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O. Introduction 

In the theory of recursive functions and ccmp- 

utational ccmplexity it has been demonstrated rep- 

eatedly that the natural problemzs tend to cluster 

together in "ccr~pleteness classes". These are 

f~nilies of problems that (A) are cc~putationally 

interreducible and (B) are the hardest members of 

scme cQmputationally defined class. The aim of 

this pan is to de~nonstrate that for both algebraic 

and combinatorial problems this phenomencn exists in 

a form that is pu~ly al~ebraic in both of the 

respects (A) and (B). Such cQmputational consequ- 

ences as NP-ccnpleteness are particular manifest- 

ations of something more fundamental. 

The core of the paper is self-contained, con- 

sisting as it does essentially of the two notions 

of "p-definability" and the five algebraic relations 

that are proved as theorems. In the remainder o1~r 

aim is to elucidate the cc~putational consequences 

of these basic results. Henoe in the auxiliary 

prolx)sitions and discussion for convenience we do 

assL~ne faniliarity with algebraic and Boolean 

cc~plexity theory [3,203. 

Our basic technique is that of reducing poly- 

ncmials to each other, or Boolean functions to each 

other, by projections (i.e. substitutions for indet- 

erminates of constants or other indeterminates. ) 

Our main conclusions can be si~marized roughly as 

follows: 

(a) Linear algebra offers essentially the only fast 

technique for ccmputing multivariate polync~nials of 

moderate degree. 

(b) N~erous well-known but apparently intractable 

polyncmials are interreducible via projections. 

Because of the closeness of this relationship they 

are not only computationally but also mathematically 

equally intractable. Furthezmore we can identify 

them as belonging to the cQmpleteness class for 

p-definable polyncmials. 

(c) The question as to whether these cc~plete poly- 

ncmials can be cQmputed fast is equivalent to the 

purely algebraic question as to whether they are 

projections of a moderate size detenainant. 

(d) Many NP-cQmplete problems when regarded as 

finite Boolean functions are interreducible by 

projection. Furthermore they are cQmplete for a 

class of functions that can be defined in terms of 

finite Boolean properties. The ccnpleteness class 

is meaningful even if P = NP. 

(e) These NP-cc~olete probleszs can be cQmputed by 

polyncmial size formulae if and only if they are 

projections of the transitive closure function of 

moderate size. Sane purely algebraic or cQmbin- 

atorial approaches to proving P ~ NP also suggest 

themselves. 

i. Al~ebraic Definitions 

Let F be a field and F[Xl,...,x n] the ring 

of polync~ials over indetezminates x I ,... ,x n with 

coefficients from F . P,Q and R will denote 

infinite families of polyncrnials where typically 

P = {Pil Pi e F[xl,...,x i] , i = 1,2,...} , 

and similarly for Q and R . 

A fozmula f over F is an expression that 

is of one of the following forms: 
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(i) "c" where c cF, or (ii)"xj" where xj is 

an indeterminate, or (iii) "(fl o f2)" where fl 

and f2 are the~nselves formulae over F and o 

is one of the two ring operators {+,×} . The 

size of a fozmula f is the n~ber of operations 

of type (iii) needed in its cGnstruction, and is 

denoted by Ifl . For e.xample the formula 

"(((x I+ I) x (x2+ 2)) + 2)" has size four. Any 

fozmula specifies a polynQmial in the obvious way. 

The fo~ula size I Pil of polynomial Pi is the 

size of the minimal size fo~nula that specifies it. 

If X is a set of indeteznIinates and A a 

set of polynQmials then any mapping ~:X÷A can 

be regarded as a substitution. 

If Pi ~ F[xl'"''xi] and X _c{x l,...,x i} then 

the substitution c can be made in P. and the l 
resulting polyncmial is denoted by P.~ . If 1 
A = Y.u F where Y is a set of indetezminates, 

then a mapping c: X ÷ A is a simple substitution. 

Definition Qi E F[Yl,... ,yi ] is a projection of 

Pj E F[x l,...,xj] iff there is a simple substit- 

ution o over F such that Qi = pC 
3 

Functions frcm positive integers to positive 

integers we shall denote typically by t . Such 

a t is p-bounded if for sane constants K,k, for 
k 

all n t(n) _< K + n 

Definition If P,Q are families of ix~lyncmials 

then Q is a t-projection of P if for all i 

there exist j _<t(i) and c such that Qi = pC 
3 

It is a p-projection if it is a t-projection for 

same p-bounded t . 

An example of a pair of polyncmial fanilies 

that are not projections of each other is the 

following: 
i i 

P = {Pi = ~xj} and Q = {% = I~ xj }. 

Note that our notion of substitution is very 

restricted as compared with same reasonable alter- 

natives. (If in A we had allowed arbitrary 

linear cQmbinations of indeterminates then P 

would have been a 1-projection of Q , and if 

arbitrary monQmials had been allowed then the 

converse would have held. ) 

2. Universality of the Detezminant 

We show that every polyncmial of fo~nula size 

u is the projection of the (u +2 ) × (u +2 ) deter- 

minant. To interpret this no~ that the determin- 

ant itself has fozmula size 20(l°g2n) [6,14] which 

is less than strictly exponential (i.e. 2 nE for 

e > O.) We conclude that for the problem of finding 

a subexponential formula for a polyncmial when one 

exists, linear algebra is essentially the only 

technique in the sense that it is always applicable. 

A more significant interpretation as far as 

camputation follows frcmn Hyafil's result [14]. 

