Consequences of the Lakshmibai-Sandhya Theorem; the ubiquity of permutation patterns
 in Schubert calculus and related geometry

Sara Billey
University of Washington

http://www.math.washington.edu/~billey
MSJ-SI 2012 Schubert calculus, July 17- 20, 2012

Review of Lecture 1

1. Every Schubert variety $X(w) \subset G L_{n} / B$ is defined by determinantal equations coming from rank conditions.
2. $X(v) \subset X(w)$ if and only if $v \leq w$ in Bruhat order.
3. (Lakshmibai-Seshadri) The tangent space at \boldsymbol{v} to $\boldsymbol{X}(\boldsymbol{w})$ has dimension $\#\left\{t_{i j}: v t_{i j} \leq w\right\}$.
4. The Bruhat graph on w has vertices indexed by $\{v: v \leq w\}$ and edges between vertices which differ by a transposition.

Lakshmibai-Sandhya Theorem

Fact. There exists a simple criterion for characterizing smooth Schubert varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper) $\boldsymbol{X}_{\boldsymbol{w}}$ is non-singular $\Longleftrightarrow \boldsymbol{w}$ has no subsequence with the same relative order as 3412 and 4231.

w	$=625431$	contains	$6241 \sim 4231$	$\Longrightarrow \boldsymbol{X}_{625431}$ is singular
Example: w	$=612543$	avoids	4231	$\& 3412$

22 Years Later ...

Consequences of the Lakshmibai-Sandhya Theorem.

Many geometrical properties of Schubert varieties are now characterized by pattern avoidance or a variation on this theme.

Let me tell you about 10 of them!

10 Pattern Properties

Property 1. (Carrell-Peterson, Deodhar, Gasharov) (ca 1994)
The following are equivalent

1. $\boldsymbol{X}_{\boldsymbol{w}}$ is smooth.
2. The Bruhat graph for \boldsymbol{w} is regular and every vertex has degree $\ell(\boldsymbol{w})$.
3. $\ell(w)=\#\left\{t_{i j} \leq w\right\}$.
4. \boldsymbol{w} avoids 3412 and 4231 .
5. The Poincare polynomial for $w, P_{w}(t)=\sum_{v \leq w} t^{l(v)}$ is palindromic.
6. The Poincare polynomial for \boldsymbol{w} factors nicely

$$
P_{w}(t)=\prod_{i=1}^{k}\left(1+t+t^{2}+\cdots+t^{e_{i}}\right)
$$

Example. $P_{4321}(t)=(1+t)\left(1+t+t^{2}\right)\left(1+t+t^{2}+t^{3}\right)$

10 Pattern Properties

Prop 1 (Continued).

The following are also equivalent

1. $\boldsymbol{X}_{\boldsymbol{w}}$ is smooth.
2. \boldsymbol{w} avoids 3412 and 4231 .
3. In the inversion hyperplane arrangement defined by $\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}=\mathbf{0}$ for all $i<j$ such that $\boldsymbol{w}(i)>\boldsymbol{w}(j)$, the generating function

$$
R_{w}(t)=\sum_{r} q^{d(r)}=\sum_{v \leq w} t^{l(v)}=P_{w}(t)
$$

4. The Kazhdan-Lusztig polynomial $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{t})=1$ for all $\boldsymbol{x} \leq \boldsymbol{w}$.
5. The Kazhdan-Lusztig polynomial $\boldsymbol{P}_{i d, w}(t)=1$.

See Oh-Postnikov-Yoo (2008), Kazhdan-Lusztig (1980) + Deodhar , CarrellPeterson,Irving (1988), Braden-MacPherson (2001).

Example. $P_{i d, 3412}(t)=(1+t)$

Aside on KL-polys

"Everything you need to know to get started:"

- S_{n} generated by adjacent transpositions $s_{i}=t_{i, i+1}$ for $1 \leq i<n$.
- $\mathcal{H}=$ Hecke algebra associated to S_{n} generated by $\left\{T_{1}, T_{2}, \ldots, T_{n-1}\right\}$ with relations

1. $\left(T_{i}\right)^{2}=(q-1) T_{i}+q$.
2. $T_{i} T_{j}=T_{j} T_{i} \quad$ if $|i-j|>1$.
3. $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$ for all $1 \leq i<n$.

