Consequences of the Lakshmibai-Sandhya Theorem; the ubiquity of permutation patterns in Schubert calculus and related geometry

> Sara Billey University of Washington http://www.math.washington.edu/~billey

MSJ-SI 2012 Schubert calculus, July 17- 20, 2012

Review of Lecture 1

- 1. Every Schubert variety $X(w) \subset GL_n/B$ is defined by determinantal equations coming from rank conditions.
- 2. $X(v) \subset X(w)$ if and only if $v \leq w$ in Bruhat order.
- 3. (Lakshmibai-Seshadri) The tangent space at v to X(w) has dimension $\#\{t_{ij}: vt_{ij} \leq w\}$.
- 4. The Bruhat graph on w has vertices indexed by $\{v : v \leq w\}$ and edges between vertices which differ by a transposition.

Lakshmibai-Sandhya Theorem

Fact. There exists a simple criterion for characterizing smooth Schubert varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper) X_w is non-singular $\iff w$ has no subsequence with the same relative order as 3412 and 4231.

w = 625431 contains $6241 \sim 4231 \implies X_{625431}$ is singular Example: w = 612543 avoids $4231 \implies X_{612543}$ is non-singular & 3412

22 Years Later ...

Consequences of the Lakshmibai-Sandhya Theorem.

Many geometrical properties of Schubert varieties are now characterized by pattern avoidance or a variation on this theme.

Let me tell you about 10 of them!

Property 1. (Carrell-Peterson, Deodhar, Gasharov) (ca 1994) The following are equivalent

- 1. X_w is smooth.
- 2. The Bruhat graph for w is regular and every vertex has degree $\ell(w)$.
- 3. $\ell(w) = \#\{t_{ij} \le w\}.$
- 4. *w* avoids 3412 and 4231.
- 5. The Poincare polynomial for w, $P_w(t) = \sum_{v < w} t^{l(v)}$ is palindromic.
- 6. The Poincare polynomial for w factors nicely

$$P_w(t) = \prod_{i=1}^k (1 + t + t^2 + \dots + t^{e_i})$$

Example. $P_{4321}(t) = (1+t)(1+t+t^2)(1+t+t^2+t^3)$

Prop 1 (Continued).

The following are also equivalent

- 1. X_w is smooth.
- 2. w avoids 3412 and 4231.
- 3. In the inversion hyperplane arrangement defined by $x_i x_j = 0$ for all i < j such that w(i) > w(j), the generating function

$$R_w(t) = \sum_r q^{d(r)} = \sum_{v \le w} t^{l(v)} = P_w(t)$$

- 4. The Kazhdan-Lusztig polynomial $P_{x,w}(t) = 1$ for all $x \leq w$.
- 5. The Kazhdan-Lusztig polynomial $P_{id,w}(t) = 1$.

See Oh-Postnikov-Yoo (2008), Kazhdan-Lusztig (1980) + Deodhar , Carrell-Peterson, Irving (1988), Braden-MacPherson (2001).

Example. $P_{id,3412}(t) = (1+t)$

Aside on KL-polys

"Everything you need to know to get started:"

- S_n generated by adjacent transpositions $s_i = t_{i,i+1}$ for $1 \leq i < n$.
- $\mathcal{H} =$ Hecke algebra associated to S_n generated by $\{T_1, T_2, \ldots, T_{n-1}\}$ with relations

1.
$$(T_i)^2 = (q-1)T_i + q$$
.

- 2. $T_i T_j = T_j T_i$ if |i j| > 1.
- 3. $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for all $1 \le i < n$.
- $T_w = T_{i_1}T_{i_2}\cdots T_{i_p}$ if the reduced expression $s_{i_1}s_{i_2}\dots s_{i_p} = w \in S_n$.

Easy Fact. $\{T_w : w \in W\}$ form a linear basis for \mathcal{H} .

