left of
the marked a. The index of a marked tableau is the sum of the indices
of the marked entries of the tableau.

Theorem 2.1 (Stembridge [Ste1]). Let λ ⊢ n. The multiplicity of the
irreducible Specht module Sλ in H2j(V(∆n)) is the number of marked
tableaux of shape λ and index j.

Recently, Shareshian and Wachs [ShWa4] obtained a different for-
mula for the multiplicity of Sλ in terms of a different type of tableau
(see Corollary 4.14).
The character of H2j(V(∆n)) can be obtained from the following

expansion in the p-basis.

Theorem 2.2 (Stembridge [Ste1], Dolgachev and Lunts [DoLu]). For
all n ≥ 1,

n−1
∑

j=0

chH2j(V(∆n))t
j =

∑

λ⊢n

Al(λ)(t)
∏

i

[λi]t z
−1
λ pλ .

2.2. Expansion in the basis of fundamental quasisymmetric

functions. In their study of q-Eulerian numbers [ShWa1, ShWa2],
Shareshian and Wachs obtain a formula for the expansion of the right
hand side of (2.2) in the basis of fundamental quasisymmetric func-
tions. In order to describe this decomposition the notion of DEX set
of a permutation is needed. For n ≥ 1, we set

[n] := {1, . . . , n}

and totally order the alphabet [n] ∪ [n] by

(2.4) 1 < . . . < n < 1 < . . . < n.

For a permutation σ = σ1 . . . σn ∈ Sn, we define σ to be the word over
alphabet [n] ∪ [n] obtained from σ by replacing σi with σi whenever
i ∈ EXC(σ). For example, if σ = 531462 then σ = 531462. We define
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a descent in a word w = w1 . . . wn over any totally ordered alphabet to
be any i ∈ [n− 1] such that wi > wi+1 and let DES(w) be the set of all
descents of w. Now, for σ ∈ Sn, we define

DEX(σ) := DES(σ).

For example, DEX(531462) = DES(531462) = {1, 4}.

Theorem 2.3 (Shareshian and Wachs [ShWa2, Theorem 1.2]).

(2.5) 1 +
∑

n≥1

∑

σ∈Sn

Fn,DEX(σ)t
exc(σ)zn =

(1− t)H(z)

H(tz)− tH(z)
.

Corollary 2.4 ([ShWa2, Theorem 7.4]). For 0 ≤ j ≤ n− 1,

chH2j(V(∆n)) =
∑

σ ∈ Sn

exc(σ) = j

Fn,DEX(σ) .

Expansion in the basis of fundamental quasisymmetric functions is
useful because it can yield interesting results about permutation statis-
tics via specialization. For a quasisymmetric function Q(x1, x2, . . .) ∈
QR, the stable principal specialization ps(Q) ∈ R[[q]] is, by definition,
obtained from Q by substituting qi−1 for xi for each i ∈ P. Now (see
for example [St4, Lemma 7.19.10]), for any n ∈ P and S ⊆ [n− 1], we
have

(2.6) ps(Fn,S) = (q; q)−1
n q

∑
i∈S i,

where

(p; q)n =

n
∏

j=1

(1− pqj−1).

From Corollary 2.4 and the fact that that
∑

i∈DEX(σ) i = maj(σ) −

exc(σ) (see [ShWa2, Lemma 2.2]) we obtain the following q-analog of
(2.1).

Corollary 2.5. For 0 ≤ j ≤ n− 1,

(q; q)n ps(chH2j(V(∆n))) = an,j(q),

where

(2.7) an,j(q) :=
∑

σ ∈ Sn

exc(σ) = j

qmaj(σ)−exc(σ).



10 SHARESHIAN AND WACHS

The q-Eulerian numbers an,j(q) defined in Corollary 2.5 were initially
studied in [ShWa1, ShWa2] and have been further studied in [ShWa3,
FoHa1, FoHa2, SaShWa, HeWa]. Define the q-Eulerian polynomials,

(2.8) An(q, t) :=
n−1
∑

j=1

an,j(q)t
j =

∑

σ∈Sn

qmaj(σ)−exc(σ)texc(σ).

In [ShWa1, ShWa2], the following q-analog of Euler’s formula (2.3) was
obtained via specialization of (2.5),

(2.9) 1 +
∑

n≥1

An(q, t)
zn

[n]q!
=

(1− t) expq(z)

expq(tz)− t expq(z)
,

where

expq(z) :=
∑

n≥0

zn

[n]q!
.

It is surprising that when one evaluates an,j(q) at any nth root of
unity, one always gets a positive integer.

Theorem 2.6 (Sagan, Shareshian, and Wachs [SaShWa, Corollary
6.2]). Let dm = n and let ξd be any primitive dth root of unity. Then

An(ξd, t) = Am(t)[d]
m
t .

Consequently An(ξd, t) is a positive, palindromic, unimodal polynomial
in Z[t].

Theorem 2.2, Corollary 2.5 and the following result, which is implicit
in [De] and stated explicitly in [SaShWa], can be used to give a proof
of Theorem 2.6.