He showed that for sane constant e any polyncmial 

of degree d that can be computed by a straight-line 

progra~n in C steps has fozmula size celog d 

Consider polync~ial faailies in which the degree 

is p-bounded in terms of the n~nber of indetezmin- 

ates. Define a function t(n) to be qp-bounded 

(quasi-polynGmial) if it is bounded above by 

21~ k (n) for Same constant k. Then the class 

of polyncmials with qp-bounded formula size is the 

same as the class of polynQmials that can be ccnp- 

uted by programs of qp-bounded length. Hence a 

polyncmial with p-bounded degree can be computed 

in qp-time if and only if it is the projection of 

a detezminant of qp-bounded dimensions. 

Let Y be an n x n matrix of indetezminates 

{Yij I l -< i,j -< n}. Let G be a directed graph on 

n nodes {l,2,...,n} in which edge (i,j) is 

given weight Yij A cycle cover of G is a set 

of n edges that together fozm a set of disjoint 

directed cycles in G (i.e. every node must be 

visited exactly once.) Now 
n 

Det(Y) = [ (-i) sgn(~) ~ Yi,~(i) 
~ i=l 

where s~mation is over all n'. pe~aututions on 

{1,...,n}. Clearly there is a one-to-one corr- 

espondence between cycle covers in G and permut- 

ations. Also, each ~ is the product of cyclic 

permutations, and the latter correspond one-to-one 

with the cycles in the cycle cover. Since sgn(c) 

is +I if and only if c is a cycle of odd length, 

if the cycle covers in G ccnsist entirely of odd 

length cycles then 

[ (product of weights on cc) 
cc 
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s~ned over all the cycle covers of G will equal 
! 

det(Y') wb~re {a) (i,j) • G => Yij = Yij and 

(b) (i,j) ~ G =>Ylj = O . Denoting the n × n det- 

eminant by Detn × n we prove the following: 

Theor~n 1 If Pi ~ F[xl'''''xi] then Pi is the 

projection of Dets×s where s = Ipil + 2 . 

Proof We first define a mapping 

H :{formulae} ÷ {graphs} × {0,i} 

recursively in the construction of the fozmula. 

Note that for any fozmula f if H(f) = (G,r) 

then (i) G will be acyclic with distinguished 

souroe and sink nodes s and t respectively, and 

(ii) either every path from s to t is of odd 

length, in which case r = I, or every path is of 

even length in which case r = 0 . 

(a) If f = "c" or "yj" then H(f) = (G,i) where 

G has node set {s,t} and just the one edge (s,t) 

which is given weight c or yj as appropriate. 

(b) If f =(fl + f2 ) where H(f i) = (Gl,r I) and 

H(f 2) = (G2,r 2) then 

(i) if r I = r 2 then H(f) = (G,r I) where G 

is the disjoint union of G i and G 2 but with 

the two source nodes and the two sink nodes 

identified: 

G: 

(ii) if r I ~ r 2 then H(f) = (G,rl) where G 

is the disjoint union of G I and G 2 with the 

two sources identified, and with an additional 

edge, weighted one, from the sink of G 2 to the 

sink of G : 
i 

(c) If f =(fl × f2 ) where H(fl) = (Gl,rl) and 

~f2 ) = (G2,r 2) then H(f) = (G,rl#r 2 mod 2) where 

G is the disjoint union of G 1 and G 2 but with 

the sink of G I identified with the source of G 2 

We claim that for any f if H(f) = (G,r) then 

[ product of weights on stp , 
stp 

s~med over all directed paths from s to t in G, 

is equal to the polyncmial represented by f . 

The reader may verify this easily by induction on 

the construction of G . Also by induction it 

follows that G has at most s = If] + 2 nodes. 

To establish the theorem ocnsider H(f) = (G,r) 

where f is a minimal fo~nula for Pi " Modify 

G to G' as follows: First add a self-loop (i.e. 

edge (k,k)) weighted one to every node k of G 

that is not s or t . If r = O add a new edge 

weighted one frcmn the sink to the source. If r=l 

identify the sink and the source. In either case 

every cycle cover of G' will consist of one non- 

trivial cycle of odd length and a n~ber of self- 

loops (i.e. of length one). Now the polynQmial 

represented by f will equal 

[ (product of weights on cc) 
cc 

with s~mation over all cycle covers of G . By 

the preliminary observations this will equal the 

appropriate projection of the s × s determinant. D 

3. p-Definability 

For n~erous widely studied polyncmials only 

exponential size formulae are known. In the maj- 

ority of cases it turns out that they can still be 

described succinctly because t/heir coefficients 

can be specified by a mnall fo~ula. For reasons 

which should became clear later, we capture this 

notion as follows: 
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Definition A family P of polync~ials over F 

is p-definable iff 

either (a) there is a family Q over F and a 

p-bounded t such that 

for all i IQil _< t(i) and 

O 

Pi = I Qi ~ ~ ' 
O c (X k) =i 

stmnation being over the 2 j substitutions 

{x I ..... xj} + {0,i} for same j,(O -<j-<i), 

if Qi • F[Xl'"''xi] ' 

or (b) P is the p-projection of same p-definable 

f~ily. 

[N.B. Allowing j <i is useful but technically 

redundant. As we shall see every p-definable 

family is the p-projection of same family that 

can be defined with i = j.] 

If Q is a family that satisfies condition 

(a) of this definition for P then we say Q 

defines P. Clearly every family of p-bounded 

formula size defines itself since we can take j = O. 

