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0. Introduction

In the theory of recursive functions and comp-
utational camplexity it has been demonstrated rep-
eatedly that the natural problems tend to cluster
together in "completeness classes”. These are
families of problems that (A) are camputationally
interreducible and (B) are the hardest members of
save camputatiocnally defined class. The aim of
‘this paper is to demonstrate that for both algebraic
and cambinatorial problems this phenamenon exists in
a form that is purely algebraic in both of the
respects (A) and (B). Such camputational consequ-
ences as NP-campleteness are particular manifest-

ations of samething more fundamental.

The core of the paper is self-contained, con-
sisting as it does essentially of the two notions
of "p-definability" and the five algebraic relations
that are proved as theorems.
aim is to elucidate the computational conseguences
of these basic results.
propositions and discussion for convenience we do

In the remainder our

Hence in the auxiliary

assure familiarity with algebraic and Boolean
camplexity theory [3,201].

Our basic technique is that of reducing poly-
nomials to each other, or Boolean functions to each
other, by projections (i.e.substitutions for indet-
erminates of constants or other indeterminates.)
Our main conclusions can be summarized roughly as
follows:

(a) Linear algebra offers essentially the only fast
technique for camputing multivariate polynamials of
moderate degree.

(b) Numerous well-known but apparently intractable
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polynomials are interreducible via projections.
Because of the closeness of this relationship they
are not only camputationally but also mathematically
equally intractable. Furthermore we can identify
them as belonging to the campleteness class for
p~definable polynamials.

(c) The question as to whether these camplete poly-
namials can be camputed fast is equivalent to the
purely algebraic question as to whether they are
projections of a moderate size determinant.

(d) Many NP-camplete problems when regarded as
finite Boolean functions are interreducible by
Furthermore they are camwplete for a
class of functions that can be defined in terms of
finite Boolean properties.
is meaningful even if P = NP.

projection.

The campleteness class

(e) These NP-camplete problems can be camputed by
polynomial size formulae if and only if they are
projections of the transitive closure function of
moderate size.
atorial approaches to proving P#NP also suggest
themselves.

Same purely algebraic or cambin-~

1. Algebraic Definitions

Iet F be a field and F[xl,...,xn] the ring
of polynomials over indeterminates Xppeee X, with
P,0 and R will denocte

infinite families of polynamials where typically

coefficients fram F .

P = {Pil Pie FIx ,ooenx;] , 1 =1,2,..00
and similarly for Q@ and R .

A formula f over F 1is an expression that
is of one of the following forms:
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(i) "¢c" where ceF , or (ii) "x." where xj is
an indeterminate, or (iii) "(£f, o £)" where f,
and f2 are themselves formulae over F and o
is one of the two ring operators {+,x} . The
size of a formula £ is the number of operations
of type (iii) needed in its construction, and is
denoted by |£f| . For exarple the formula
"(Ux, + 1) x(x,+2) + 2)" has size four. Any
formula specifies a polynomial in the cbvious way.
The formula size {Pil of polynamial P, is the
size of the minimal size formula that specifies it.

If X is a set of indeterminates and A a
set of polynamials then any mapping o:X-+A can
be regarded as a substitution.

If P, e F[xl,...,xi] and X g{xl,...,xi} then
the substitution ¢ can be made in Pi and the
resulting polynamial is denoted by Pg . If

A=YyF where Y is a set of indetexminates,
then a mapping o:X+A is a simple substitution.

Definition Qi € F[yl,...,yi] is a projection of
Pj € F[xl,...,xj] iff there is a simple substit-

ution ¢ over F such that Qi=P;

Functions fram positive integers to positive
integers we shall denote typically by t . Such
a t is p-bounded if for same constants K.k, for
all n t(n) sK+nk .

Definition If P,Q are families of polynomials

then Q is a t-projection of P if for all i

and o such that Qi=Pg .

It is a p-projection if it is a t-projection for

there exist j<t(i)

same p~bounded t .

An example of a pair of polynamial families
that are not projections of each other is the

following:
i i
P={Pi=§xj} and Q={Qi=I;I x5 1.
Note that cur notion of substitution is very

restricted as campared with same reasonable alter-
(If in A we had allowed arbitrary
linear cambinations of indetemminates then P
would have been a 1-projection of Q , and if
arbitrary monamials had been allowed then the
converse would have held.)

natives.
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2. Universality of the Determinant

We show that every polyncmial of formula size
u is the projection of the (U +2) x (u+2) deter-
To interpret this note that the determin-

2
0(log“n)

minant.

ant itself has formula size 2
is less than strictly exponential (i.e. 2
e>0.) We conclude that for the problem of finding
a subexponential formula for a polynamial when one
exists, linear algebra is essentially the only

{6,14] which

nE
for

technique in the sense that it is always applicable.