- $T_{w}=T_{i_{1}} T_{i_{2}} \cdots T_{i_{p}}$ if the reduced expression $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}=w \in S_{n}$.

Easy Fact. $\left\{T_{w}: w \in W\right\}$ form a linear basis for \mathcal{H}.

An Involution on the Hecke Algebra

Observation. $\boldsymbol{T}_{\boldsymbol{w}}$'s are invertible over $\mathbb{Z}\left[\boldsymbol{q}, \boldsymbol{q}^{-1}\right]$.

- Recall the relation $\left(T_{i}\right)^{2}=(q-1) T_{i}+q$.
- $\left(T_{i}\right)^{-1}=q^{-1} T_{i}-\left(1-q^{-1}\right)$.
- $\left(T_{w^{-1}}\right)^{-1}=\left(T_{i_{1}}\right)^{-1} \cdots\left(T_{i_{p}}\right)^{-1}$ if $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}=w$ (reduced).

Kazhdan-Lusztig Involution. Linear transformation interchanging

$$
\begin{gathered}
T_{w} \stackrel{i}{\longleftrightarrow}\left(T_{w^{-1}}\right)^{-1} \\
q \stackrel{i}{\longleftrightarrow} q^{-1}
\end{gathered}
$$

Kazhdan-Lusztig Basis for \mathcal{H}

Theorem. (KL, 1979) There exists a unique basis $\left\{C_{w}^{\prime}: w \in W\right\}$ for the Hecke algebra over $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{\frac{-1}{2}}\right]$ such that

1. $i\left(C_{w}^{\prime}\right)=C_{w}^{\prime}$.
2. The change of basis matrix is upper triangular and determined by

$$
C_{w}^{\prime}=q^{-\frac{1}{2} \ell(w)} \sum_{x \leq w} P_{x, w}(q) T_{x}
$$

where $\boldsymbol{P}_{\boldsymbol{w}, \boldsymbol{w}}=1$ and for all $\boldsymbol{x}<\boldsymbol{w}, \boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{q}) \in \mathbb{Z}[\boldsymbol{q}]$ with degree at most

$$
\frac{\ell(w)-\ell(x)-1}{2}
$$

Defn. $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{q})$ is the Kazhdan-Lusztig polynomial for $\boldsymbol{x}, \boldsymbol{w}$.

Examples

$$
\begin{aligned}
C_{s_{i}}^{\prime} & =q^{-\frac{1}{2}}\left(1+T_{i}\right)=q^{\frac{1}{2}}\left(1+T_{i}^{-1}\right) \\
C_{s_{i}}^{\prime} C_{s_{j}}^{\prime} & =q^{-1}\left(1+T_{i}\right)\left(1+T_{j}\right) \\
& =q^{-1}\left(1+T_{i}+T_{j}+T_{i} T_{j}\right) \\
& =C_{s_{i} s_{j}}^{\prime} \quad \text { for } i \neq j
\end{aligned}
$$

$$
C_{s_{1}}^{\prime} C_{s_{2}}^{\prime} C_{s_{1}}^{\prime}=q^{-\frac{3}{2}}\left(1+T_{1}\right)\left(1+T_{2}\right)\left(1+T_{1}\right)
$$

$$
=q^{-\frac{3}{2}}\left(1+2 T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1}^{2}+T_{1} T_{2} T_{1}\right)
$$

$$
=q^{-\frac{3}{2}}\left(1+2 T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+\left((q-1) T_{1}+q\right)+T_{1} T_{2} T_{1}\right)
$$

$$
C_{s_{1} s_{2} s_{1}}^{\prime}=C_{s_{1}}^{\prime} C_{s_{2}}^{\prime} C_{s_{1}}^{\prime}-C_{s_{1}}^{\prime}
$$

Deodhar Elements

Defn. $w \in S_{n}$ is Deodhar if $C_{w}^{\prime}=C_{s_{i_{1}}}^{\prime} C_{s_{i_{2}}}^{\prime} \cdots C_{s_{i_{p}}}^{\prime}$ for some reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}=w$.

- $C_{s_{1} s_{2}}^{\prime}=C_{s_{1}}^{\prime} C_{s_{2}}^{\prime}$ is Deodhar.
- $C_{s_{1} s_{2} s_{1}}^{\prime}=C_{s_{1}}^{\prime} C_{s_{2}}^{\prime} C_{s_{1}}^{\prime}-C_{s_{1}}^{\prime}$ is nonDeodhar.