An Involution on the Hecke Algebra

Observation. T_w 's are invertible over $\mathbb{Z}[q, q^{-1}]$.

• Recall the relation $(T_i)^2 = (q-1)T_i + q$.

•
$$(T_i)^{-1} = q^{-1}T_i - (1 - q^{-1}).$$

• $(T_{w^{-1}})^{-1} = (T_{i_1})^{-1} \cdots (T_{i_p})^{-1}$ if $s_{i_1} s_{i_2} \dots s_{i_p} = w$ (reduced).

Kazhdan-Lusztig Involution. Linear transformation interchanging

$$T_w \stackrel{i}{\longleftrightarrow} (T_{w^{-1}})^{-1}$$

$$q \stackrel{i}{\longleftrightarrow} q^{-1}$$

Kazhdan-Lusztig Basis for \mathcal{H}

Theorem. (KL, 1979) There exists a unique basis $\{C'_w : w \in W\}$ for the Hecke algebra over $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ such that

1. $i(C'_w) = C'_w$.

2. The change of basis matrix is upper triangular and determined by

$$C'_w = q^{-\frac{1}{2}\ell(w)} \sum_{x \le w} P_{x,w}(q) T_x$$

where $P_{w,w} = 1$ and for all x < w, $P_{x,w}(q) \in \mathbb{Z}[q]$ with degree at most

$$rac{\ell(w)-\ell(x)-1}{2}.$$

Defn. $P_{x,w}(q)$ is the Kazhdan-Lusztig polynomial for x, w.

Examples

$$C'_{s_i} = q^{-\frac{1}{2}}(1+T_i) = q^{\frac{1}{2}}(1+T_i^{-1})$$

$$C'_{s_i}C'_{s_j} = q^{-1}(1+T_i)(1+T_j)$$

= $q^{-1}(1+T_i+T_j+T_iT_j)$
= $C'_{s_is_j}$ for $i \neq j$

$$C'_{s_1}C'_{s_2}C'_{s_1} = q^{-\frac{3}{2}}(1+T_1)(1+T_2)(1+T_1)$$

= $q^{-\frac{3}{2}}(1+2T_1+T_2+T_1T_2+T_2T_1+T_1^2+T_1T_2T_1)$
= $q^{-\frac{3}{2}}(1+2T_1+T_2+T_1T_2+T_2T_1+((q-1)T_1+q)+T_1T_2T_1))$

$$C'_{s_1s_2s_1} = C'_{s_1}C'_{s_2}C'_{s_1} - C'_{s_1}$$

Deodhar Elements

Defn. $w \in S_n$ is *Deodhar* if $C'_w = C'_{s_{i_1}}C'_{s_{i_2}}\cdots C'_{s_{i_p}}$ for some reduced expression $s_{i_1}s_{i_2}\cdots s_{i_p} = w$.

•
$$C'_{s_1s_2} = C'_{s_1}C'_{s_2}$$
 is Deodhar.

•
$$C'_{s_1s_2s_1} = C'_{s_1}C'_{s_2}C'_{s_1} - C'_{s_1}$$
 is nonDeodhar.

Kazhdan-Lusztig Polynomials

Observation. We have $P_{x,w} = P_{xs_i,w}$. If ws < w and xs < x < w,

$$P_{x,w}(q) = q P_{xs_i,ws_i}(q) + P_{x,ws_i}(q) - \sum_{zs_i < z} q^{\frac{\ell(w) - \ell(z)}{2}} \mu(z,ws_i) P_{x,z}(q).$$

where $\mu(x,w) =$ coefficient of $q^{rac{\ell(w)-\ell(x)-1}{2}}$ in $P_{x,w}(q)$.

Theorem. (KL,1980) If W is a Weyl group or affine Weyl group then

$$P_{x,w}(q) = \sum \dim \mathcal{IH}^i_x(X_w) \; q^i.$$

Corollary.

The coefficients of $P_{x,w}(q)$ are non-negative integers with constant term 1.