Lemma 2.7. Suppose u(q) ∈ Z[q] and there exists a homogeneous
symmetric function U of degree n with coefficients in Z such that

u(q) = (q; q)n ps(U).

If dm = n then u(ξd) is the coefficient of z−1
dmpdm in the expansion of U

in the power-sum basis.

2.3. Unimodality. Let us now consider what the hard Lefschetz the-
orem tells us about the sequence (chH2j(V(∆n)))0≤j≤n−1. Since the
action of the symmetric group Sn commutes with the hard Lefschetz
map φ (see [St2, p. 528]), we can conclude that for 0 ≤ i ≤ n the
map φ : H i(V(∆n)) → H i+2(V(∆n)) is an Sn-module monomorphism.
Hence, by Schur’s lemma, for each λ ⊢ n, the multiplicity of the Specht
module Sλ in H i(V(∆n)) is less than or equal to the multiplicity in
H i+2(V(∆n)). Equivalently, the coefficient of the Schur function sλ in
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the expansion of chH i(V(∆n)) in the Schur basis is less than or equal
to the coefficient in chH i+2(V(∆n)). Hence, it follows from the hard
Lefschetz theorem that the sequence (chH2j(V(∆n)))0≤j≤n−1 is palin-
dromic and Schur-unimodal.
The following lemma is useful for establishing unimodality of poly-

nomials in Q[q][t].

Lemma 2.8 (see for example [ShWa2, Lemma 5.2]). If U is a Schur-
positive homogeneous symmetric function of degree n then

(q; q)nps(U)

is a polynomial in q with nonnegative coefficients.

It follows from Lemma 2.8 and Corollary 2.5 that the palindromicity
and Schur-unimodality of (chH2j(V(∆n)))0≤j≤n−1 can be specialized to
yield the following q-analog of the palindromicity and unimodality of
the Eulerian numbers.

Theorem 2.9 (Shareshian and Wachs [ShWa2, Theorem 5.3]). For
any n ∈ P, the sequence (an,j(q))0≤j≤n−1 is palindromic and unimodal.

We remark that it is not really necessary to use the hard Lefschetz
theorem to establish the above mentioned unimodality results. In fact,
by manipulating the right hand side of (2.2) we obtain (2.10) below1.
The palindromicity and h-unimodality consequences follow by Propo-
sitions 1.3 and 1.4.

Theorem 2.10 (Shareshian and Wachs [ShWa4]). For all n ≥ 1,
(2.10)
n−1
∑

j=0

chH2j(V(∆n))t
j =

⌊n+1
2

⌋
∑

m=1

tm−1
∑

k1,...,km≥2∑
ki=n+1

m
∏

i=1

[ki − 1]t hk1−1hk2 · · ·hkm

Consequently, the sequence (chH2j(V(∆n)))0≤j≤n−1 is h-positive, palin-
dromic and h-unimodal.

By specializing (2.10) we obtain the following result. Recall that the
q-analog of the multinomial coefficients is defined by

[

n
k1, . . . , km

]

q

:=
[n]q!

[k1]q! · · · [km]q!

for all k1, . . . , km ∈ N such that
∑n

i=1 ki = n.

1This formula is different from a similar looking formula given in [ShWa2, Corol-
lary 4.2].
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Corollary 2.11. For all n ≥ 1,

An(q, t) =

⌊n+1
2

⌋
∑

m=1

tm−1
∑

k1,...,km≥2∑
ki=n+1

m
∏

i=1

[ki − 1]t

[

n
k1 − 1, k2, . . . , km

]

q

.

Consequently, An(q, t) is a palindromic and unimodal polynomial in t.

2.4. Smirnov words. The expression on the right hand side of (2.2)
has appeared in several other contexts (see [ShWa2, Section 7]). We
mention just one of these contexts here.
A Smirnov word is a word with no equal adjacent letters. Let Wn be

the set of all Smirnov words of length n over alphabet P. Define the
enumerator

Yn,j(x1, x2, . . . ) :=
∑

w ∈ Wn

des(w) = j

xw,

where xw := xw(1) · · ·xw(n). (Here we are calculating des(w) using
the standard total order on P.) A formula for the generating func-

tion of Yn :=
∑n−1

j=0 Yn,j was initially obtained by Carlitz, Scoville

and Vaughan [CaScVa] and further studied by Dollhopf, Goulden and
Greene [DoGoGr] and Stanley [St5]. Stanley pointed out to us the fol-
lowing refinement of this formula. This refinement follows from results
in [ShWa2, Section 3.3] by P-partition reciprocity.

Theorem 2.12 (Stanley (see [ShWa2, Theorem 7.2])).

(2.11)
∑

n,j≥0

Yn,j(x)t
jzn =

(1− t)E(z)

E(zt)− tE(z)
,

where E(z) :=
∑

n≥0 enz
n and en is the elementary symmetric function

of degree n.

Corollary 2.13. For 0 ≤ j ≤ n− 1,

chH2j(V(∆n)) = ωYn,j.