In the next two sections we ~shall be conceded 

with p-definable polyncmials that in all probability 

do not have p-bounded fozmulae and are intractable. 

In the remainder of this section we shall give 

techniques for identifying polynomials as p-definable. 

Direct verification is often very c~berscnse. 

Given an n × n matrix Y of indetemlnates 

{Yij I I -<i,j -<n} we define the permanent of Y as 

n 

P~n×n = ! ~ Yi,~(i) 
i=l 

with s~mation over all n: permutations of 

{I, .... n} . 

Proposition 1 Over any F the permanent is defined 

by the f~nily Q where 

~ n ) <i~_ k > %×n =(i=l j=l[ Yij (i - YijYkm ) 

or j=~l 

Proof By expanding the shorthand notation it is 

clear that ~ x n has formula size O(n3). Also, 
n2 is for input values frcm the set {0,1} , ~×n 

zero if same row is all zero, or if any two ones 

are in the same row or cohmm. D 

Since p-definability is concerned with the 

evaluation of algebraic for~llae at { 0 ,i } the 

consideration of Boolean fo~nulae is often useful. 

(See §7 and [20]). 

Proposition 2 For any F there is a mapping frcm 

Boolean f~ctions to polyncmials over F that keeps 

fomaula size p-bounded and has the following 

property: any g e B[xl,...,x n] maps to 

f • Fix l,...,x n] such that for all vectors 

_v• {0,1} n , g(_v) = i => f(_v) = I and 

g(_v) = 0 => f(v_) = O. 

Proof We use the well-known result that there is 

a translation that takes any Boolean formula of 

size s to an equivalent one of depth O(log s) 

and size p-bounded by s (~0],p26). , Now each 

Boolean operation can be simulated in any F on 

the d~ain {0,i}: xAy by xy, x by 1-x 

and xvy by x+y-xy . If a Boolean formula 

of depth d translates into an algebraic one of 

size S(d) then S(d) _< cS(d-l) where c is 

the maximal n~nber of algebraic operations needed 

to realise any of the three Boolean operators. 

It follows that a formula of size S will be 

translated to one of size S(d)_< cd_<c0(log s) _<s k 

for same constant k. 

It is sometimes useful to enioloy other Boolean 

operators also. The follc~.;ing illustrates the use of 

"exclusive-or". Clearly this causes no extra 

problems since x • y can be simulated by 

x+y-2xy just as well. 

Proposition 3 The determinant is defined by the 

family 

Q~xn = %xn (l-2~xn) 

where o × n is as in Proposition i, and ~× n 

is the foz~ula that on dcmain { 0 ,I } equals the 

following Boolean fozmula 

i,m j>m 
and 
k<i 

Proof By inspection. 

usually it is sufficient to establish the 

existence of a small defining formula, and we do 

not need to find an elegant one. In these 
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circt~nstances the following is very often sufficient. 

Proposition 4 Suppose P = {Pi'P2'"" } is a 

family of polynQmials over F where every monQmial 

has coefficient one (or zero). Suppose that there 

is a p-time algorithm that for any vector 

v • {0,i} n can determine whether the coefficient of 

[~ x 
V .=i 3 
3 

is one. Then P is p-definable over F . 

Proof Consider a detezministic t (n)-time bounded 

one-tape Turing acceptor M for the hypothesized 

probl~n. Then ccn~outation sequences of M can be 

described by sequences of O(t 2) binary symbols. 

~/rthermore, there is a Boolean fozmula g of 

p-bounded size that detezmines for such a sequence 

of symbols whether it represents an accepting 

ocmputation for a specified input. Now translate 

g to a fo~ula f over F that is "equivalent" 

to it in the sense of Proposition 2. Suppose the 

indeterminates of g are Xl,X2...,Xn,Xn+l,...,x r 

where x I ,... ,x n correspond one-to-one to 

v I ,... ,v n, and call the polyncmial that g repre- 

sents Qr " Then clearly 

P' = r [Q~ ~ Xk 
o (k) =1 

l_<k_<r 

is p-definable if s~mation is over the 2 r sub- 

stitutions a: {xl,...,xr}+{0,1} . But for each 

_v ~ {0,1} n that corresponds to an accepting comp- 

utation of M there is exactly one substitution o 

that agrees with it for 1-<i_<n and gives Q~ = 1 I 

namely the one describing the correct camputation. 

Hence Pn is the p-projection of P' under the 
r 

substitution that sets to one each x k with k _> n, 

and leaves the others unchanged. D 

R~ark 1 By the same arg~ent it follows that for 

each pre~cate ccmputable in nondetezministic 

ira-time there is an associated p-definable polyncmial, 

but now the coefficient of each monQmial is the 

n~nber of accepting ccnputations rather ethan unity. 

Using this last result it is easy to verify 

that most of the frequently occurring generating 

polynomials for c(~binatorial structures are 

p~definable. The examples below are specified 

as follows: Let G be the canplete directed 

graph on the n nodes {l,...,n} with edge (i,j) 

labelled by indetezminate Yij " Let S be a 

set of subsets {E l,...,E m} of the edges of G . 

Then the polynQmial for S over F is defined as 

m 

[ ~ Yij 
k=l (i,j) c E k 

From Proposition 4 it is clear that each of the 

following polyncmial families is p-definable. 