Kazhdan-Lusztig Polynomials

Observation. We have $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}=\boldsymbol{P}_{\boldsymbol{x} s_{i}, \boldsymbol{w}}$. If $\boldsymbol{w} \boldsymbol{s}<\boldsymbol{w}$ and $\boldsymbol{x} s<\boldsymbol{x}<\boldsymbol{w}$, $P_{x, w}(q)=q P_{x s_{i}, w s_{i}}(q)+P_{x, w s_{i}}(q)-\sum_{z s_{i}<z} q^{\frac{\ell(w)-\ell(z)}{2}} \mu\left(z, w s_{i}\right) P_{x, z}(q)$. where $\mu(x, w)=$ coefficient of $q^{\frac{\ell(w)-\ell(x)-1}{2}}$ in $P_{x, w}(q)$.

Theorem. (KL,1980)
If \boldsymbol{W} is a Weyl group or affine Weyl group then

$$
P_{x, w}(q)=\sum \operatorname{dim} \mathcal{I} \mathcal{H}_{x}^{i}\left(X_{w}\right) q^{i}
$$

Corollary.

The coefficients of $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{q})$ are non-negative integers with constant term 1.

Examples of Kazhdan-Lusztig polynomials

Below are all $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{q})$ with $\boldsymbol{x}=\mathrm{id}$ and $\boldsymbol{w} \in \boldsymbol{S}_{\mathbf{5}}$ which are different from 1:

w			$P_{\text {id }, w}$
(14523)	(15342)	(24513)	
(25341)	(34125)	(34152)	
(35124)	(35142)	(35241)	
(35412)	(41523)	(42315)	
(42351)	(42513)	(42531)	$q+1$
(43512)	(45132)	(45213)	
(51342)	(52314)	(52413)	
(52431)	(53142)	(53241)	
(53421)	(54231)		
(34512)		(45123)	$2 q+1$
(45231)	(53412)	$q^{2}+2 q+1$	
(52341)		$q^{2}+1$	
(45312)			

Interesting Properties

1. (Beilinson-Bernstein, Brylinski-Kashiwara, 1981) The multiplicities of irreducibles in the formal character of a Verma module are determined by the $P_{\boldsymbol{v}, \boldsymbol{w}}(1)$.
2. (Irving, 1988, Braden-MacPherson, 2001)

If $x \leq y, \operatorname{coef}_{q^{k}} P_{x, w}(q) \geq \operatorname{coef}_{q^{k}} P_{y, w}(q)$
3. (Polo, 1999) Every polynomial with constant term 1 and nonnegative integer coefficients is the KL-poly of some pair of permutations.
4. (McLarnan-Warrington, 2003) Let $\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{w})=$ coefficient of $q^{\frac{\ell(w)-\ell(x)-1}{2}}$. Then for $S_{9}, \mu(x, w) \in\{0,1\}$. For $S_{10}, \mu(x, w)=5$ is possible.
5. (Du Cloux 2003, Brenti 2004, Brenti-Caselli-Marietti 2006) For all Coxeter groups, there exists a formula for $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{q})$ which only depends on the abstract interval $[\boldsymbol{i d}, \boldsymbol{w}]$ in Bruhat order.

10 Pattern Properties

Property 1 (Continued). Some localized smoothness tests are similar. The following are equivalent

1. $\boldsymbol{X}_{\boldsymbol{w}}$ is smooth at $\boldsymbol{v} \in \boldsymbol{S}_{\boldsymbol{n}}$.
2. $\ell(w)=\left\{v t_{i j} \leq w\right\}$. (L-s)
3. The Kazhdan-Lusztig polynomial $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{w}}(\boldsymbol{t})=\mathbf{1}$ for all $\boldsymbol{v} \leq \boldsymbol{x} \leq \boldsymbol{w}$. (K-L)
4. The Kazhdan-Lusztig polynomial $\boldsymbol{P}_{\boldsymbol{v}, \boldsymbol{w}}(\boldsymbol{t})=1$ (C-P,I,B-M).

Question. How do 3412 and 4231 patterns help to identify all singular points?