3. Rawlings major index and generalized Eulerian

numbers

In [Ra], Rawlings studies Mahonian permutation statistics that in-
terpolate between the major index and the inversion index. Fix n ∈ P
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and k ∈ [n]. For σ ∈ Sn, set

DES≥k(σ) := {i ∈ [n− 1] : σ(i)− σ(i+ 1) ≥ k},

maj≥k(σ) :=
∑

i∈DES≥k

i,

INV<k(σ) := {(i, j) ∈ [n]× [n] : i < j and 0 < σ(i)− σ(j) < k},

inv<k(σ) := |INV<k(σ)|.

Now define the Rawlings major index to be

rmajk(σ) := inv<k(σ) + maj≥k(σ).

Note that rmaj1 and rmajn are, respectively, the well studied major
index maj and inversion number inv. Rawlings shows in [Ra] that each
rmajk is a Mahonian statistic, that is,

(3.1)
∑

σ∈Sn

qrmajk(σ) = [n]q! .

For a proof of (3.1) that is different from that of Rawlings and a gen-
eralization of (3.1) from permutations to labeled trees, see [LiWa].
In [DeSh] De Mari and Shayman introduce a class of numbers, closely

related to the Rawlings major index, which they call generalized Euler-
ian numbers. For k ∈ [n] and 0 ≤ j define the De Mari-Shayman
generalized Eulerian numbers to be

a
(k)
n,j := |{σ ∈ Sn : inv<k(σ) = j}|.

Note that inv<2(σ) = des(σ−1), which implies that a
(2)
n,j = an,j , justify-

ing the name “generalized Eulerian numbers”. De Mari and Shayman
introduce the generalized Eulerian numbers in connection with their
study of Hessenberg varieties. It follows from their work and the hard
Lefschetz theorem that for each fixed k ∈ [n], the generalized Eulerian

numbers (a
(k)
n,j)j≥0 form a palindromic unimodal sequence of numbers.

In [ShWa4] Shareshian and Wachs consider a q-analog of the De
Mari-Shayman generalized Eulerian numbers defined for k ∈ [n] and
0 ≤ j by

a
(k)
n,j(q) :=

∑

σ ∈ Sn

inv<k(σ) = j

qmaj≥k(σ).

Similarly, the generalized q-Eulerian polynomials are defined by

A(k)
n (q, t) =

∑

σ∈Sn

qmaj≥k(σ)tinv<k(σ).
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Now (3.1) is equivalent to,

A(k)
n (q, q) = [n]q!.

We now consider the question of whether unimodality and other

known properties of the generalized Eulerian numbers a
(k)
n,j extend to

the generalized q-Eulerian numbers a
(k)
n,j(q). Although it is not at all

obvious, it turns out that in the case k = 2, the generalized q-Eulerian
numbers are equal to the q-Eulerian numbers defined in (2.7),

a
(2)
n,j(q) = an,j(q)

(see Theorem 4.19). Hence by Theorem 2.9, unimodality holds when
k = 2. We consider this question in a more general setting, which we
now describe.
Let E(G) denote the edge set of a graph G. For σ ∈ Sn and G a

graph with vertex set [n], the G-inversion set of σ is

INVG(σ) := {(i, j) : i < j, σ(i) > σ(j) and {σ(i), σ(j)} ∈ E(G)}

and the G-inversion number is

invG(σ) := |INVG(σ)|.

For σ ∈ Sn and P a poset on [n], the P -descent set of σ is

DESP (σ) := {i ∈ [n− 1] : σ(i) >P σ(i+ 1)},

and the P -major index is

majP (σ) :=
∑

i∈DESP (σ)

i.

Define the incomparability graph inc(P ) of a poset P on [n] to be the
graph with vertex set [n] and edge set {{a, b} : a 6≤P b and b 6≤P a}.
For 0 ≤ j ≤ |E(inc(P ))| define the (q, P )-Eulerian numbers,

aP,j(q) :=
∑

σ ∈ Sn

invinc(P )(σ) = j

qmajP (σ),

and the (q, P )-Eulerian polynomials

AP (q, t) :=

|E(inc(P ))|
∑

j=0

aP,j(q)t
j =

∑

σ∈Sn

qmajP (σ)tinvinc(P )(σ).

Define Pn,k to be the poset on vertex set [n] such that i < j in Pn,k

if and only if j − i ≥ k and let Gn,k be the incomparability graph of
Pn,k. Then

DES≥k(σ) = DESPn,k
(σ)
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and
INV<k(σ) = INVGn,k

(σ).

Hence if P = Pn,k, we have aP,j(q) = a
(k)
n,j(q) and AP (q, t) = A

(k)
n (q.t).