I Permanent: S = {cycle covers. } 

II Self Avoiding Walks: S = {paths from 

node 1 to node 2 that do not go through 

any node more than once. } 

III Hamiltonian Paths: S = {self-avoiding 

walks from node 1 to node 2 of length 

exactly n-i.} 

IV Hamiltcnian Circuits: S = {self-avoiding 

cycles of length n. } 

V Spanning ~ees: S = { spanning trees in 

which each edge is directed away frcm 

node i. } 

VI Reliability: S = {Eil there is a path from 

node 1 to 2 in E i.} 

For each of the above we get the corresponding 

undirected case if we identify each Yij with Yji" 

In that case the following are further natural 

p-definable problems. 

VII Matchings: S = {Eil no two edges in E i 

are incident with the same node. } 

VIII Perfect matchings: S = {matchings consist- 

ing of exactly n/2 edges. } (n ass~ed 

even ° ) 

fozms IX Connected cc~ponents: S = {Ei[ E i 

a single connected cc~oonent. } 

4. Complete Probl~ns 

We now show that same of the above defined 

polyncmials are of maximal intractability in the 

following strcng sense: 

Definition A p-definable family P over F is 

c cn~olete over F if every p-definable family Q 

over F is a p-projecticn of P. 

Note that the problems that are cc~plete over 

any one field F are all p-projections of each 

other. Hence they share all mathematical and 

cc~putational properties that are preserved under 
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simple substitutions. Canputational cxmnplexity is 

one example of such a property. 

To identify a p-definable fanily as being com- 

plete we need to show that same known conplete prob- 

lem is a p-projection of it. In practice the 

follc~ring two theorems appear to suffice as starting 

points. 

Theorem 2 If F is any field with characteristic 

not equal to two, then the Pe~nanent is canplete 

over F . 

Proof We ccnsider an arbitrary p-definable family 

P and show that it is the p-projection of the 

permanent. Therefore suppose that P is the 

p-projection of sane P which in turn is defined 

by the family Q . Consider a particular member 

Pm which is therefore the projection of same Pi 

such that 

o 
~i(x~ ..... xi) : ~ Qi N xk 

o~{0,1} ] ~ (Xk)= I 

where stmnation is over the 2 j assignments to 

{x I , .... xj }. Now consider a minimal size fomula 

f for Qi ' and construct frcra it a graph G' 

exactly as in the proof of Theor~ma i. [N.B. Keep- 

ing track of the parity r is actually superfluous 

in the current proof. ] By the arg~nent given there 

the projection of Pan x n that is specified by 

the edge weights of G' will equal Qi " What we 

need to do is to modify G' to G" so that G" 

specifies a projection of Peru x n that equals 

not Qi but the polyncmial P i that it defines. 

To do this we first add an isolated cycle 

labelled x k for each k (l-<k-<j). Thenwe super- 

inpose a global structure that ensures that in any 

cycle cover that contains the x k cycle all x k 

weighted edges in G' have effective weight one, 

while in any cover not containing the x k- cycle 

all x k edges have effective weight zero. If 

this can be achieved then the pezmanent of G" 

will equal P. since the coefficient of each 
1 

Ex k product will be just the value of Qi evaluated 

at the appropriate input vector from {0,i} 3 . 

The global structure connects each x k edge in 

G' with the corresponding x k cycle via a separate 

co-ordinator. The introduction of each co-ordin- 

ator involves eight new nodes, as shown in Figure i. 

A co-ordinator consists of two identical 4-node 

junctions. Denoting the nodes by {1,2,3,4} a 

junction has the property that in any cycle cover 

that enters it at node i and leaves it at 4, or 

vice versa, its contribution is a multiplicative 

factor of 4. In any other kind of cycle cover its 

aontribution is a factor of zero, and hence all 

such cycle covers are effectively cancelled out. 

The constructien of the co-ordinator ensures that 

in any non-vanishing cycle cover either both 

junctions are traversed 4 ÷ i, or both I + 4. In 

other words either both the x k cycle and the x k 

weighted edge in G' are effectively included, or 

neither one is. 

x~cycl 
x k 

edge 

in G' 

\ 

I 
/ 

becQmes 

'~ > i I • 3 "2 

o3 12 

< -4 

Figure i: A co-ordinator of G" 

Each function is inpl~nented by a weighted 

directed graph proposed in [211 whose adjacency 

matrix is 
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li 1 -i -!I 
X = -i 1 

1 1 

1 3 

If X[y;~] denotes X but with rows y and coltmens 

r~oved then 

Perm X(1;4) = Pezm X(4;1) = 4 , but 

Pezm X = Perm X(i;i) =Perm X(4;4) =Perm X(i,4;1,4)=0. 

It can be verified that these properties ensure 

that the functions behave as claimed. 

In G" each x k cycle will contain a n~nber 

of junctions joined in a ring by a n~ber of edges. 

Amongst the latter edges we label just one by x k 

and the rest by unity. All the aims of the con- 

struction are now achieved except that each junction 

contributes a factor of four rather than one. To 

cQmpensate for this we insist on an edge from the 

sink of G' to the source and give it weight (2 -I) 2J 

where J is the total n~ber of juncticns in G", . 

The permanent of the adjacency matrix of G" is 

then P. as required. [3 
3 

Remark 2 If char F = 2 the proof fails because 
-i 

2 does not exist. Furthermore the technique 

itself fails since the permanent and determinant 

are then identical, and no matrix with the deter- 

minental properties required of X exists. 