10 Pattern Properties

Property 2.
(Billey-Warrington, Manivel,Kassel-Lascoux-Reutenauer,Cortez) (ca 2000)
$\boldsymbol{X}_{\boldsymbol{v}}$ is an irreducible component of the singular locus of $\boldsymbol{X}_{\boldsymbol{w}}$

$$
v=w \cdot(1 \text {-cycle permutation })
$$

corresponding to a 4231 or 3412 or 45312 pattern of the following form

(1)

(2)

(3)

Here o's denote 1's in \boldsymbol{w}, \bullet 's denote 1 's in \boldsymbol{v}.

10 Pattern Properties

Thm. (Zariski) \boldsymbol{X} is a smooth variety iff the local ring at every point is regular.
Def. \boldsymbol{X} is factorial at a point \Longleftrightarrow the local ring at that point is a unique factorization domain.

Property 3. (Bousquet-Mélou+Butler, 2007, conj. by Woo-Yong) X_{w} is factorial at every point $\Longleftrightarrow w$ avoids 4231 and $\mathbf{3 4 1 2}$. Here $\mathbf{3 4 1 2}$ means the $\mathbf{4}$ and $\mathbf{1}$ must be adjacent.

Thm.(Bousquet-Mélou+Butler) There is an explicit formula for counting the number f_{n} of factorial Schubert varieties for $\boldsymbol{w} \in \boldsymbol{S}_{n}$:

$$
\begin{aligned}
F(t) & =\frac{(1-t)\left(1-4 t-2 t^{2}\right)-(1-5 t) \sqrt{(1-4 t)}}{2\left(1-5 t+2 t^{2}-t^{3}\right)} \\
& =x+2 x^{2}+6 x^{3}+22 x^{4}+89 x^{5}+379 x^{6}+1661 x^{7}+7405 x^{8}+\ldots
\end{aligned}
$$

10 Pattern Properties

Property 4. There exists a simple criterion for characterizing Gorenstein Schubert varieties using modified pattern avoidance.

Def. X is Gorenstein if it is Cohen-Macaulay and its canonical sheaf is a line bundle.

Theorem: Woo-Yong (2004) $\boldsymbol{X}_{\boldsymbol{w}}$ is Gorenstein

- w avoids 31542 and 24153 with Bruhat restrictions $\left\{t_{15}, t_{23}\right\}$ and $\left\{t_{15}, t_{34}\right\}$
- for each descent \boldsymbol{d} in \boldsymbol{w}, the associated partition $\boldsymbol{\lambda}_{\boldsymbol{d}}(\boldsymbol{w})$ has all of its inner corners on the same antidiagonal.

Gorenstein Schubert varieties

Sketch of proof.

- Step 1: Schubert varieties are all Cohen-Macaulay. (Ramanathan, 1985)
- Step 2: (Brion, Knutson, Kumar) Testing if $\boldsymbol{X}_{\boldsymbol{w}}$ is Gor. reduces to a comparison using the Weil divisor class group and the Cartier class group.
- Step 3: The Weil divisor class group is generated by the $\left[\boldsymbol{X}_{\boldsymbol{v}}\right] \in \boldsymbol{H}^{*}(\boldsymbol{G} / \boldsymbol{B})$ such that \boldsymbol{w} covers \boldsymbol{v} in Bruhat order $(\boldsymbol{v}<\cdot \boldsymbol{w})$.
- Step 4: The Cartier class group is generated by $\left[\boldsymbol{X}_{w_{0} s_{i}}\right]\left[\boldsymbol{X}_{\boldsymbol{w}}\right]$ and

$$
\left[\boldsymbol{X}_{w_{0} s_{i}}\right]\left[\boldsymbol{X}_{w}\right]=\sum\left[\boldsymbol{X}_{w t_{a b}}\right]
$$

summed over all $\boldsymbol{w} \boldsymbol{t}_{a b}: a \leq i<b, \ell(v)=\ell(w)-1$.

- The Schubert variety $\boldsymbol{X}_{\boldsymbol{w}}$ is Gorenstein if and only if there exists an integral solution $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ to

$$
\left.\sum_{i=1}^{n-1} \alpha_{i} \sum_{v=w t_{a b}: a \leq i<b \ell(v)=\ell(w)-1}\left[X_{w t_{a b}}\right]\right)=\sum_{v<\cdot w}\left[X_{v}\right]
$$

10 Pattern Properties

Property 5. (Gasharov-Reiner, 2002)
Def. $\boldsymbol{X}(\boldsymbol{w})$ is defined by inclusions if it can be described as the set of all flags $\boldsymbol{F}_{\boldsymbol{\bullet}}$ where $\boldsymbol{F}_{\boldsymbol{i}} \subset \boldsymbol{E}_{\boldsymbol{j}}$ or $\boldsymbol{E}_{\boldsymbol{i}} \subset \boldsymbol{F}_{\boldsymbol{j}}$ form some collection of pairs $\boldsymbol{i}, \boldsymbol{j}$.