The unimodality property that holds for the (q, P )-Eulerian numbers
in case P = Pn,2 does not hold for general P . Indeed, consider the poset
P on [3] whose only relation is 1 < 2. We have

(3.2) AP (q, t) := (1 + q) + 2t+ (1 + q2)t2,

which is neither palindromic as a polynomial in t, nor unimodal. The
property AP (q, q) = [n]q! fails as well. However there is a very nice
class of posets for which unimodality seems to hold.
A unit interval order is a poset that is isomorphic to a finite collection

I of intervals [a, a+1] on the real line, partially ordered by the relation
[a, a+ 1] <I [b, b+ 1] if a+ 1 < b. Define a natural unit interval order
to be a poset P on [n] that satisfies the following conditions

(1) x <P y implies x < y in the natural order on [n]
(2) if the direct sum {x <P z} + {y} is an induced subposet of P

then x < y < z in the natural order on [n].

It is not difficult to see that every natural unit interval order is a unit
interval order and that every unit interval order is isomorphic to a
unique natural unit interval order. The poset Pn,k is an example of a
natural unit interval order.
It is a consequence of a result of Kasraoui [Ka, Theorem 1.8] that if

P is a natural unit interval order then invinc(P ) + majP is Mahonian.
In other words, if P is a natural unit interval order on [n] then

AP (q, q) = [n]q! .

From the work of De Mari, Procesi and Shayman [DePrSh] we have
the following result. The proof is discussed in Section 5.

Theorem 3.1 (see [St3, Exercise 1.50 (f)]). Let P be a natural unit
interval order. Then the P -Eulerian polynomial AP (1, t) is palindromic
and unimodal.

Palindromicity of the q-analog AP (q, t) follows from results discussed
in Section 4 and unimodality is implied by a conjecture discussed in
Section 4.

Theorem 3.2 (Shareshian and Wachs [ShWa4]). Let P be a natural
unit interval order on [n]. Then the sequence (aP,j(q))0≤j≤|E(inc(P ))| is
palindromic.

Conjecture 3.3. Let P be a natural unit interval order on [n]. Then
the palindromic sequence (aP,j(q))0≤j≤|E(inc(P ))| is unimodal.
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The following conjecture generalizes Theorem 2.6.

Conjecture 3.4. Let P be a natural unit interval order on [n]. If
dm = n then there is a polynomial BP,d(t) ∈ N[t] such that

AP (ξd, t) = BP,d(t)[d]
m
t .

Moreover, (aP,j(ξd))0≤j≤|E(inc(P ))| is a palindromic unimodal sequence of
positive integers.

In addition to the case P = Pn,2 (Theorems 2.9 and 2.6), these
conjectures have been verified for Pn,k when k = 1, n− 2, n− 1, n, and
by computer for all k when n ≤ 8. An approach to proving them in
general will be presented in Sections 4 and 5.

4. Chromatic quasisymmetric functions

4.1. Stanley’s chromatic symmetric functions. Let G be a graph
with vertex set [n] and edge set E = E(G) ⊆

(

[n]
2

)

. A proper P-coloring
of G is a function c from [n] to the set P of positive integers such
that whenever {i, j} ∈ E we have c(i) 6= c(j). Given any function
c : [n] → P, set

xc :=

n
∏

i=1

xc(i).

Let C(G) be the set of proper P-colorings ofG. In [St5], Stanley defined
the chromatic symmetric function of G,

XG(x) :=
∑

c∈C(G)

xc.

It is straightforward to confirm that XG ∈ ΛZ. The chromatic symmet-
ric function is a generalization of the chromatic polynomial χG : P → P,
where χG(n) is the number of proper colorings of G with n colors. In-
deed, XG(1

n) = χG(n), where XG(1
n) is the specialization of XG(x)

obtained by setting xi = 1 for 1 ≤ i ≤ n and xi = 0 for i > n.
Chromatic symmetric functions are studied in various papers, includ-
ing [St5, St6, Ga, Ch, MaMoWa].
We recall Stanley’s description of the power sum decomposition of

XG(x), for arbitrary G with vertex set [n]. We call a partition π =
π1| . . . |πl of [n] into nonempty subsets G-connected if the subgraph of
G induced on each block πi of π is connected. The set ΠG,n of all
G-connected partitions of [n] is partially ordered by refinement (that
is, π ≤ θ if each block of π is contained in some block of θ). We
write µG and 0̂, respectively, for the Möbius function on ΠG,n, and the
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minimum element 1| . . . |n of ΠG,n. For π ∈ ΠG,n, we write par(π) for
the partition of n whose parts are the sizes of the blocks of π.

Theorem 4.1 (Stanley [St5, Theorem 2.6]). Let G be a graph with
vertex set [n]. Then

(4.1) ωXG(x) =
∑

π∈ΠG,n

|µG(0̂, π)|ppar(π).

Consequently ωXG(x) is p-positive.

A poset P is called (r + s)-free if it contains no induced subposet
isomorphic to the direct sum of an r element chain and an s element
chain. A classical result (see [ScSu]) says that a poset is a unit interval
order if and only if it is both (3 + 1)-free and (2 + 2)-free.

Conjecture 4.2 (Stanley and Stembridge [StSte, Conjecture 5.5],
[St5, Conjecture 5.1]). Let G be the incomparability graph of a (3+ 1)-
free poset. Then XG(x) is e-positive.