A more significant interpretation as far as
camputation follows fram Hyafil's result [141.
He showed that for same constant o any polynomial
of degree 4 that can be camputed by a straight-line
program in C steps has formula size Calog d .
Consider polyncmial families in which the degree
is p~bounded in terms of the number of indetermin-
ates. Define a function t(n) to be gp-bounded
(quasi-polynamial) if it is bounded above by
2l°‘3’k () Then the class
of polynamials with gp-bounded formula size is the
same as the class of polynamials that can be comp-
uted by programs of gp-bounded length.
polynamial with p~bounded degree can be camputed
in gp-time if and only if it is the projection of
a determinant of gp~bounded dimensions.

for same constant k.

Hence a

Iet Y be an nxn matrix of indeterminates
{yij [1<i,j<n}. 1ILet G be a directed graph on
n nodes {1,2,...,n} in which edge
given weight Yis - A cycle cover of G 1is a set

J
of n edges that together form a set of disjoint

(llj) is

directed cycles in G (i.e. every node must be
visited exactly once.) Now

_ _11y59n (x) 2
Det(v) = ] (-1) Ty v
ﬂ_ i=1

where summation is over all n!
{1,¢..,n}.
espondence between cycle covers in G and permut-

permututions on
Clearly there is a one-to-one corr-

ations. Also, each = is the product of cyclic
permutations, and the latter correspond one-to—cne
with the cycles in the cycle cover. Since sgn(c)
is +1 if and only if ¢ is a cycle of odd length,
if the cycle covers in G consist entirely of odd
length cycles then

J (product of weights on cc)
ce



summed over all the cycle covers of G will equal
det(Y') where {a) (i,j) «G => yij = yij and

(b) (i,3) 4G =>yJ!_j =0 . Denoting the nxn det-
eminant by Detn

xpn We prove the following:

Theorem 1 If PieF[xl,...,xi] then P,

kR
projection of Det where s = IPi] +2.

xS

Proof We first define a mapping

H :{formulae} + {graphs} x {0,1}

recursively in the construction of the formula.
Note that for any formula £ if H(f) = (G,r)

then (i) G will be acyclic with distinguished
source and sink nodes s and t respectively, and
(ii) either every path fram s to t is of odd
length, in which case r =1, or every path is of
even length in which case r =0 .

(@) If £ ="c" or “yj" then H(f) = (G,1)
G has node set {s,t} and just the cne edge
which is given weight ¢ or yj

where
(s,t)
as appropriate.

(b) If £ =(f1 + f2) where H(‘fi) = (‘G1'r1) and
H(f2) = (Gz’rg) then
(i) if r1 =r2 then H(f) = (G,rl) where G
is the disjoint union of G, and G2 but with
the two source nodes and the two sink nodes

identified:
N
G:
S

(ii) if r o=r, then H(f) = (G,rl) where G
is the disjoint union of G1 and G2 with the
two sources identified, and with an additional
edge, weighted one, fram the sink of G, to the

sink of G1 :
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(c) If £ =(f1><f2) where H(fl) = (Gl’rl) and

Hf)) = (G,,r,)) then H(f) = (Gr,+r, mod 2) where
G is the disjoint union of G, and G2 but with
the sink of G, identified with the source of G2

A

e X

We claim that for any £ if H{(f) = (G,r) then

] product of weights on stp ,

stp
summed over all directed paths fram s to t in G,
is equal to the polynamial represented by £ .
The reader may verify this easily by induction on
the construction of G . Also by induction it
follows that G has at most s = |f| + 2 nodes.

To establish the theorem consider H(f) = (G,r)
Modify
First add a self-loop (i.e.
weighted one to every node k of G
that isnot s or t . If r=0 add a new edge
weighted one fram the sink to the source. If r=1
identify the sink and the source. In either case
every cycle cover of G' will consist of one non-
trivial cycle of odd length and a number of self-
loops (i.e. of length one).
represented by f will equal

where f is a minimal formula for Pi .
G to G'
edge (k,k))

as follows:

Now the polynamial

) (product of weights on cc)
cc

with sumation over all cycle covers of G . By
the preliminary observations this will equal the
appropriate projection of the sxs determinant. 0

3. p-Definability

For numerous widely studied polynamials only
exponential size formulae are known. In the maj-
ority of cases it turns out that they can still be
described succinctly because their coefficients
can be specified by a small formula.
which should became clear later, we capture this
notion as follows:

For reasons



Pefinition A family P of polynomials over F
is p-definable iff
either (a) there is a family Q over F and a

p~bounded t such that

for all i [Q;| = t(i) and

_ g
Pi - z Qi n _ Xk 14
o o(xk)—l

summation being over the 2} substitutions
{Xl""'xj} + {0,1} for same j,(0 <j=<i),

if Qi € F[xl,...,xi] ’
or (b) P is the p-projection of same p~definable
family.
[N.B. Allowing Jj <i is useful but technically
redundant. As we shall see every p-definable

family is the p~-projection of same family that
can be defined with i = j.]