Theorem.(Gasharov-Reiner, 2002) $\boldsymbol{X}(\boldsymbol{w})$ is defined by inclusions iff \boldsymbol{w} avoids 4231, 35142, 42513, 351624.

Theorem.(Hultman-Linusson-Shareshian-Sjöstrand, ca 2007) The number of regions in the inversion arrangement for w is at most the number of elements below \boldsymbol{w} in Bruhat order iff \boldsymbol{w} avoids 4231, 35142, 42513, 351624.

Cohomology of Schubert varieties

Gasharov-Reiner show that Schubert varieties defined by inclusions have a nice presentation for their cohomology ring.

Thm.(Carrell,1992) $\boldsymbol{H}^{*}\left(\boldsymbol{X}_{\boldsymbol{w}}\right) \approx \boldsymbol{H}^{*}(\boldsymbol{G} / \boldsymbol{B}) / \boldsymbol{I}_{\boldsymbol{w}}$ where $\boldsymbol{I}_{\boldsymbol{w}}$ is generated by all $\mathfrak{S}_{v}=\left[\boldsymbol{X}_{\boldsymbol{w} 0} \boldsymbol{v}\right]$ such that $\boldsymbol{v} \mathbb{Z} \boldsymbol{w}$.

Thm. (Akyldiz-Lacoux-Pragacz, 1992) $\boldsymbol{I}_{\boldsymbol{w}}$ is generated by \mathfrak{S}_{v} such that $v \mathbb{w}$ and \boldsymbol{v} is Grassmannian (at most 1 descent).

Def. x is bigrassmannian if both x and x^{-1} are Grassmannian.

Thm.(Reiner-Woo-Yong, 2010) I_{w} is generated by \mathfrak{S}_{v} such that $\boldsymbol{v} \mathbb{Z} \boldsymbol{w}, \boldsymbol{v}$ is Grassmannian and there exists some bigrassmannian $x \in E(w)$ such $x \leq \boldsymbol{v}$ and $\operatorname{Des}(x)=\operatorname{Des}(v)$.

Essential sets

Def. Let $\boldsymbol{E}(\boldsymbol{w})$ be the set of permutations which are minimal elements in Bruhat order in the complement of the interval $[\boldsymbol{i d}, \boldsymbol{w}]$.

Thm. (Lascoux- Schützenberger 1992, Geck-Kim 1997)
The elements in $\boldsymbol{E}(\boldsymbol{w})$ are bigrassmannian.
Thm.(Reiner-Woo-Yong, 2010)
There exists a bijection between $\boldsymbol{E}(\boldsymbol{w})$ and Fulton's essential set.

Open. What is the relationship between $\boldsymbol{E}(\boldsymbol{w})$ and defining equations for Schubert varieties in other types?

Open. Find a minimal set of generators for $\boldsymbol{I}_{\boldsymbol{w}}$ for all $\boldsymbol{w} \in \boldsymbol{S}_{\boldsymbol{n}}$. (See Reiner-Woo-Yong conjecture).

10 Pattern Properties

Property 6. (Deodhar, Billey-Warrington, 1998)
The following are equivalent

1. $C_{w}^{\prime}=C_{s_{i_{1}}}^{\prime} C_{s_{i_{2}}}^{\prime} \cdots C_{s_{i_{p}}}^{\prime}$ for some/any $s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}=w$ (reduced).
2. The Bott-Samelson resolution of $\boldsymbol{X}_{\boldsymbol{w}}$ is small.
3. $\sum_{v \leq w} t^{l(v)} P_{v, w}(t)=(1+t)^{l(w)}$.
4. For each $\boldsymbol{v} \leq \boldsymbol{w}$, the Kazhdan-Lusztig polynomial

$$
P_{v, w}(t)=\sum_{\sigma \in E(v, w)} t^{\operatorname{defect}(\sigma)} .
$$

5. \boldsymbol{w} is 321-hexagon avoiding, i.e. avoids

10 Pattern Properties

Property 7. Boolean permutations

Theorem.(Tenner, 2006)The principle order ideal below \boldsymbol{w} in Bruhat order is a Boolean lattice $\Longleftrightarrow w$ is 321 and 3412 avoiding.