This conjecture is still open even for unit interval orders. Gasharov
[Ga] obtains the weaker, but still very interesting, result that, under
the assumptions of Conjecture 4.2, XG(x) is Schur-positive. Let P be
a poset on n and let λ be a partition if n. Gasharov defines a P -tableau
of shape λ to be a filling of a Young diagram of shape λ (in English
notation) with elements of P such that

• each element of P appears exactly once,
• if y ∈ P appears immediately to the right of x ∈ P , then
y >P x, and

• if y ∈ P appears immediately below x ∈ P , then y 6<P x.

Given a P -tableau T , let λ(T ) be the shape of T . Let TP be the set
of all P -tableaux.

Theorem 4.3 (Gasharov [Ga]). Let P be a (3 + 1)-free poset. Then

Xinc(P )(x) =
∑

T∈TP

sλ(T ).

4.2. A quasisymmetric refinement. We define the chromatic qua-
sisymmetric function of G as

XG(x, t) :=
∑

c∈C(G)

tasc(c)xc,

where

asc(c) := |{{i, j} ∈ E(G) : i < j and c(i) < c(j)}|.

It is straightforward to confirm that XG(x, t) ∈ QZ[t].
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While the chromatic quasisymmetric function is defined for an arbi-
trary graph on vertex set [n], our results will concern incomparability
graphs of partially ordered sets. The natural unit interval orders are
particularly significant in our theory of chromatic quasisymmetric func-
tions because they yield symmetric functions.

Proposition 4.4 (Shareshian and Wachs [ShWa4]). Let P be a natural
unit interval order. Then

Xinc(P )(x, t) ∈ ΛZ[t].

Before looking at some examples of Xinc(P )(x, t) for natural unit in-
terval orders, let us consider the poset P on vertex set [3] whose only
relation is 1 < 2. Clearly P is not a natural unit interval order. (Recall
AP (q, t) is given in (3.2).) Using Theorem 4.17 below we compute

Xinc(P )(x, t) = (e3 + F3,{2}) + 2e3t + (e3 + F3,{1})t
2,

which is clearly not in ΛZ[t].

Example 4.5. P = Pn,1. The incomparability graph has no edges.
Hence

(4.2) Xinc(Pn,1)(x, t) = en1 .

Example 4.6. P = Pn,n. The incomparability graph is the complete
graph. Each proper coloring c is an injective map which can be associ-
ated with a permutation σ ∈ Sn for which inv(σ) = asc(c). It follows
that

(4.3) Xinc(Pn,n)(x, t) = en
∑

σ∈Sn

tinv(σ) = [n]t! en.

Example 4.7. P = Pn,2. Recall that the incomparability graph of
Pn,2 is a path. To each proper coloring c of the path inc(Pn,2) one can
associate the word w(c) := c(n), c(n−1), . . . , c(1). This word is clearly
a Smirnov word of length n (c.f. Section 2.4) and des(w(c)) = asc(c).
Since w is a bijection from C(inc(Pn,2)) to Wn, we have

Xinc(Pn,2)(x, t) =
n−1
∑

j=0

Yn,j(x)t
j .

It therefore follows from Corollary 2.13 that

(4.4) ωXinc(Pn,2)(x, t) =

n−1
∑

j=0

chH2j(V(∆n))t
j .

The following result is a consequence of Proposition 4.4.
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Theorem 4.8 (Shareshian and Wachs [ShWa4]). Let P be a natural
unit interval order. Then Xinc(P )(x, t) is a palindromic polynomial in
t.

From (4.2), (4.3), (4.4) and Theorem 2.10 we see that the following
conjectured refinement of the unit interval order case of the Stanley-
Stembridge conjecture (Conjecture 4.2) is true for P = Pn,k when k =
1, 2, n.

Conjecture 4.9. Let P be a natural unit interval order. ThenXinc(P )(x, t)
is an e-positive and e-unimodal polynomial in t.

We have verified e-positivity and e-unimodality for several other
cases including P = Pn,k when k = n − 1, n − 2, and by computer
for all n ≤ 8. Our computation yields,

(4.5)

Xinc(Pn,n−1)(x, t) = [n− 2]t!
(

[n]t[n− 2]ten + tn−2en−1,1

)

(4.6)

Xinc(Pn,n−2)(x, t) = [n− 4]t! ([n]t[n− 3]3t en + [n− 2]tt
n−3([n− 3]t +

[2]t[n− 4]t)en−1,1 + t2n−7[2]ten−2,2),

from which the conjecture is easily verified using Propositions 1.3 and 1.4.
In [St5] Stanley proves that for any graph G on [n], the number of

acyclic orientations of G with j sinks is equal to
∑

λ∈Par(n,j) c
G
λ , where

Par(n, j) is the set of partitions of n into j parts and cGλ is the coeffi-
cient of eλ in the e-basis expansion of the chromatic symmetric function
XG(x). We obtain the following refinement of this result using essen-
tially the same proof as Stanley’s, thereby providing a bit of further
evidence for e-positivity of XG(x, t).