Remark 3 The question as to whether there is a 

matrix transformation that translates a permanent 

into a detenainant, or vice versa, was asked for 

the first time apparently by Polya [183. Except 

for the trivial case of n = 2 no positive result 

was previously known. The strongest negative 

result was that of Marcus and Minc [17] who showed 

that even if substitutions of linear foxms are 

allowed but the matrix size is preserved, neither 

function is the image of the other. 

Prc~osition 5 For sQme ccnstant c for all n 

Detn × n is the projection of Pe~×m for 

m--cn 4 . 

Proof If char F = 2 then the two polynomials 

axe identical. Otherwise apply Theor~n 2 to 

Proposition 3. [3 

Proposition 6 For all n Pe~n × n is the proj- 

where t(n) < n22 n . ection of Dett (n) x t (n) 

Proof Ryser [ 19 ,p26] gives a formula for the 

permanent of size (n22 n) . The result follows 

frQm Theorem 1 for any F . [3 

Proposition 7 For any given F with char F ~ 2 

Proposition 6 holds for a (LD-bounded t if and only if 

every qp-definable polyncraial fanily has qp-bounded 

formula size over F . [3 

Our second cc~pleteness result is for the 

Hamiltonian Circuit polyncmial defined in §3. It 

is different in that it holds for any field F. 

Theorem 3 The Hamiltonian circuit polyncmial is 

ocmplete over any field F . 

Proof We denote the directed H~niltonian circuit 

polyncmial over n nodes by HC n x n As observed 

before, it is p-definable. To show that any 

p-definable f~lily P is the p-projection of it 

we consider Pro' Pi and Qi as in Theorem 2, and 

construct G' from the minimal fo~nula for Qi 

exactly as there. 

To obtain the necessary G" frQm G' we first 

note that junctions can be much simplified to 

2 

i > 

Since every Haniltonian circuit must enter at node 1 

and leave at 3, or vice versa, each edge internal 

to the junction can be weighted one. 

We introduce an x k- cycle for each k(l_<k_<j) 

but break each one and "thread" th~ together with 

the main cycle of G' as follows: 

x I x 2 

• 

< 

255 



The unspecified "beads" at the right of the diagran 

thread all the remaining potential cycles in G' , 

nanely the self-loops and the main cycle of each 

co-ordinator. 

the fozm: 

cycle 

Thus each co-ordinator is now of 

> 
edge in G 

> ~ main 
thread 

To cope with self loops we modify every node in G 

other than s and t so that it beecmes a junction. 

node with 
self-loop 
inG' 

becc~es 

f - f - 

mai.n tb_.~aad 

It can be verified that the projecticn of HC 

specified by G" gives P.. 
3 

5. More Ccr~olete Problems 

Multivariate polynQmials of the kind defined 

in §3 occur in diverse contexts. For exanlole, the 

reliability and ecnDected ccmponents problems have 

obvious applicaticns to unreliable networks [ 8 ] 

and are also related to percolation problems [9 23]. 

The polyncmials for self-avoiding walks, matchings 

and perfect matchings appear as generating functions 

for the corresponding counting problems in several 

branches of the physical sciences [2,12,16 ]. 

Despite exhaustive research nearly all of them 

have defied detailed mathematical or ccnputaticnal 

analysis. Even mere approximations for special 

cases appear difficult to obtain ~3]. 

There are essentially only two interesting cases 

that are known to be tractable. The undirected 

spanning tree polynomial was solved by Kirchhoff, 

and the result later extended to the directed case 

(see [4] ). Perfect matchings for planar graphs 

were solved by Kasteleyn and Fisher (see ~6]). 

Both of these results express the required polyncraial 

in te~ns of a determinant, a fact which suggests 

that the interpretation we claimed for our Theorem 1 

has same validity. 

In this section we shall illustrate how the 

intractability of many of the re~ainln' g problems 

can be explained away in tezms of our notion of 

completeness. 

Our first exanple shows that the considerable 

efforts made to extend the Kasteleyn-Fisher tech- 

nique just to regular reck_angular lattices in three 

dimensions was doGmed to fail. The reader should 

note that here there was no previous concrete indic- 

ation that counting solutions was difficult. This 

contrasts with H~iltonian circuits where solutions 

are hard even to detect [15 ] and general perfect 

matchings where solutions are hard to count [21]. 

The example highlights the fact that for counting 

cx~mbinatorial structl~res in apparently ha~nless 

special cases the algebraic approach can easily 

introduce evident intractability. 

Proposition 8 Denote by G n the graph on 2n 2 

nodes arranged as a 3-dimensional slab with integer 

co-ordinates 

{(i,j,k) I l_<i,j_<n ; k = 0,i }, 

with every pair of nodes separated by unit distance 

connected by an edge. Then the perfect matching 

polyncmial for this restricted family of graphs is 

ccn!plete for F if char F ~ 2. 

Proof First note that given any weighted directed 

graph G (e.g. the ccniolete graph) we can construct 

a G' , with maximal indegree and outdegree of 3, 

that has the same pe~anent. For each node we 

transfozm the edge set incident frcm it as follows: 
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becomes 

The edge sets incident into the nodes are treated 

similarly. 

In turn we can translate G' to an undirected 

bipartite graph G" of maximal degree three, of 

which the perfect matching polyncmlial is the perm- 

anent of G . We conclude that there is a family 

{H I ,H 2 ,... } of undirected bipartite graphs of max- 

imal degree three such that the associated fanily 

of perfect matching ix~lynanials is ccmlolete over F. 