Equivalently, the Bott-Samelson resolution of $X(w)$ isomorphic to $X(w)$.
Note: Boolean permutations are 321-hexagon avoiding.
Theorem.(Fan '98, West '96). The number of Boolean permutations in S_{n} is the Fibonacci number $\boldsymbol{F}_{2 n-1}$, e.g. $\boldsymbol{F}_{1}=1, \boldsymbol{F}_{3}=\mathbf{2}, \boldsymbol{F}_{5}=5$.

10 Pattern Properties

Property 8. (Woo, 2009)
The Kazhdan-Lusztig polynomial $P_{i d, w}(1)=2 \Longleftrightarrow w$ avoids 653421, 632541, 463152, 526413, 546213, and 465132 and the singular locus of $\boldsymbol{X}_{\boldsymbol{w}}$ has exactly 1 component.

Def. $K L_{m}=\left\{w \in S_{\infty} \mid P_{i d, w}(1) \leq m\right\}$.

Example. $K L_{1}$ are the permutations indexing smooth Schubert varieties.
Extension (Billey-Weed): $\boldsymbol{K} \boldsymbol{L}_{\boldsymbol{2}}$ is characterized by 66 permutation patterns on 5,6,7 or 8 entries.

Open. $\boldsymbol{K} \boldsymbol{L}_{m}$ is closed under taking patterns. Can it always be described by a finite set of patterns?

$K L_{2}$ Patterns

Extension (Billey-Weed): $\boldsymbol{K} \boldsymbol{L}_{\mathbf{2}}$ is characterized by 66 permutation patterns on $5,6,7$ or 8 entries.
; ; 44 patterns in S_5,6,7 ;;; 22 more in S_8

10 Pattern Properties

Property 9. (LCI permutations)
Def. A local ring R is a local complete intersection (Ici) if it is the quotient of some regular local ring by an ideal generated by a regular sequence. A variety is Ici if every local ring is Ici.

Thm. (Úlfarsson-Woo, 2011) The Schubert variety $X(w)$ is Ici if and only if w avoids 53241, 52341, 52431, 35142, 42513, and 426153.

10 Pattern Properties

Property 10. A permutation is vexillary if it avoids 2143.

Combinatorial Properties.

1. (Edelman-Greene, Macdonald) The number of reduced words for a vexillary permutation \boldsymbol{v} is equal to the number of standard tableaux of shape determined by sorting the lengths of the rows of the diagram of \boldsymbol{v}.
2. The Stanley symmetric function $\boldsymbol{F}_{\boldsymbol{v}}$ is a Schur function iff \boldsymbol{v} is vexillary.

$$
F_{v}=\sum_{\mathrm{a}=a_{1} a_{2} \ldots a_{k} \in R(v)} \sum_{i_{1} \leq \cdots \leq i_{k} \in C(\mathrm{a})} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

where $R(v)$ are the reduced words for v and $C(a)$ are the weakly increasing sequences of positive integers such that $\boldsymbol{i}_{\boldsymbol{j}}<\boldsymbol{i}_{\boldsymbol{j}+\boldsymbol{1}}$ if $\boldsymbol{a}_{\boldsymbol{j}}<\boldsymbol{a}_{\boldsymbol{j}+\boldsymbol{1}}$.
3. (Tenner, 2006) The permutation \boldsymbol{v} is vexillary iff for every permutation \boldsymbol{w} containing \boldsymbol{v}, there exists a reduced decomposition $\mathrm{a} \in \boldsymbol{R}(\boldsymbol{w})$ containing a shift of some $\mathbf{b} \in \boldsymbol{R}(\boldsymbol{v})$ as a factor.

10 Pattern Properties

Property 10. A permutation is vexillary if it avoids 2143. (LascouxSchützenberger,1984)

Geometric Properties.

1. (Fulton, 1992) The essential set for \boldsymbol{w}, the cells in the diagram of \boldsymbol{w} with no neighbor directly east or north, lie on an decreasing piecewise linear curve.
2. (Lascoux, 1995) There exists a combinatorial approach to computing the Kazhdan-Lusztig polynomials $\boldsymbol{P}_{\boldsymbol{v}, \boldsymbol{w}}$ when \boldsymbol{w} is covexillary, i.e. 3412avoiding.
3. (Li-Yong, ca 2011) There exists a combinatorial rule for computing multiplicities for $\boldsymbol{X}(\boldsymbol{w})$ when \boldsymbol{w} is 3412-avoiding.