Theorem 4.10 (Shareshian and Wachs [ShWa4]). Let G be the incom-
parability graph of a natural unit interval order on [n]. For each λ ⊢ n,
let cGλ (t) be the coefficient of eλ in the e-basis expansion of XG(x, t).
Then

∑

λ∈Par(n,j)

cGλ (t) =
∑

o∈O(G,j)

tasc(o),

where O(G, j) is the set of acyclic orientations of G with j sinks and
asc(o) is the number of directed edges (i, j) of o for which i < j.

Theorem 4.10 gives a combinatorial description of the coefficient of
en in the e-basis expansion of XG(x, t). In Theorem 4.11 and Conjec-
ture 4.12 below we give alternative descriptions. Let P be a poset on
[n]. We say that σ ∈ Sn has a left-to-right P -maximum at r ∈ [n] if
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σ(r) >P σ(s) for 1 ≤ s < r. The left-to-right P -maximum at 1 will be
referred to as trivial. (The notion of (trivial) left-to-right P -maximum
can be extended in an obvious way to permutations of any subset of
P .) Let

(4.7) cP (t) :=
∑

σ

tinvinc(P )(σ),

where σ ranges over the permutations in Sn with no P -descents and
no nontrivial left-to-right P -maxima.

Theorem 4.11 (Shareshian and Wachs [ShWa4]). Let P be a natural
unit interval order on [n]. The coefficient of en in the expansion of
Xinc(P )(x, t) in the e-basis of ΛZ[t] is equal to cP (t).

Conjecture 4.12. Let P be a natural unit interval order on [n]. Then

cP (t) = [n]t

n
∏

i=2

[ai]t,

where ai = |{j ∈ [i − 1] : {i, j} ∈ E(inc(P ))}|. Consequently cP (t) is
palindromic and unimodal.

In the case that P = Pn,2, this conjecture is true by Theorem 4.11
and equations (2.10) and (4.4). It is also true for Pn,k when k =
1, n, n− 1, n− 2 by Theorem 4.11 and equations (4.2), (4.3), (4.5) and
(4.6), respectively.

4.3. Schur and power sum decompositions. When P is a natural
unit interval order, we have the following refinement of Gasharov’s
Schur positivity result (Theorem 4.3). For a P -tableau T and a graph
G with vertex set [n], let invG(T ) be the number of edges {i, j} ∈ E(G)
such that i < j and i appears to the south of j in T .

Theorem 4.13 (Shareshian and Wachs [ShWa4]). Let P be a natural
unit interval order poset on [n] and let G be the incomparability graph
of P . Then

XG(x, t) =
∑

T∈TP

tinvG(T )sλ(T ).

Now by (4.4) we have the following.

Corollary 4.14. Let λ ⊢ n. The multiplicity of the irreducible Specht
module Sλ in H2j(V(∆n)) is equal to the number of Pn,2-tableaux of
shape λ′ with invinc(Pn,2)(T ) = j.
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By comparing this decomposition to Stembridge’s decomposition
(Theorem 2.1) we see that the number of marked tableaux of shape
λ and index j equals the number of Pn,2-tableaux of shape λ′ and
invinc(Pn,2)(T ) = j. It would be interesting to find a bijective proof of
this fact.
Theorem 4.13 shows that when G is the incomparability graph of

a natural unit interval order, the coefficient of each power of t in
ωXG(x, t) is a nonnegative integer combination of Schur functions and
therefore the Frobenius characteristic of an actual representation of
Sn. Conjecture 4.9 says that this linear representation arises from a
permutation representation in which each point stabilizer is a Young
subgroup. In Section 5 we present a very promising concrete candidate
for the desired permutation representation.
Next we attempt to refine Stanley’s p-basis decomposition of the

chromatic symmetric functions (Theorem 4.1). In Conjectures 4.15
and 4.16 below, we provide two proposed formulae for this power sum
decomposition. With µ = (µ1 ≥ µ2 ≥ · · · ≥ µl) a partition of n and
P a natural unit interval order on [n], we call a permutation σ ∈ Sn,
(P, µ, 1)-compatible if, when we break σ (in one line notation) into
consecutive segments of lengths µ1, . . . , µl, the segments have no P -
descents and no nontrivial left-to-right P -maxima. We call σ ∈ Sn,
(P, µ, 2)-compatible if, when we break σ into consecutive segments of
lengths µ1, . . . , µl, the segments have no P -ascents and they begin with
the numerically smallest letter of the segment. We write SP,µ,i, where
i = 1, 2, for the set of all (P, µ, i)-compatible elements of Sn.

Conjecture 4.15. Let P be a natural unit interval order on [n] with
incomparability graph G. Then

ωXG(x, t) =
∑

µ⊢n

z−1
µ pµ

∑

σ∈SP,µ,1

tinvG(σ).

Conjecture 4.16. Let P be a natural unit interval order on [n] with
incomparability graph G. Then

ωXG(x, t) =
∑

µ⊢n

z−1
µ pµ

l(µ)
∏

i=1

[µi]t
∑

σ∈SP,µ,2

tinvG(σ).