We now show that the perfect matching polynamial 

for {Gn} is also camplete, by suitably embedding 

each H into G where m = r 2 + I and r = 6n. 
n m 

The idea of the ~bedding is to map each edge 

in H n to a chain of edges of odd length in G m 

such that these chains are node-disjoint exeept for 

the ends. An edge that is matched in H n will 

correslxmld to a chain in which the two endnost edges 

are matched in G 
m 

In particular if H n has nodes 

{l,2,...,n,l',~',...,n'} then node i will map to 

(ir,0,0) and node i' to (Jr,m,0). An edge 

connecting i to j' in H n is mapped ideally to 

the three straight sequences of edges successively 

joining (jr,0,0), (ir,ir + j,0), (jr,ir + j,0) and 

(jr,m,o). Since up to six chains may cclr~pete for 

the same path in the first or third of these sequ- 

ences, they will be displaced by the appropriate 

n~ber of units in the horizontal dimension. When 

a horizontal chain crosses over a vertical one the 

collision is avoided by rerouting it to the k = 1 

plane. Note that irrespective of the implementation 

details each chain will be of odd length since the 

total horizontal displac~nent is even, and the 

vertical one odd. D 

(o,m,o) (jr,m,o) 

.... ~i | | | ....... 

. . . .  A - - • 

(O,O,O) 

Fig. 2 

(m,m,o) 

.... FIT 

i 

, I 

~Inbeddin 9 of two intersecting edges. 

In the remainder of this section we shall 

observe that the intractability of several 

polynamials for regular lattices is already implicit 

in published proofs of NP-campleteness. For example, 

since Hamiltonian paths in planar graphs are NP- 

ccmplete [IO] we would expect that by embedding in 

the 2-dimensional rectangular lattice the special 

planar graphs used in the proof we can obtain our 

algebraic reduction. In this manner one can verify 

algebraic intractability for many NP- and #P-ccmplete 

problems when restricted to such regular graphs. 

For suitable definitions of the appropriate 

polynamials and using constructions fram [iO ,ii ,15 ] 

one can establish such reduction sequences as the 

following: Hamiltonian circuits + Satisfiability 

÷ Chromatic n~ber + Exact 3-cover ~ Planar directed 

Hamiltonian paths ÷ Directsd self-avoiding walks in 

2-D rectangular lattice, and Exact 3-cover + Connected 

ccni0cnents in 2-D rectangular lattice. 

The reader can verify that these reductions 

establish for each problem either (i) that it is 

camplete o__~ (ii) that it is a homogeneous camponent 

of a ccm~plete problem, or (iii) that it is a certain 

coefficient in a camplete multilineer fanily. The 

latter two properties are cerea~nly equivalent to 

the first as far as ccmputaticnal complexity. Any 

program can be modified to produce just one hcmo- 

geneous ccmponent of it with only quadratic increase 

in size [14]. If it is multilinear then any co- 

efficient can be abstracted by similar techniques. 

Among the above defined problems same are 

already polyncmnial families in the strict sense 
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that there is one member for each cardinality of 

indeteminates. In others, such as satisfiability, 

we have an expcnential n~ber, while for Hamiltonian 

paths we have a polynomial n~ber by the freedem to 

choose nodes 1 and 2. Probl~ns of the latter sort 

are characterized by a family {$i,~2 .... } where 

~. is a class of polynQmials with i indeteminates. 
l 

In this case we define a problem to be ccmplete if 

for same choice {Pie ~i } we get a ccmplete family 

in the nozmal sense. 

Finally we note that the Hamiltonian circuit 

polynGmial HC should not be confused with the H6m~- 

iltonian Graph polynGmial 

HGn×n = [ ~ Yij 
S (i,j) e E k 

where S characterizes the graphs that contain 

Hamiltonian circuits. Clearly if P = NP then 

by Pro~x~sition 4 and Theorr~ 3 HG would be a 

p-projection of HC. By proving the nonexistence 

of such a relation in a particular field one could 

in principle prove P ~ NP by an algebraic [or 

cQmbinatorial if F = GF(2)) arg~ent. 

6. C~erations on Polynomials 

Consider the problem of finding same specified 

coefficient of a multivariate polync~nial P i" If 

P. is multilinear then no coefficient can be much 
l 

more difficult to compute than Pi itself. That 

the problem is difficult in the general case, how- 

ever, follows frcm the fact that the coefficient of 

yl...y n in the trivial polynQmial 

n n 
H ~ ~Yi 
k=1 i=l 

(*) 

is the pezmanent of the {Xki} matrix. What 

shall observe in this section is that the maximal 

difficulty of deriving coefficients is well charac- 

terized by this example. 

Definition If P E Fix i .... ,x n] and m is a 
il i2 n i 

monclnial x I x 2 ...xnn then the coefficient of 

m in Pn is the unique polyncmial ~ where 

(i) Pn =~n + Rn' (ii) ~ and m have no indet- 

ezminate in ccmDn, and (iii) each moncmial in R 
n 

differs from m in the exponent of at least one 

indeterminate. 

Proposition 9 If P has p-bounded formula size 

6nd Q a family such that Qi is a coefficient in 

Pt(i) then Q is p-definable with respect to the 

paraneter t(i). 