If Q is a family that satisfies condition
(a) of this definition for P then we say Q
defines P. Clearly every family of p-bounded

formula size defines itself since we can take j = O.

In the next two sections we ‘shall be concerned
with p-definable polynamials that in all probability
do not have p-bounded formulae and are intractable.
In the remainder of this section we shall give

techniques for identifying polynamials as p~definable.

Direct verification is often very cumbersane.

nxn matrix Y of indeterminates
{yij |1<i,j<n} we define the permanent of Y as

Given an

Pem =7

n
Y. .
s igl i,w(d)

with sumation over all n!
{1,...,n} .

permutations of

Proposition 1 Over any F the permanent is defined
by the family Q where
n n

(1) (1

i=1 j=1 i=k
or j=m

(1 - yijykm)>

Proof By expanding the shorthand notation it is
clear that an A has forrmla size O(n3) . Also,
for input values fram the set {0,1}n R ann is
zero if same row is all zero, or if any two ones

are in the same row or colum. a
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Since p—definability is concerned with the
evaluation of algebraic formulae at {0,1} the
consideration of Boolean formulae is often useful.
(See §7 and [201).

Proposition 2  For any F there is a mapping fram
Boolean functions to polynomials over F that keeps
formula size p-bounded and has the following
property: any g e B[xl,...,xn] maps to

f e F[xl,... ,xn] such that for all vectors
x_/e{o,i}n , glv) =1 = f£(¥) =1 and

glv) =0 => £(v) =0,

Proof We use the well-known result that there is
a translation that takes any Boolean formula of
size s to an equivalent one of depth 0O(log s)
and size p-bounded by s ([201,p26).,

Boolean operation can be simulated in any F on

Now each

the damain {0,1}: xAy by xy , X by 1-x

and xvy by x+y-xy . If a Boolean formula
of depth d translates into an algebraic one of
size S(d) then S(d) < cS(d-1)
the maximal number of algebraic operations needed

where c¢ is

to realise any of the three Boolean operators.
It follows that a formula of size S will be
translated to one of size S(d)< cds co(]‘Og s) < sk

for same constant k. O

It is sametimes useful to employ other Boolean
The following illustrates the use of
Clearly this causes no extra
problems since x @ y can be simulated by

x+y-2xy Just as well,

operators also.
"exclusive-or".

Proposition 3  The determinant is defined by the

family

O"an = ann (1-2Qn><n)
where ann is as in Proposition 1, and Qan
is the formula that on damain {0,1} equals the
following Boolean formula

D D g
im j>m

and

k <i

Proof By inspection. [J

Usually it is sufficient to establish the
existence of a small defining formula, and we do
not need to find an elegant one. In these



circumstances the following is very often sufficient.

Proposition 4 Suppose P = {P1’P2""} is a
family of polynamials over F where every moncmial
has coefficient one (or zero). Suppose that there
is a p-time algorithm that for any vector

Ve {0,1}" can determine whether the coefficient of

[T =,
v.=1 4
J
is one. Then P is p~definable over ¥ .
Proof Consider a deterministic t(n)-time bounded

one-tape Turing acceptor M for the hypothesized
problem. Then camputation sequences of M can be
described by sequences of O(t2) binary symbols.
Furthermore, there is a Boolean formmula g of
p~bounded size that detemmines for such a sequence
of symbols whether it represents an accepting
computation for a specified input. Now translate

g to a fomula f over F that is "equivalent”

to it in the sense of Proposition 2. Suppose the
indeterminates of g are xl,x2. s X X e ,xr

where RyreeesX, correspond one-to-one to

Vireees Vo, and call the polynomial that g repre-

1

sents Qr . Then clearly

n
o(k)=1 "%
1<k<y

' _ (9
Py = er

is p—definable if summation is over the 2¥ s~
c:{xi,...,xr}—>{0,1} . But for each
Ve {0,11" that corresponds to an accepting camp—

stitutions

utation of M there is exactly one substitution o
that agrees with it for 1<i<n and gives Qg=1,
namely the one describing the correct camputation.
Hence P, is the p-projection of P]': under the
substitution that sets to one each % with k=2n,

and leaves the others unchanged. O
Ramark 1 By the same argument it follows that for

each predicate camputable in nondetemministic

p-time there is an associated p~definable polyncmial,
but now the coefficient of each monamial is the
number of accepting camputations rather”than unity.

Using this last result it is easy to verify
that most of the frequently occurring generating
polynamials for cambinatorial structures are
p-definable. The examples below are specified
as follows: Let G be the camplete directed
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graph on the n nodes {1,...,n} with edge (i,3)
labelled by indeterminate y.lj . Let S bea
set of subsets {El""’Em} of the edges of G .
Then the polynamial for S over F is defined as

1 n
Y

k=L (i,3)e B I

Frcom Proposition 4 it is clear that each of the

following polynamial families is p—definable.