Examples of Kazhdan–Lusztig polynomials

Below are all $P_{x,w}(q)$ with $x = \mathrm{id}$ and $w \in S_5$ which are different from 1:

w	$P_{\mathrm{id},w}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q+1
$egin{array}{cccc} (34512) & (45123) \ (45231) & (53412) \end{array}$	2q+1
(52341)	$q^2 + 2q + 1$
(45312)	$q^2 + 1$

Interesting Properties

- 1. (Beilinson-Bernstein, Brylinski-Kashiwara, 1981) The multiplicities of irreducibles in the formal character of a Verma module are determined by the $P_{v,w}(1)$.
- 2. (Irving, 1988, Braden-MacPherson, 2001) If $x \leq y$, $\operatorname{coef}_{q^k} P_{x,w}(q) \geq \operatorname{coef}_{q^k} P_{y,w}(q)$
- 3. (Polo, 1999) Every polynomial with constant term 1 and nonnegative integer coefficients is the KL-poly of some pair of permutations.
- 4. (McLarnan-Warrington, 2003) Let $\mu(x, w) = \text{coefficient of } q^{\frac{\ell(w) \ell(x) 1}{2}}$. Then for S_9 , $\mu(x, w) \in \{0, 1\}$. For S_{10} , $\mu(x, w) = 5$ is possible.
- 5. (Du Cloux 2003, Brenti 2004, Brenti-Caselli-Marietti 2006) For all Coxeter groups, there exists a formula for $P_{x,w}(q)$ which only depends on the abstract interval [id, w] in Bruhat order.

Property 1 (Continued). Some localized smoothness tests are similar. The following are equivalent

- 1. X_w is smooth at $v \in S_n$.
- 2. $\ell(w) = \{vt_{ij} \leq w\}$. (L-s)
- 3. The Kazhdan-Lusztig polynomial $P_{x,w}(t) = 1$ for all $v \leq x \leq w$. (K-L)
- 4. The Kazhdan-Lusztig polynomial $P_{v,w}(t) = 1$ (C-P,I,B-M).

Question. How do 3412 and 4231 patterns help to identify all singular points?

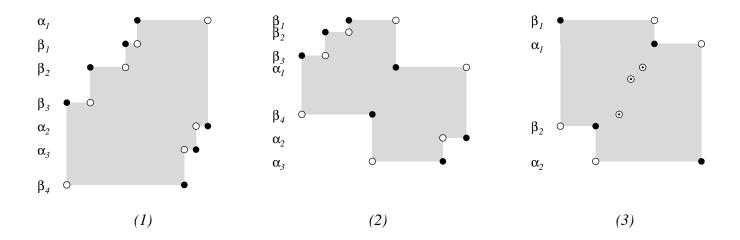
Property 2.

(Billey-Warrington, Manivel, Kassel-Lascoux-Reutenauer, Cortez) (ca 2000)

 X_v is an irreducible component of the singular locus of $X_w \iff$

 $v = w \cdot (1$ -cycle permutation)

corresponding to a 4231 or 3412 or 45312 pattern of the following form



Here o's denote 1's in w, \bullet 's denote 1's in v.

Thm. (Zariski) X is a smooth variety iff the local ring at every point is regular.

Def. X is *factorial* at a point \iff the local ring at that point is a unique factorization domain.

Property 3. (Bousquet-Mélou+Butler, 2007, conj. by Woo-Yong) X_w is factorial at every point $\iff w$ avoids 4231 and 3412. Here 3412 means the 4 and 1 must be adjacent.

Thm.(Bousquet-Mélou+Butler) There is an explicit formula for counting the number f_n of factorial Schubert varieties for $w \in S_n$:

$$F(t) = \frac{(1-t)(1-4t-2t^2) - (1-5t)\sqrt{(1-4t)}}{2(1-5t+2t^2-t^3)}$$

= $x + 2x^2 + 6x^3 + 22x^4 + 89x^5 + 379x^6 + 1661x^7 + 7405x^8 + \dots$

Property 4. There exists a simple criterion for characterizing Gorenstein Schubert varieties using modified pattern avoidance.