Proof By Theorem 1 P is the p-projection of the 

detenainant. For a particular Pn e Fix I ,... ,x n] 

andmoncmial m let the rxr matrix Y be a 

matrix projection of minimal dimensions such that 
2 

det Y = P Introduce r new indeteminates Z = 
n 

{zij If-< i,j_<r} and let W be the matrix such 

that W ij = Yij zij for each i, j pair. We now 

claim that there is a polyncmial 

R e F[Zu {x l,...,x n}] of p-bounded formula size 

such that for o : Z + {0,i} 

R ° = moncmial m' if 
r2+n 

H :~j 
o ( z i j )  =a 

If Qr x r 

then 

-° R ° N Qr x r zij 
o r2+n 

is of the fore m' where m and m' 

have no indetezminate in ccmnon, and 

equals zero otherwise. 

E F(Z) is the polyncmial of Proposition 3 

is clearly p-definable. But setting each z . to 
m3 

one then gives the coefficient of m in 

det Y = P 
n 

Remark 4. Deducing a coefficient frcm a small fo~nula 

is difficult even in the univariate case. If in 

(*) each Yi is replaced by z 21 , and the x's 

replaced by integers ~n~ the probl~n of cc~puting 

the coefficient of z 2 -I is equivalent to 

evaluating an integer pezmanent. Evidence of the 

difficulty of this is given in [21]. 

7. Boolean Definitions 

Boolean analogues to the algebraic results of 

the previous secticns can be developed in several 

ways. We shall restrict ourselves here to Boolean 

functions of arg~ents that range over {0 ,i }. 

Other possibilities include Boolean polynQmials 

(i.e. formal polyncmials where only the constant 

coefficients obey the Boolean Laws) or Boolean 
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polyncmials with sane additional identities (e.g. 

2 xixj + xi = xi .) x i = x i or 

Let B[xl,...,x n] be the class of 2 2n Boolean 

functions of the arg~ents {xl,... ,Xn}. P,Q,R 

will denote infinite families of such functions 

where typically P = {Pi I Pi E B[x l,...,xi]}. A 

Boolean formula is an expression that is either of 

the form (i) "c" for c • {0,i}, or (ii) an arg- 

l~nent "~" or a negated arg~nent "%", or (iii) 

an expression " (fl o f2) " where fl,f2 are formulae 

and o is one of the two operations "and" or "or" 

denoted by x and + respectively.) 

The size I fl of f is the nt~ber of operat- 

ions of type (iii) needed in its censtructien. A 

formula represents a Boolean function in the obvious 

way. The formula size of Pi ~ B[xl"'''xi] is 

the size of the minimal size formula for it, and is 

denoted by I Pil. It is well known that our 

measure is p-bounded in terns of corresponding 

measures for all other choices for the o operation 

[2O]. 

If X is a set of argents and A a set of 

Boolean functions then any mapping o : X + A can 

be regarded as a substitution- If 

Pi £ B[xl"'''xi] and X c {xl, .... x i} then the 

substitution ~ can be made in P. and the result- 
l 

denoted by p~.. A substitution 
1 

= {0,1} u{y I ..... yr }u {91 ..... 9 r} 

is an argunent. 

ing function is 

is sidle if A 

where each yj 

Definition Qi • B[Yl ..... Yi ] is a projection of 

Pj c B[xl,...,x j] iff there is a simple substit- 

ution o such that Qi = P~" " The family D is 
3 

a p-projection of the family p if for same 

p-bounded t for all i there is a j _< t(i) such 

that Qi is the projection of Pj . 

ote that such pairs of trivial families as 

P = {~xj} and O ={l~xj} are not projections of 

each other. 

8. Universal.it~ of Transitive C!osure 

Sup~x~se that Y is a matrix of n 2 argument 

symbols {Yij I i -< i,j • n}. Define the transitive 

closure function Trans e B[Y] by 
nxn 

co 

i=0 

It is well known that Trans is defined and nxn 
equal to (I+Y) n where I is the nx n identity 

matrix. Hence Trans is a p-projection of yn . 

This latter function will also therefore be proved 

to be universal. 

Theoreza4 If Pi ~ B[x l,...,x i] then P.i is the 

projection of the (I ,s) entry of TranSs x s where 

s =[Pi I + 2. 

Proof From Pi 

as in Theorem i. 

paths frcm s to 

we construct a graph G exactly 

Now, with st~mation over all 

t, 

[ products of weights on stp 
stp 

will equal the function P.. But if in Y we 
1 

set Yij = 0 if edge (i,j) is absent frcm G , and 

Yij to the weight of edge (i,j) otherwise, then 

the (l,s) entry of YJ will equal the contribution 

to P i given by the s-t paths of length exactly 

j. The result follows. [3 

We conclude that every Boolean function of 

small formula size is the projection of the trans- 

itive closure function of a correspondingly small 

matrix. Since Trans has formula size at most 
n o (log n) n x n 

, the question as to whether same given 

family P has qp-bounded forn~la size is equivalent 

to this explicit combinatorial property in Boolean 

algebra. We note that in the Boolean case, although 

no analogue of Hyafil's result is known, the logarithm 

of fozzm/la size is intimately related to the space 

required to ccr~pute the function. 

9. p-Definability for Boolean Functions 

Next we observe that the formal Boolean analogue 

of the previously defined algebraic notion of 

p-definability is closely related to the concept of 

nondeterministm as traditic~ally applied to discrete 

cxm~utations. 