I Permanent: S = {cycle covers.}

II Self Avoiding Walks: S = {paths fram
node 1 to node 2 that do not go through
any node more than once. }

III Hamiltonian Paths: S = {self-avoiding
walks fram node 1 to node 2 of length
exactly n -1.}

IV Hamiltonian Circuits:
cycles of length n.}

V Spamning Trees: S = {spanning trees in
which each edge is directed away fram
node 1.}

VI Reliability: § = {Ei] there is a path from

node 1 to 2 in Ei.}

S = {self-avoiding

For each of the above we get the corresponding
undirected case if we identify each yij with yji'
In that case the following are further natural
p—definable problems.

VII Matchings: S = {E;| no two edges in E,
are incident with the same node.}

VIIT Perfect matchings:
ing of exactly n/2 edges.}

S = {matchings consist-

(n assumed
even.)

IX Comnected camponents: S = {Ei[ E, fomms
a single connected camponent. }

4. Camplete Problems

We now show that same of the above defined
polynamials are of maximal intractability in the
following strong sense:

Definition A p-definable family P over F is
camplete over F if every p-definable family Q
over F is a p-projection of P.

Note that the problems that are camplete over
any one field F are all p-projections of each
other. Hence they share all mathematical and
computational properties that are preserved under



simple substitutions. Computational camplexity is
one example of such a property.

To identify a p~definable family as being com-
plete we need to show that same known camplete prob-
lem is a p~projection of it. In practice the
following two theorems appear to suffice as starting

points.

Theorem 2 If F is any field with characteristic
not equal to two, then the Permanent is camplete

over F .

Proof We consider an arbitrary p-definable family
P and show that it is the p-projection of the
permanent. Therefore suppose that P is the
p-projection of same P which in turn is defined
by the family Q . Consider a particular member

Pm which is therefore the projection of same P,
such that
§i(x1,...,xi) = ) ] Qg T %
cre{O,l}J c(xk)=1
where summation is over the Zj assignments to
{xl,. .. ,xj}. Now consider a minimal size formula
£ for Qi , and construct fram it a graph G’
exactly as in the proof of Theorem 1. [N.B. Keep~—
ing track of the parity r is actually superfluous
By the argument given there
the projection of Permn “n that is specified by
the edge weights of G' will equal Qi . What we
need to do is to modify G' to G" so that G"
specifies a projection of Perm that equals
not Qi but the polyncmial Pi that it defines.

in the current proof.]

To do this we first add an isolated cycle
labelled X for each k (1<k<j).
impose a global structure that ensures that in any

Then we super-

cycle cover that contains the % cycle all x
weighted edges in G' have effective weight one,
while in any cover not containing the X - cycle
all . edges have effective weight zero. If
this can be achieved then the permanent of G"
will equal 13i since the coefficient of each

nx, product will be just the value of Qi evaluated

at the appropriate input vector from {0,1}j .

The global structure connects each % edge in
G' with the corresponding X cycle via a separate
co—ordinator. The introduction of each co—ordin-
ator involves eight new nodes, as shown in Figure 1.
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A co-ordinator consists of two identical 4-node
junctions. Denoting the nodes by {1,2,3,4} a
junction has the property that in any cycle cover
that enters it at node 1 and leaves it at 4, or
vice versa, its contribution is a multiplicative
factor of 4.
contribution is a factor of zero, and hence all
such cycle covers are effectively cancelled out.
The construction of the co-ordinator ensures that
in any non-vanishing cycle cover either both

In any other kind of cycle cover its

junctions are traversed u4-+1, or both 1-4. In
other words either both the X cycle and the x
weighted edge in G'

neither one is.

are effectively included, or

q
X cycle
edge
*lin g
becanes
1
1
»- > 1
y
[ 4 3 .2
(D] 3
. < 4
1

Figure 1: A co—ordinator of G"

Each function is implemented by a weighted
directed graph proposed in [21], whose adjacency
matrix is



o 1 -1 -1
< = 1 -1 1 1
o 1 1 2
o 1 3 0

If X[v;8] denotes X but with rows
§ removed then

v and colums

Perm X(1;4) = Pemm X(4;1) = 4 , but
Perm X = Perm X(1;1) =Perm X(4;4) =Perm X(1,4;1,4)=0.

It can be verified that these properties ensure
that the functions behave as claimed.

In G" each X cycle will contain a number
of junctions joined in a ring by a number of edges.
Amongst the latter edges we label just one by X
and the rest by unity. All the aims of the con-
struction are now achieved except that each junction
contributes a factor of four rather than one. To
camensate for this we insist on an edge fram the
sink of G' to the source and give it weight (,2-1)
where J is the total nmumber of junctions in G" .
The permanent of the adjacency matrix of G" is

2J

then ﬁj as required. 0
Ramark 2  If char F = 2 the proof fails because
2"1 does not exist. Furthermore the technigue

itself fails since the permanent and determinant
are then identical, and no matrix with the deter-
minental properties required of X exists.