Def. X is *Gorenstein* if it is Cohen-Macaulay and its canonical sheaf is a line bundle.

Theorem: Woo-Yong (2004) X_w is Gorenstein \iff

- w avoids 31542 and 24153 with Bruhat restrictions $\{t_{15}, t_{23}\}$ and $\{t_{15}, t_{34}\}$
- for each descent d in w, the associated partition $\lambda_d(w)$ has all of its inner corners on the same antidiagonal.

Gorenstein Schubert varieties

Sketch of proof.

- Step 1: Schubert varieties are all Cohen-Macaulay. (Ramanathan, 1985)
- Step 2: (Brion, Knutson, Kumar) Testing if X_w is Gor. reduces to a comparison using the Weil divisor class group and the Cartier class group.
- Step 3: The Weil divisor class group is generated by the $[X_v] \in H^*(G/B)$ such that w covers v in Bruhat order $(v < \cdot w)$.
- Step 4: The Cartier class group is generated by $[X_{w_0s_i}][X_w]$ and

$$[X_{w_0s_i}][X_w] = \sum [X_{wt_{ab}}]$$

summed over all $wt_{ab}: a \leq i < b, \ \ell(v) = \ell(w) - 1.$

• The Schubert variety X_w is Gorenstein if and only if there exists an integral solution $(\alpha_1, \ldots, \alpha_{n-1})$ to

$$\sum_{i=1}^{n-1} \alpha_i \left(\sum_{v=wt_{ab}: a \leq i < b\ell(v) = \ell(w) - 1} [X_{wt_{ab}}] \right) = \sum_{v < \cdot w} [X_v]$$

Property 5. (Gasharov-Reiner, 2002)

Def. X(w) is *defined by inclusions* if it can be described as the set of all flags F_{\bullet} where $F_i \subset E_j$ or $E_i \subset F_j$ form some collection of pairs i, j.

Theorem. (Gasharov-Reiner, 2002) X(w) is *defined by inclusions* iff w avoids 4231, 35142, 42513, 351624.

Theorem. (Hultman-Linusson-Shareshian-Sjöstrand, ca 2007) The number of regions in the inversion arrangement for w is at most the number of elements below w in Bruhat order iff w avoids 4231, 35142, 42513, 351624.

Cohomology of Schubert varieties

Gasharov-Reiner show that Schubert varieties defined by inclusions have a nice presentation for their cohomology ring.

Thm.(Carrell,1992) $H^*(X_w) \approx H^*(G/B)/I_w$ where I_w is generated by all $\mathfrak{S}_v = [X_{w0}v]$ such that $v \not\leq w$.

Thm. (Akyldiz-Lacoux-Pragacz, 1992) I_w is generated by \mathfrak{S}_v such that $v \not\leq w$ and v is Grassmannian (at most 1 descent).

Def. x is *bigrassmannian* if both x and x^{-1} are Grassmannian.

Thm.(Reiner-Woo-Yong, 2010) I_w is generated by \mathfrak{S}_v such that $v \not\leq w$, v is Grassmannian and there exists some bigrassmannian $x \in E(w)$ such $x \leq v$ and Des(x) = Des(v).

Essential sets

Def. Let E(w) be the set of permutations which are minimal elements in Bruhat order in the complement of the interval [id, w].

Thm. (Lascoux- Schützenberger 1992, Geck-Kim 1997) The elements in E(w) are bigrassmannian.

Thm.(Reiner-Woo-Yong, 2010) There exists a bijection between E(w) and Fulton's essential set.

Open. What is the relationship between E(w) and defining equations for Schubert varieties in other types?

Open. Find a minimal set of generators for I_w for all $w \in S_n$. (See Reiner-Woo-Yong conjecture).