It can be shown that both conjectures reduce to the formula in Theo-
rem 4.1 when t = 1. Conjecture 4.15 says that the coefficient of z−1

(n)p(n)
is equal to cP (t) defined in (4.7). Since the coefficient of h(n) in the h-

basis decomposition must equal the coefficient of z−1
(n)p(n) in the p-basis
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decomposition, by Theorem 4.11, Conjecture 4.15 gives the correct co-
efficient of z−1

(n)p(n). When P = Pn,2 it is not difficult to see that both

conjectures reduce to Theorem 2.2.

4.4. Fundamental quasisymmetric function basis decomposi-

tion.

Theorem 4.17 (Shareshian and Wachs [ShWa4]). Let G be the incom-
parability graph of a poset P on [n]. Then

ωXG(x, t) =
∑

σ∈Sn

tinvG(σ)Fn,DESP (σ),

where ω is the involution on QZ that maps Fn,S to Fn,[n−1]\S for each
n ∈ N and S ⊆ [n−1]. (This extends the involution ω on ΛZ that maps
hn to en)

Theorem 4.17 refines Corollary 2 in Chow’s paper [Ch]. Indeed, one
obtains Chow’s result by setting t = 1 in Theorem 4.17. Our proof of
Theorem 4.17 follows the same path as Chow’s proof of his Corollary 2.
We use Theorem 4.17 and (2.6) to compute the principal stable spe-

cialization of ωXG(x, t).

Corollary 4.18. Let G be the incomparability graph of a poset P on
[n]. Then

(q; q)nps(ωXG(x, t)) = AP (q, t).

Recall that for P = Pn,2 we have a formulation for the expansion of
ωXinc(P )(x, t) in the fundamental quasisymmetric function basis that is
different from that of Theorem 4.17. It is obtained by combining (2.5)
and (2.11). By equating these formulations, we obtain the identity,

(4.8)
∑

σ∈Sn

tdes(σ
−1)Fn,DES≥2(σ) =

∑

σ∈Sn

texc(σ)Fn,DEX(σ).

Taking the stable principle specialization of both sides of (4.8) yields
the following new Euler-Mahonian result.

Theorem 4.19 (Shareshian and Wachs [ShWa4]). For all n ∈ P,
∑

σ∈Sn

qrmaj2(σ)tdes(σ
−1) =

∑

σ∈Sn

qmaj(σ)texc(σ).

It would be interesting to find bijective proofs of (4.8) and Theo-
rem 4.19.
Theorem 3.2, asserting palindromicity of AP (q, t), is proved by tak-

ing stable principal specializations in Theorem 4.8, by means of Corol-
lary 4.18. Conjecture 3.3, asserting unimodality of AP (q, t), can be
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obtained by taking stable principal specializations in Conjecture 4.9
(see Lemma 2.8). By taking a specialization called (nonstable) princi-
pal specialization, a stronger unimodality conjecture follows from Con-
jecture 4.9. For a poset P on [n] and σ ∈ Sn, define desP (σ) :=
|DESP (σ)|.

Conjecture 4.20. Let P a natural unit interval order on [n]. Then

AP (q, p, t) :=
∑

σ∈Sn

qmajP (σ)pdesP (σ)tinvinc(P )(σ)

is a palindromic unimodal polynomial in t.

It follows from Corollary 4.18 and Lemma 2.7 that AP (ξd, t) is the
coefficient of z−1

dmpdm in the p-basis expansion of ωXinc(P )(x, t) when P is
a natural unit interval order on [dm]. Hence Conjecture 3.4 on the eval-
uation of AP (q, t) at roots of unity is a consequence of Conjectures 4.9
and 4.16.

5. Hessenberg varieties

Let G = GLn(C) and let B be the set of upper triangular matrices
in G. The (type A) flag variety is the quotient space G/B. Fix now
a natural unit interval order P and let Mn,P be the set of all n × n
complex matrices (aij) such that aij = 0 whenever i >P j. Fix a
nonsingular diagonal n × n matrix s with n distinct eigenvalues. The
regular semisimple Hessenberg variety of type A associated to P is

H(P ) := {gB ∈ G/B : g−1sg ∈ Mn,P}.

(Note that H(P ) is well defined, since the group B normalizes the set
Mn,P .)
Certain regular semisimple Hessenberg varieties of type A were stud-

ied initially by De Mari and Shayman in [DeSh]. Hessenberg varieties
for other Lie types are defined and studied by De Mari, Procesi and
Shayman in [DePrSh]. Such varieties are determined by certain subsets
of a root system. In [DePrSh, Theorem 11] it is noted that, for arbi-
trary Lie type, the Hessenberg variety associated with the set of simple
roots is precisely the toric variety associated with the corresponding
Coxeter complex. In particular, in Lie type A, the poset giving rise to
the regular semisimple Hessenberg variety associated with simple roots
is Pn,2 since E(inc(Pn,2)) = {{i, i+ 1} : i ∈ [n− 1]}. Thus

(5.1) H(Pn,2) = V(∆n).
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De Mari, Procesi and Shayman also show that the cohomology of
H(P ) is concentrated in even degrees and that for 0 ≤ j ≤ |E(inc(P ))|,

(5.2) dimH2j(H(P )) = aP,j(1).