Ranark 3 The question as to whether there is a
matrix transformation that translates a permanent
into a determinant, or vice versa, was asked for
the first time apparently by Polya [18]. Except
for the trivial case of n = 2 no positive result
was previously known. The strongest negative
result was that of Marcus and Minc [17] who showed
that even if substitutions of linear fomms are
allowed but the matrix size is preserved, neither
function is the image of the other.

Proposition 5 For same constant ¢ for all n

Detn xpn s the projection of Pennmxm for
m = cn®.
Proof If char F = 2 then the two polynamials

are identical. Otherwise apply Theorem 2 to
Proposition 3. 0
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For all n Pemm is the proj-
nxn

where t(n) < n22rl .

Proposition 6

ection of Dett(n) x t(n)

Proof Ryser [ 19 ,p26] gives a formula for the
permanent of size (n22n) . The result follows
fram Theorem 1 for any F . 0

Proposition 7 For any given F with char F # 2
Proposition 6 holds for a qp-bounded t if and only if
every gp—definable polynanial family has gp-bounded

formula size over F . 0O

Our second completeness result is for the
Hamiltonian Circuit polynomial defined in §3. It
is different in that it holds for any field F.

Theorem 3 The Hamiltonian circuit polyncamial is

camplete over any field F .

Proof We denote the directed Hamiltonian circuit
polynamial over n nodes by HC

axn As observed
before, it is p—definable. To show that any
p~definable family P is the p-projection of it
we consider P, f’i and Q; as in Theorem 2, and
construct G' fram the minimal formula for Qi

exactly as there.

To obtain the necessary G" fram G' we first
note that junctions can be much simplified to

3

Since every Hamiltonian circuit must enter at node 1
and leave at 3, or vice versa, each edge intemnal

to the junction can be weighted one.

We introduce an %~ cycle for each k(i1s<k<j)
but break each one and "thread" them together with
the main cycle of G' as follows:

X1 X2 X




The unspecified "beads" at the right of the diagram
thread all the remaining potential cycles in G’
namely the self-loops and the main cycle of each
co—ordinator.

Thus each co-ordinator is now of
the form:

X~

cycle

.

I ”

edge in G

main
thread

To cope with self loops we modify every node in G
other than s and t so that it becames a junction.

becames
node with
self-loop
in G
main thread

It can be verified that the projection of HC

specified by G" gives ﬁj . O

5. More Camplete Problems

Multivariate polynamials of the kind defined
in §3 occur in diverse contexts. For example, the
reliability and connected cawponents problems have
cbvicus applications to unreliable networks [ 8 ]
and are also related to percolation problems [9,23].
The polynamials for self-avoiding walks, matchings
and perfect matchings appear as generating functions
for the corresponding counting problems in several
branches of the physical sciences [2,12,16].

Despite exhaustive research nearly all of them
have defied detailed mathematical or camputational
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analysis. Even mere approximations for special

cases appear difficult to obtain 03].

There are essentially only two interesting cases
that are known to be tractable. The undirected
spanning tree polynamial was solved by Kirchhoff,
and the result later extended to the directed case
(see [4]).
were solved by Kasteleyn and Fisher (see 06]).

Both of these results express the required polynamial
in temms of a determinant, a fact which suggests
that the interpretation we claimed for our Theorem 1
has same validity.

Perfect matchings for planar graphs

In this section we shall illustrate how the
intractability of many of the remaining problems
can be explained away in terms of our notion of
campleteness.

Our first example shows that the considerable
efforts made to extend the Kasteleyn-Fisher tech-
nique just to regular rectangular lattices in three
dimensions was doamed to fail. The reader should
note that here there was no previous concrete indic-
ation that counting solutions was difficult. ‘This
contrasts with Hamiltonian circuits where solutions
are hard even to detect [15] and general perfect
matchings where solutions are hard to count [R21].
The example highlights the fact that for counting
cambinatorial structures in apparently harmless
special cases the algebraic approach can easily
introduce evident intractability.

Proposition 8 Denote by Gn the graph on 2n°
nodes arranged as a 3-dimensional slab with integer
co-ordinates

{(i,3,k)| 1<i,j<n; k=0,11},

with every pair of nodes separated by unit distance
connected by an edge.
polynomial for this restricted family of graphs is
camplete for ¥ if charF = 2.

Then the perfect matching

Proof First note that given any weighted directed
graph G (e.g. the camwplete graph) we can construct
a G' , with maximal indegree and outdegree of 3,

that has the same permmanent. For each node we
transform the edge set incident from it as follows:



=

becones

The edge sets incident into the nodes are treated
similarly.

In turm we can translate G' to an undirected
bipartite graph G" of maximal degree three, of
which the perfect matching polynamial is the penm—
anent of G . We conclude that there is a family
{H1’H2"' .} of undirected bipartite graphs of max-
imal degree three such that the associated family
of perfect matching polynamials is camplete over F.