Property 6. (Deodhar, Billey-Warrington, 1998) The following are equivalent

1.
$$C'_w = C'_{s_{i_1}}C'_{s_{i_2}}\cdots C'_{s_{i_p}}$$
 for some/any $s_{i_1}s_{i_2}\cdots s_{i_p} = w$ (reduced).

2. The Bott-Samelson resolution of X_w is small.

3.
$$\sum_{v \le w} t^{l(v)} P_{v,w}(t) = (1+t)^{l(w)}$$

4. For each $v \leq w$, the Kazhdan-Lusztig polynomial

$$P_{v,w}(t) = \sum_{\sigma \in E(v,w)} t^{\operatorname{defect}(\sigma)}.$$

5. w is 321-hexagon avoiding, i.e. avoids

321, 56781234, 56718234, 46781235, 46718235

Property 7. Boolean permutations

Theorem. (Tenner, 2006) The principle order ideal below w in Bruhat order is a Boolean lattice $\iff w$ is 321 and 3412 avoiding.

Equivalently, the Bott-Samelson resolution of X(w) isomorphic to X(w).

Note: Boolean permutations are 321-hexagon avoiding.

Theorem.(Fan '98, West '96). The number of Boolean permutations in S_n is the Fibonacci number F_{2n-1} , e.g. $F_1 = 1, F_3 = 2, F_5 = 5$.

Property 8. (Woo, 2009) The Kazhdan-Lusztig polynomial $P_{id,w}(1) = 2 \iff w$ avoids 653421, 632541, 463152, 526413, 546213, and 465132 and the singular locus of X_w has exactly 1 component.

Def. $KL_m = \{ w \in S_{\infty} \mid P_{id,w}(1) \leq m \}.$

Example. KL_1 are the permutations indexing smooth Schubert varieties.

Extension (Billey-Weed): KL_2 is characterized by 66 permutation patterns on 5,6,7 or 8 entries.

Open. KL_m is closed under taking patterns. Can it always be described by a finite set of patterns?

KL₂ Patterns

Extension (Billey-Weed): KL_2 is characterized by 66 permutation patterns on 5,6,7 or 8 entries.