Hence unimodality of the P -Eulerian polynomials AP (1, t) (Theorem
3.1) follows from the hard Lefschetz theorem since H(P ) is smooth.
Our approach to establishing the unimodality of the (q, P )-Eulerian
polynomial AP (q, t) is to find a representation of the symmetric group
on H2j(H(P )) such that the stable principal specialization of its Frobe-
nius characteristic yields aP,j(q). If the hard Lefschetz map commutes
with the action of the symmetric group then it follows from Schur’s
lemma and Lemma 2.8 that AP (q, t) is unimodal.
For the cases P = Pn,k, where k=1,2, we already have the desired rep-

resentations. Indeed, H(Pn,1) consists of n! isolated points and the rep-
resentation ofSn onH0(H(Pn,1)) is the regular representation. For k =
2, we can use the representation of Sn on H∗(H(Pn,2)) = H∗(V(∆n))
discussed in Section 2.
For general natural unit interval orders P , Tymoczko [Ty2], [Ty3] has

defined a representation of Sn on H∗(H(P )) via a theory of Goresky,
Kottwitz and MacPherson known as GKM theory (see [GoKoMacP],
and see [Ty1] for an introductory description of GKM theory). The cen-
tralizer T = CG(s) consists of the diagonal matrices in G := GLn(C).
It follows that the torus T acts (by left translation) onH(P ). The tech-
nical conditions required for application of GKM theory are satisfied
by this action, and it follows that one can describe the cohomology of
H(P ) using the moment graph associated to this action. The moment
graph M is a subgraph of the Cayley graph of Sn with generating
set consisting of the transpositions. The vertex set of M is Sn and
the edges connect pairs of elements that differ by a transposition (i, j)
such that {i, j} ∈ E(inc(P )). Thus M admits an action of Sn, and
this action can be used to define a linear representation of Sn on the
cohomology H∗(H(P )).
Tymoczko’s representation ofSn onH∗(H(P )) in the cases P = Pn,k,

k = 1, 2, is the same as the respective representations of Sn discussed
above. In the case that P = Pn,n, it follows from [Ty3, Proposition 4.2]

that for all j, Tymoczko’s representation is isomorphic to a
(n)
n,j copies

of the trivial representation.
By applying the hard Lefschetz theorem, MacPherson and Tymoczko

obtain the following result.
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Theorem 5.1 (MacPherson and Tymoczko [MacTy]). For all natu-
ral unit interval orders P , the sequence (chH2j(H(P )))0≤j≤|E(inc(P )| is
palindromic and Schur-unimodal.

Tymoczko poses the following problem.

Problem 5.2 (Tymoczko [Ty3]). Given any natural unit interval order
P on vertex set [n], describe the decomposition of the representation
of Sn on H2j(H(P )) into irreducibles.

We finally come to the conjecture that ties together the three topics
of this paper.

Conjecture 5.3. Let P be a natural unit interval order on [n]. Then

(5.3)

|E(inc(P ))|
∑

j=0

chH2j(H(P ))tj = ωXinc(P )(x, t).

By (5.1) and (4.4) the conjecture is true in the case that P = Pn,2.
It is straightforward to verify in the case P = Pn,k, when k = 1, n −
1, n, and for all natural unit interval orders on [n] when n ≤ 4. The
conjecture is also true for the parabolic Hessenberg varieties studied
by Teff [Te]. It follows from (5.2) that the coefficient of the monomial
symmetric function m1n in the expansion of the left hand side of (5.3)
in the monomial symmetric function basis equals the coefficient of m1n

in the expansion of the right hand side of (5.3).
Conjecture 5.3, if true, would have many important ramifications. It

would allow us to transfer what we know about chromatic quasisym-
metric functions to Tymoczko’s representation and vice-versa. For in-
stance Theorem 4.13 would provide a solution to Tymoczko’s problem.
Conjecture 5.3 provides an approach to proving the Stanley-Stembridge
conjecture (Conjecture 4.2) for unit interval orders. Indeed one would
only have to prove the following conjecture.

Conjecture 5.4. For all natural interval orders P , Tymoczko’s repre-
sentation of Sn on H∗(H(P )) is a permutation representation in which
each point stabilizer is a Young subgroup.

Our refinement of the Stanley-Stembridge conjecture (Conjecture 4.9)
would be equivalent to the following strengthening of the result of
MacPherson and Tymoczko.

Conjecture 5.5. For all natural unit interval orders P , the palin-
dromic sequence (chH2j(H(P )))0≤j≤|E(inc(P )| is h-unimodal.
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To establish the unimodality of the (q, P )-Eulerian numbers (Con-
jecture 3.3) one would only need to prove Conjecture 5.3. Indeed Con-
jecture 5.3, Theorem 5.1, Corollary 4.18 and Lemma 2.8 together imply
the unimodality result. The more general unimodality conjecture for
AP (q, p, t) (Conjecture 4.20) is also a consequence of Conjecture 5.3.
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