We now show that the perfect matching polynamial
for {Gn} is also camplete, by suitably embedding

2

each Hn into Gm where m=r“+1 and r = 6n.

The idea of the embedding is to map each edge
in Hn to a chain of edges of odd length in Grn
such that these chains are node-disjoint except for
the ends. An edge that is matched in Hn will
correspond to a chain in which the two endmost edges
are matched in Gm .

In particular if H has nodes
{1,2,+..m,1',2',...,n'} thennode i will map to
(ir,0,0) and node i' to (ir,m,0). An edge
connecting i to j' in Hn is mapped ideally to
the three straight sequences of edges successively
joining
(jr,m,0). Since up to six chains may campete for
the same path in the first or third of these sequ-
ences, they will be displaced by the appropriate
nurber of units in the horizontal dimension. When
a horizontal chain crosses over a vertical one the
collision is avoided by rerouting it to the k =1
plane.

(ir,0,0), (ir,ir + j,0), (Jr,ir + 3,0) and

Note that irrespective of the implementation
details each chain will be of odd length since the
total horizontal displacement is even, and the
vertical one odd. 0
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Fig.2 Enbedding of two intersecting edges.

In the remainder of this section we shall
observe that the intractability of several
polynamials for regular lattices is already implicit
in published proofs of NP~-campleteness. For example,
since Hamiltonian paths in planar graphs are NP-
camplete [10] we would expect that by erbedding in
the 2-dimensional rectangular lattice the special
planar graphs used in the proof we can obtain our
algebraic reduction. 1In this manner one can verify
algebraic intractability for many NP- and #P-camplete
problems when restricted to such regular graphs.

For suitable definitions of the appropriate
polynamials and using constructions frem [10,11,15]
one can establish such reduction sequences as the
following: Hamiltonian circuits - Satisfiability
-+ Chramatic number -+ Exact 3-cover - Planar directed
Hamiltonian paths + Directed self-avoiding walks in
2-D rectangular lattice, and Exact 3-cover -+ Connected
camponents in 2-D rectangular lattice.

The reader can verify that these reductions
establish for each problem either (i) that it is
canplete or (ii) that it is a hamogeneous component
of a camplete problem, or (iii) that it is a certain
coefficient in a camplete multilinear family. The
latter two properties are certainly equivalent to
the first as far as camputational camplexity. Any
program can be modified to produce just one homo-
geneous camponent of it with only quadratic increase
in size [14]. If it is multilinear then any co-—
efficient can be abstracted by similar techniques.

Among the above defined probleams same are
already polynamial families in the strict sense



that there is one member for each cardinality of
indeterminates. In others, such as satisfiability,
we have an exponential number, while for Hamiltonian
paths we have a polynanmial number by the freedam to
choose nodes 1 and 2. Problems of the latter sort
are characterized by a family {{[‘1,(]‘ y-.-1 where

ﬂ'i is a class of polynamials with i indeterminates.

In this case we define a problem to be camplete if
for same choice {Pi € ﬂ‘i} we get a camplete family
in the normal sense.

Finally we note that the Hamiltonian circuit
polynanial HC should not be confused with the Ham-
iltonian Graph polyncmial

HGn xn g (i,jI)_Ie Ek yi]
where S characterizes the graphs that contain
Hamiltonian circuits. Clearly if P = NP then
by Proposition 4 and Theorem 3 HG would be a
p-projection of HC. By proving the nonexistence
of such a relation in a particular field one could
in principle prove P # NP by an algebraic (or
onbinatorial if F = GF(2)) argument.

6. Operations on Polynamials

Consider the problem of finding same specified
coefficient of a multivariate polynamial Pi’ If
Pi is multilinear then no coefficient can be much
more difficult to campute than Pi itself. That
the problem is difficult in the general case, how-
ever, follows fram the fact that the coefficient of
Yqeeo¥y in the trivial polynamial

n n

[T 1

k=1 i=1

*ki¥i *)

is the permanent of the {xki} matrix. What we
shall observe in this section is that the maximal
difficulty of deriving coefficients is well charac-
terized by this example.

Definition If P ¢ FIx, ,...,x ] and m is a
= i, i i 1 n
monamial x L Xy ey then the coefficient of

m in Pn is the unique polynomial Qn vhere

() Pn = rlQn + Rn, (id) Qn and m have no indet-
eminate in cammon, and (1ii) each monomial in Rn
differs fram m in the exponent of at least one
indeterminate.
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Proposition 9 If P has p-bounded formula size
and Q a family such that Qi is a coefficient in
Pt(i) then Q is p-definable with respect to the
parameter t(i).

Proof By Theorem 1 P is the p-projection of the
deteminant.