;; 44 patterns in S_5,6,7 ;;; 22 more in S_8

'((4 5 1 2 3) (3 4 5 1 2) (5 3 4 1 2) (5 2 3 4 1) (4 5 2 3 1) (3 5 1 6 2 4) (5 2 3 6 1 4) (5 2 6 3 1 4) (6 2 4 1 5 3) (5 2 4 6 1 3) $(4 \ 6 \ 2 \ 5 \ 1 \ 3)$ $(5 \ 2 \ 6 \ 4 \ 1 \ 3)$ $(5 \ 4 \ 6 \ 2 \ 1 \ 3)$ $(3 \ 6 \ 1 \ 4 \ 5 \ 2)$ $(4 \ 6 \ 1 \ 3 \ 5 \ 2)$ (3 6 4 1 5 2) (4 6 3 1 5 2) (5 3 6 1 4 2) (4 6 5 1 3 2) (4 2 6 3 5 1) $(6 \ 3 \ 2 \ 5 \ 4 \ 1)$ $(6 \ 3 \ 5 \ 2 \ 4 \ 1)$ $(6 \ 4 \ 2 \ 5 \ 3 \ 1)$ $(6 \ 5 \ 3 \ 4 \ 2 \ 1)$ $(3 \ 6 \ 1 \ 2 \ 7 \ 4 \ 5)$ $(6 \ 2 \ 3 \ 1 \ 7 \ 4 \ 5)$ $(6 \ 2 \ 4 \ 1 \ 7 \ 3 \ 5)$ $(3 \ 4 \ 1 \ 6 \ 7 \ 2 \ 5)$ $(4 \ 2 \ 3 \ 6 \ 7 \ 1 \ 5)$ $(4 \ 2 \ 6 \ 3 \ 7 \ 1 \ 5)$ $(4 \ 2 \ 6 \ 7 \ 3 \ 1 \ 5)$ $(3 \ 7 \ 1 \ 2 \ 5 \ 6 \ 4)$ $(7 \ 2 \ 3 \ 1 \ 5 \ 6 \ 4)$ $(3 \ 7 \ 1 \ 5 \ 2 \ 6 \ 4)$ $(3 \ 7 \ 5 \ 1 \ 2 \ 6 \ 4)$ $(7 \ 5 \ 2 \ 3 \ 1 \ 6 \ 4)$ $(6\ 2\ 5\ 1\ 7\ 3\ 4)$ $(7\ 2\ 6\ 1\ 4\ 5\ 3)$ $(3\ 4\ 1\ 7\ 5\ 6\ 2)$ $(3\ 5\ 1\ 7\ 4\ 6\ 2)$ (4 5 1 7 3 6 2) (4 2 3 7 5 6 1) (5 3 4 7 2 6 1) (4 2 7 5 6 3 1)(3 4 1 2 7 8 5 6) (4 2 3 1 7 8 5 6) (3 4 1 7 2 8 5 6) $(4 \ 2 \ 3 \ 7 \ 1 \ 8 \ 5 \ 6) \ (4 \ 2 \ 7 \ 3 \ 1 \ 8 \ 5 \ 6) \ (3 \ 5 \ 1 \ 2 \ 7 \ 8 \ 4 \ 6)$ $(5\ 2\ 3\ 1\ 7\ 8\ 4\ 6)$ $(5\ 2\ 4\ 1\ 7\ 8\ 3\ 6)$ $(3\ 4\ 1\ 2\ 8\ 6\ 7\ 5)$ $(4 \ 2 \ 3 \ 1 \ 8 \ 6 \ 7 \ 5)$ $(3 \ 4 \ 1 \ 8 \ 2 \ 6 \ 7 \ 5)$ $(4 \ 2 \ 3 \ 8 \ 1 \ 6 \ 7 \ 5)$ $(4 \ 2 \ 8 \ 3 \ 1 \ 6 \ 7 \ 5)$ $(3 \ 4 \ 1 \ 8 \ 6 \ 2 \ 7 \ 5)$ $(4 \ 2 \ 3 \ 8 \ 6 \ 1 \ 7 \ 5)$ $(4 \ 2 \ 8 \ 6 \ 3 \ 1 \ 7 \ 5)$ $(3 \ 5 \ 1 \ 2 \ 8 \ 6 \ 7 \ 4)$ $(5 \ 2 \ 3 \ 1 \ 8 \ 6 \ 7 \ 4)$ (3 6 1 2 8 5 7 4) (6 2 3 1 8 5 7 4) (5 2 4 1 8 6 7 3)

Property 9. (LCI permutations)

Def. A local ring R is a *local complete intersection (lci)* if it is the quotient of some regular local ring by an ideal generated by a regular sequence. A variety is lci if every local ring is lci.

Thm. (Úlfarsson-Woo, 2011) The Schubert variety X(w) is Ici if and only if w avoids 53241, 52341, 52431, 35142, 42513, and 426153.

Property 10. A permutation is *vexillary* if it avoids 2143.

Combinatorial Properties.

- 1. (Edelman-Greene, Macdonald) The number of reduced words for a vexillary permutation v is equal to the number of standard tableaux of shape determined by sorting the lengths of the rows of the diagram of v.
- 2. The Stanley symmetric function F_v is a Schur function iff v is vexillary.

$$F_v = \sum_{\mathbf{a}=a_1a_2\dots a_k \in R(v)} \sum_{i_1 \leq \dots \leq i_k \in C(\mathbf{a})} x_{i_1} x_{i_2} \cdots x_{i_k}$$

where R(v) are the reduced words for v and C(a) are the weakly increasing sequences of positive integers such that $i_j < i_{j+1}$ if $a_j < a_{j+1}$.