Definition A family P of Boolean functions is 

p-~_efinable iff either (a) there is a family Q 

and a p-bounded t such that for all i IQil _<t(i) 

and 
o 

Qi H 
,o o (X k) =i 

summation being over the 2 j substitutions 
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{x I ..... xj} ÷ {0,I} for same j (0_<j_<i), if 

Qi E B[xl,...,xi], 

or (b) P is the p-projection of some p-definable 

f~ily. 

[N.B. Again, allowing j < i is redundant since 

every p-definable family is a p-projection of same 

conplete family that can be defined with i = j. 

In some cases, however, it allows for a more tract- 

able defining family. ] 

Propositiorl iO Suppose that S is a family 

Si,S2,... where S n is a set of subsets of 

{l,2,...,n} . Suppose that there is a polynomial 

nondetezxninistic Turing Machine that, given 

any n and s' _c {l,2,...,n}, 

s' • S Then the function 
n 

= Z Hs x. Pn s~S j ] 

specifies a p-definable family. 

detezmines whether 

Proof Exactly as in the proof of Proposition 4, 

given n we can find Qr and P'r such that 

P' = Z ~ r Qr Xk 
o (k) =I 
i-<k<-r 

In the Boolean case Qr will equal i for inputs 

that are accepted even by DJondetezministic conlout- 

ations. Hence P is the p-projection of P' 
n r 

under the substitution that sets to one each x k 

with k ~ n and leaves the others unchanged. [J 

For such monotone functions as Haniltcnian 

circuits, p-definability can be verified trivially 

even without using the ncndeterminsitic facility 

of Proposition iO. Using the terminology of 

§§3,5 but with a Boolean interpretation, this 

function is simply 
m 

HCn x n = HGn × n = ~ ~ Yij 
k=l (i,j)E~ 

where E k is the k th Hamiltonian circuit. Checking 

whether sQme set of edges is a H~niltonian circuit 

can be done fast determinlsticly. Note, however, 

that the function HG = HC checks for an arbitrary 

graph whether it contains sGme H~niltonian circuit 

rather than just whether it is one. 

For some other monotone functions we do need 

nondetezminism as in the following example of the 

Satisfiability problem. We define it as a function 

of 2n 2 arg~nents X = {xij,Yij I l _< i,j _< n}. A 

truth assigr~ent to X will denote a conjunctive 

normal form fomnula f with n cl~ses and 

arg~nents {zl,...,z n} such that zj appears in 

clause i iff x.. = I, and ~. appears in clause 
i3 ] 

i iff Yi4 = I . 

function is 

Then the desired satisfiability 

Z a(X') xl3~eX, xij ylj~eX, Yij X'%X . . . .  

where a(X') is i or 0 according to whether the 

fo~nula f oorresponding to just the X' arg~nents 

being set to one is satisfiable or not. 

[N.B. In §5 Satisfiability was a family of poly- 

ncmials each of which was defined for a specific 

Boolean function. Thus the polyncmial in 

F[xl,... ,x i] corresponding to Qi e B[Yl,... ,yi ] 

is 

[ b(Y') ~ x. 
y'cy yiey, 1 

where b(Y') is 1 or 0 according to whether Qi 

is i or 0 for the input values defined by: 

Yi =I ~>YiE Y' "] 

Problems in NP that are not monotone (e.g. 

exact cover [153 ) are also easily seen to be 

p-definable. By taking sane natural represent- 

ation of them as Boolean functions and renaming 

each pair {x i _ ,xj } by new distinct arg~nents 

{Y4 ~ ,zj } we obtain mc~otcne p-definable functions. 

The original function is still p-definable since 

it can be recaptured by taking the projection 

÷ x. for each j . yj ÷ xj and zj 3 

The converse implication that p-definability 

implies containment in NP is, of course, false 

since no unifozmity is ass~ed wit_bin a family of 

functions. 

iO. Ccmlolet ~ Boolean Functions 

The p-definable Boolean functions have a 

ccrmpleteness class that appears to contain the 

majority of those NP-conplete problems that can be 

expressed as monotone Boolean functions. (e.g. 

satisfiability, cliques, colourability, Hamiltonian 

circuits. ) Our purpose here is to point out 
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(a) that the class in which they are ccnlolete can 

be specified in terms of finite Boolean functions, 

in contrast with NP which is an infinite concept, 

and (b) that the ccr~plete probles~ are even more 

closely related to each other than previously 

realised - they can be obtained frQm each other by 

siaple substitutions. 

Definition A p-definable family P of Boolean 

functions is ccmlolete if every p-definable family 

Q is a p-projection of it. 

Theorem 5 The Hamiltonian circuit function HC is 

cc~plete. 

Proof The ccnstruction is identical to that of 

Theorem 3 except for the following modifications. 

For each argument x k we have both an Xk-Cycle 

(weighted x k) and an ~-cycle (weighted one. ) 

Each x k edge is linked to the Xk-Cycle by a 

co-ordinator, and each % edge to the %-cycle 

similarly. Furthermore each x k cycle intersects 

with the % cycle at a junction to ensure that in 

each Hamiltonian circuit exactly one of them is 

traversed. The result follows. [3 

The reader can verify that such monotone 

functions as HC, satisfiability and cliques are all 

p-projections of each other. Anti-monotone prob- 

lems such as node cover and colourability are also 

cc~plete if represented in a nonstandard way in 

terms of absent edges. For non-monotone NP-oc~iolete 

functions such as exact cover one can usually find 

a subset of special cases that have a monotone non- 

standard representation and cozTespond to a monotcne 

c~mplete problem. Such a subset is often already 

ir~olicit in known reductions. 
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