For a particular Pn € F[xl, ces ,xn]
and monamial m let the rxr matrix Y be a

matrix projection of minimal dimensions such that
Introduce r2

det Y = Pn . new indeterminates 7=
{zij |1<i,j<r} and let W be the matrix such
that Wij = Yijzij for each 1i,j pair. We now

claim that there is a polynamial
R e FlZ2vu {xl,.. . ,xn}] of p-bounded formula size

such that for o : 2 » {0,1}
RU2 = moncomial m' if
r i
Y, .
_ iJ
G(Zij)—l
is of the form mm' where m and m'
have no indeterminate in cammon, and
equals zero otherwise.
If c’zrx ¢ € F(2) is the polynamial of Proposition 3
then

=0 (o]

) Q R [Tz,
g rxr r24n i

is clearly p—definable.

one then gives the coefficient of m in

det Y=P_ . O
n

But setting each zij to

Remark 4, Deducing a coefficient from a small formula
If in

i
(*) each Y is replaced by z2 , and the x's

is difficult even in the univariate case.

replaced by integers tg‘_e;? the problem of computing
the coefficient of zZ2 1
evaluating an integer permanent.

is equivalent to
Evidence of the
difficulty of this is given in [211].

7. Boolean Definitions

Boolean analogues to the algebraic results of
the previous sections can be developed in several
ways. We shall restrict ourselves here to Boolean
functions of arguments that range over {0,1}.
Other possibilities include Boolean polynamials
(i.e. formal polynamials where only the constant
coefficients obey the Boolean Laws) or Boolean



polynamials with same additional identities (e.g.
2

= .+ X, =X, .
Xy =X, or xixj X, =% ) "
Let B[xl,...,xn] be the class of 2 Boolean
functions of the arguments {xl,...,xn}. P,Q,R

will denote infinite families of such functions
where typically P = {P, | P, « B[xl,...,xi]}. A
Boolean formula is an expression that is either of
the fom (i) "¢" for c e {0,1},
"x." or a negated argument
an expression " (f1°f’2) " where fl’f2 are formulae

or (ii) an arg-

ument. "%.", or (iii)

and o is one of the two operations "and" or "or"

(denoted by x and + respectively.)

The size |f| of f is the nurber of operat-
ions of type (iii) needed in its construction. A
formula represents a Boolean function in the cbvious
way. The formula size of Pi € B[xl,...,xi] is
the size of the minimal size formula for it, and is
denoted by ]Pil . It is well known that our
measure is p-bounded in terms of corresponding
measures for all other choices for the o operation

[201.

If X is a set of arguments and A a set of
Boolean functions then any mapping ¢ : X - A can
be regarded as a substitution. If

Pi € B[xl,...,xi] and X ¢ {X1""’xi} then the
substitution ¢ can be made in Pi and the result~
ing function is denoted by P‘.l’ . A substitution
is simple if A = {0,1} u{yl,...,yr}u {§1”"’§r}
where each yj is an argument.

Definition Q; « B[yl,. .. ,yi] is a projection of
Pj € B[X1""’xj] iff there is a simple substit-
ution o such that 0, = PY . The family 0 is
a p-projection of the family P if for scame
p~bounded t for all i there is a J<t(i)

that Qi is the projection of Pj .

Note that such pairs of trivial families as

such

1
P = {Exj} and Q ={§xj} are not projections of
each other.

8. Universality of Transitive Closure

Suppose that Y is a matrix of n? argument

symbols {yij |1<i,jen}. Define the transitive
closure function Transn xn€ B[Y] by

I ¢

i=0
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is defined and
(I+Y)n where I is the nxn identity
Hence Trans is a p-projection of v,
This latter function will also therefore be proved
to be universal.

It is well known that Transnx
ecqual to
matrix.

Theorem 4 If Pi eB[xl,...,xi] then Pi is the
projection of the (1,s) entry of Transsx s where
s =|P,| + 2.

i

Proof From P; we construct a graph G exactly
as in Theorem 1. Now, with summation over all
paths from s to ¢,

}  products of weights on stp

stp
will equal the function Pi .
set

But if in ¥ we
Yi5 = 0 if edge (i,j) is absent from G , and
yij to the weight of ec'ige (i,j) otherwise, then
the (1,s) entry of YJ will equal the contribution
to Pi given by the s-t paths of length exactly
j. The result follows. 0

We conclude that every Boolean function of
small formula size is the projection of the trans-
itive closure function of a correspondingly small

matrix.
n0 (log n)

<n has formla size at most

, the question as to whether same given

Since Transn

family P has qp-bounded formula size is equivalent
to this explicit combinatorial property in Boolean
algebra. We note that in the Boolean case, although
no analogue of Hyafil's result is known, the logarithm
of formula size is intimately related to the space
required to campute the function.

9. p-Definability for Boolean Functions

Next we observe that the formal Boolean analogue
of the previously defined algebraic notion of
p~definability is closely related to the concept of
nondeterministm as traditionally applied to discrete
camutations.