3. (Tenner, 2006) The permutation v is vexillary iff for every permutation w containing v, there exists a reduced decomposition $\mathbf{a} \in R(w)$ containing a shift of some $\mathbf{b} \in R(v)$ as a factor.

Property 10. A permutation is *vexillary* if it avoids **2143**. (Lascoux-Schützenberger,1984)

Geometric Properties.

- 1. (Fulton, 1992) The *essential set* for w, the cells in the diagram of w with no neighbor directly east or north, lie on an decreasing piecewise linear curve.
- 2. (Lascoux, 1995) There exists a combinatorial approach to computing the Kazhdan-Lusztig polynomials $P_{v,w}$ when w is *covexillary*, i.e. 3412-avoiding.
- 3. (Li-Yong, ca 2011) There exists a combinatorial rule for computing multiplicities for X(w) when w is 3412-avoiding.

Property 10. (continued) k-vexillary permutations.

Def. A permutation w is k-vexillary if its Stanley symmetric function F_w has at most k terms in its expansion. Example: $F_{2143} = s_{(2)} + s_{(1,1)}$, so 2143 is 2-vexillary.

Thm.(Billey-Pawlowski) Let w be a permutation. 1. w is 2-vexillary iff w avoids 35 patterns in S_5, S_6, S_7, S_8 .

2. w is 3-vexillary iff w avoids 91 patterns in S_5, S_6, S_7, S_8 .

Conjecture. The k-vexillary permutations form an order ideal in the poset on all permutations ordered by pattern containment.

List of 2-vexillary patterns: (setf *2-vex* '((3 2 1 5 4) (2 1 5 4 3)

(2 1 4 3 6 5) (2 4 1 3 6 5) (3 1 4 2 6 5) (3 1 2 6 4 5) (2 1 4 6 3 5) (2 4 1 6 3 5) (2 3 1 5 6 4) (2 1 5 3 6 4)

(3 1 5 2 6 4) (4 2 6 1 5 3) (5 2 7 1 4 3 6) (5 1 7 3 2 6 4) (4 2 6 5 1 7 3) (2 5 4 7 1 6 3) (5 4 7 2 1 6 3) (5 2 7 6 1 4 3)

 (6 1 8 3 2 5 4 7)
 (2 6 4 8 1 5 3 7)
 (6 4 8 2 1 5 3 7)
 (2 6 5 8 1 4 3 7)

 (6 5 8 2 1 4 3 7)
 (5 1 7 3 6 2 8 4)
 (5 1 7 6 3 2 8 4)
 (6 1 8 3 7 2 5 4)

 (6 1 8 7 3 2 5 4)
 (2 5 4 7 6 1 8 3)
 (5 4 7 2 6 1 8 3)
 (5 4 7 6 2 1 8 3)

 (2 6 4 8 7 1 5 3)
 (6 4 8 7 2 1 5 3)
 (2 6 5 8 7 1 4 3)
 (6 5 8 2 7 1 4 3)

 (6 5 8 7 2 1 4 3))
 (6 5 8 7 2 1 4 3))
 (6 5 8 7 2 1 4 3)
 (6 5 8 7 2 1 4 3)

List of 3-vexillary patterns:

```
(setf *3-vex*
'((2 1 4 3 6 5) (4 3 2 1 6 5) (3 2 1 6 4 5) (4 2 1 6 3 5) (3 2 1 5 6 4)
 (3 2 5 1 6 4) (3 1 2 6 5 4) (2 3 1 6 5 4) (3 2 1 6 5 4) (3 1 6 2 5 4)
 (3 2 6 1 5 4) (2 4 1 6 5 3) (4 2 1 6 5 3) (4 2 6 1 5 3) (2 1 6 5 4 3)
(3 5 2 1 4 7 6) (4 2 5 1 3 7 6) (2 5 4 1 3 7 6) (5 2 4 1 3 7 6)
(4 3 1 5 2 7 6) (3 5 1 4 2 7 6) (5 3 1 4 2 7 6) (4 1 5 3 2 7 6)
(3 5 2 4 1 7 6) (4 2 5 3 1 7 6) (2 4 1 3 7 5 6) (3 1 4 2 7 5 6)
(3 1 2 5 7 4 6) (2 3 1 5 7 4 6) (2 5 1 3 7 4 6) (3 1 5 2 7 4 6)
(3 5 1 2 7 4 6) (2 4 1 5 7 3 6) (2 5 1 4 7 3 6) (2 5 4 1 7 3 6)
(2 1 5 7 4 3 6) (2 5 1 7 4 3 6) (5 2 7 1 4 3 6) (2 4 1 3 6 7 5)
(3 1 4 2 6 7 5) (3 1 2 6 4 7 5) (2 3 1 6 4 7 5) (3 1 6 2 4 7 5)
(2 4 1 6 3 7 5) (3 1 4 6 2 7 5) (3 4 1 6 2 7 5) (3 1 6 4 2 7 5)
(4 1 6 3 2 7 5) (3 1 6 2 7 4 5) (2 4 1 6 7 3 5) (2 1 6 4 7 3 5)
(2 1 4 7 6 3 5) (2 1 7 4 6 3 5) (2 1 6 5 3 7 4) (3 1 6 5 2 7 4)
(2 1 5 7 3 6 4) (2 1 7 5 3 6 4) (5 1 7 3 2 6 4) (2 1 6 3 7 5 4)
(4 2 6 5 1 7 3) (2 1 5 7 4 6 3) (2 5 4 7 1 6 3) (5 4 7 2 1 6 3)
(2 1 6 4 7 5 3) (5 2 7 6 1 4 3)
(2 4 6 1 3 5 8 7) (4 1 5 2 6 3 8 7) (4 1 2 3 8 5 6 7) (2 1 4 6 8 3 5 7)
(2 4 6 1 8 3 5 7) (6 1 8 3 2 5 4 7) (2 6 4 8 1 5 3 7) (6 4 8 2 1 5 3 7)
(2 6 5 8 1 4 3 7) (6 5 8 2 1 4 3 7) (3 4 1 2 7 8 5 6)
(2\ 3\ 4\ 1\ 6\ 7\ 8\ 5)(2\ 1\ 6\ 3\ 7\ 4\ 8\ 5)(4\ 1\ 6\ 2\ 7\ 3\ 8\ 5)
(5 1 7 3 6 2 8 4) (5 1 7 6 3 2 8 4) (6 1 8 3 7 2 5 4)
(6 1 8 7 3 2 5 4) (2 5 4 7 6 1 8 3) (5 4 7 2 6 1 8 3)
(5 4 7 6 2 1 8 3) (2 6 4 8 7 1 5 3) (6 4 8 7 2 1 5 3)
(2\ 6\ 5\ 8\ 7\ 1\ 4\ 3)(6\ 5\ 8\ 2\ 7\ 1\ 4\ 3)(6\ 5\ 8\ 7\ 2\ 1\ 4\ 3))
)
```

Future Work

Open Problems.

- 1. Characterize the Gorenstein, Ici and factorial locus of X(w) using patterns. (Woo-Yong)
- 2. (From Úlfarsson) Is there a nice generating function to count the number of Gorenstein/Ici permutations or Schubs defined by inclusions, etc.
- 3. Find a geometric explanation why a finite number of patterns suffice in all cases above.
- 4. What nice properties does the inversion arrangement have for other pattern avoiding families?
- 5. KL_m is closed under taking patterns. Can it always be described by a finite set of patterns?
- 6. Conjecture (Woo): The Schubert varieties with multiplicity ≤ 2 can be characterized by pattern avoidance.
- 7. What other filtrations on the set of all permutations can be characterized by (generalized) patterns?