Definition A family P of Boolean functions is
p—definable iff either (a) there is a family Q
and a p-bounded t such that for all i [Qi[ <t(i)

and

_ g
P, =] Q
e

i c(x113=1 Y

summation being over the 2J  substitutions



{Xl,...,xj}—>{0,1} for same j (0<j<i), if

i
or (b) P is the p-projection of same p—definable

family.

Q. € B[xll-.-,Xi],

[N.B. Again, allowing Jj<i is redundant since
every p—definable family is a p—projection of same
camplete family that can be defined with i = j.

In sane cases, however, it allows for a more tract-
able defining family.]

Proposition 10 Suppose that S is a family
Sl,sz,... where Sn is a set of subsets of
{1,2,...,n} . Suppose that there is a polynamial
time nondeterministic Turing Machine that, given
any n and s' c {1,2,...,n}, determines whether
Then the function

P = ) ﬂxj

seS jes

s' ¢eS_.
n

specifies a p-definable family.

Proof Exactly as in the proof of Proposition 4,
given n we can find Qr and P]': such that
o= 1o Tl
r T k)= *
1<k<r

In the Boolean case Qg will equal 1 for inputs
that are accepted even by nondeterministic camput-
ations. Hence P is the p-projection of P;r
under the substitution that sets to one each %
with k2n and leaves the others unchanged. O

For such monotone functions as Hamiltonian
circuits, p~definability can be verified trivially
even without using the nondeterminsitic facility
of Proposition 10. Using the terminology of
§§3,5 but with a Boolean interpretation, this

function is simply
m
HC = HG =7 M v
nxn nxn 2, (_i,j)EEk ij

where E_ is the k™" Hamiltonian circuit. Checking
whether sane set of edges is a Hamiltonian circuit
can be done fast deterministicly. Note, however,
that the function HG = HC checks for an arbitrary
graph whether it contains same Hamiltonian circuit
rather than just whether it is one.

For sare other monotone functions we do need
nondeterminism as in the following example of the
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Satisfiability problem,

of 2n° arquments X = {xij’yij |1<4i,5<n}. &
truth assignment to X will denote a conjunctive

We define it as a function

normal form forrmula f with n clauses and
arquments {21""'Zn} such that Zj appears in
clause i iff x,. =1, and Ej appears in clause

1]

i iff y.. =1 . Then the desired satisfiability

ij
function is

J axh 1% [1 Yy
D v 1d v T3]
XX xijex yijex

vhere a(X') is 1 or 0 according to whether the
formula £ corresponding to just the X' arguments
being set to one is satisfiable or not.

[N.B. In §5 Satisfiability was a family of poly-
nanials each of which was defined for a specific

Boolean function.
Flx

Thus the polynamial in

1,...,xi] corresponding to Qie B[yl,...,yi]
is
¥ by" X,
Yicy yl;s‘Y' .
where b(Y') is 1 or 0 according to whether Qi

is 1 or 0 for the input values defined by:
y; =1y e ¥' .1

Problems in NP that are not monotone (e.g.
exact cover [15] ) are also easily seen to be
p~definable.
ation of them as Boolean functions and renaming

By taking same natural represent-

each pair {xj ,§j} by new distinct arguments
{yj,zj} we obtain monotone p-definable functions.
The original function is still p-definable since
it can be recaptured by taking the projection
v« %y and zj+>_<j for each j .

The converse implication that p~definability
implies containment in NP is, of course, false
since no unifomity is assumed within a family of
functions.

10. Camplete Boolean Functions

The p-definable Boolean functions have a
canpleteness class that appears to contain the
majority of those NP-camplete problems that can be
expressed as monotone Boolean functions. (e.g.
satisfiability, cliques, colourability, Hamiltonian

circuits.) Our purpose here is to point out



(a) that the class in which they are camwplete can
be specified in terms of finite Boolean functions,
in contrast with NP which is an infinite concept,
and (b) that the complete problems are even more
closely related to each other than previously
realised - they can be obtained from each other by
simple substitutions.

Definition A p~definable family P of Boolean
functions is camplete if every p~definable family
Q 1is a p-projection of it.

Theorem 5 The Hamiltonian circuit function HC is
camplete.

The construction is identical to that of
Theorem 3 except for the following modifications.

Proof

For each argument X we have both an xk—cycle
(weighted xk) and an xk—cycle (weighted one.)
Each ER edge is linked to the xk—cycle by a

co~ordinator, and each xk edge to the xk—cycle
similarly. Furthermore each X cycle intersects
with the X cycle at a junction to ensure that in
each Hamiltonian circuit exactly one of them is

traversed. The result follows. 0

The reader can verify that such monotone
functions as HC, satisfiability and cliques are all
p-projections of each other. Anti-monotone prob-
lems such as node cover and colourability are also
camplete if represented in a nonstandard way in
terms of absent edges. For non-monotone NP-camplete
functions such as exact cover one can usually find
a subset of special cases that have a monotone non-
standard representation and correspond to a monotcne
complete problem.  Such a subset is often already

implicit in known reductions.
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