10 Pattern Properties

Property 10. (continued) k-vexillary permutations.
Def. A permutation \boldsymbol{w} is \boldsymbol{k}-vexillary if its Stanley symmetric function $\boldsymbol{F}_{\boldsymbol{w}}$ has at most k terms in its expansion.
Example: $\boldsymbol{F}_{2143}=s_{(2)}+s_{(1,1)}$, so 2143 is 2-vexillary.

Thm.(Billey-Pawlowski) Let \boldsymbol{w} be a permutation.

1. \boldsymbol{w} is 2-vexillary iff \boldsymbol{w} avoids 35 patterns in $\boldsymbol{S}_{\mathbf{5}}, \boldsymbol{S}_{\mathbf{6}}, \boldsymbol{S}_{\mathbf{7}}, \boldsymbol{S}_{\mathbf{8}}$.
2. w is 3-vexillary iff w avoids 91 patterns in $\boldsymbol{S}_{5}, \boldsymbol{S}_{\mathbf{6}}, \boldsymbol{S}_{\mathbf{7}}, \boldsymbol{S}_{8}$.

Conjecture. The \boldsymbol{k}-vexillary permutations form an order ideal in the poset on all permutations ordered by pattern containment.

10 Pattern Properties

List of 2-vexillary patterns:

```
(setf *2-vex*
'((\begin{array}{llllllllllll}{(2 1 1 5 4 3)}\end{array})
(2 1 4 3 6 5) (2 4 1 3 6 5) (3 1 4 2 6 5) (3 1 2 6 4 5)
(2 1 4 6 3 5) (2 4 1 6 3 5) (2 3 1 5 6 4) (2 1 5 3 6 4)
(3 1 5 2 6 4) (4 2 6 1 5 3) (5 2 7 1 4 3 6) (5 1 7 3 2 6 4)
(4 2 6 5 1 7 3) (2 54716 3) (5472 1 6 3) (5 2 7 6 1 4 3)
(6 1 8 3 2 5 4 7) (2 6 4 8 1 5 3 7) (6 4 8 2 1 5 3 7) (2 6 5 8 1 4 3 7)
(6 5 8 2 1 4 3 7) (5 1 7 3 6 2 8 4) (5 1 7 6 3 2 8 4) (6 1 8 3 7 2 5 4)
(6 1 8 7 3 2 5 4) (2 5 4 7 6 1 8 3) (5 4 7 2 6 1 8 3) (5 4 7 6 2 1 8 3)
(2 6 4 8 7 1 5 3) (6 4 8 7 2 1 5 3) (2 6 5 8 7 1 4 3) (6 5 8 2 7 1 4 3)
(6 5 8 7 2 1 4 3)))
```


10 Pattern Properties

List of 3-vexillary patterns:
 (setf *3-vex*

(3 $\left.24 \begin{array}{llll}5 & 1 & 6 & 4\end{array}\right)\left(\begin{array}{llllll}3 & 1 & 2 & 6 & 5 & 4\end{array}\right)\left(\begin{array}{lllllllll}2 & 3 & 1 & 6 & 5 & 4\end{array}\right)\left(\begin{array}{lllllll}3 & 2 & 1 & 6 & 5 & 4\end{array}\right)\left(\begin{array}{llll}3 & 1 & 6 & 2\end{array}\right)$

(4 $146327 c)\left(\begin{array}{llllll}3 & 1 & 6 & 2 & 7 & 4 \\ 5\end{array}\right)\left(\begin{array}{lllllll}2 & 4 & 1 & 6 & 7 & 3 & 5\end{array}\right)\left(\begin{array}{lllllll}2 & 1 & 6 & 4 & 7 & 3 & 5\end{array}\right)$

(4 $266517 c)\left(\begin{array}{llllll}2 & 1 & 5 & 7 & 4 & 6 \\ 3\end{array}\right)\left(\begin{array}{llllll}2 & 5 & 4 & 7 & 1 & 6\end{array}\right)\left(\begin{array}{lllllll}5 & 4 & 7 & 2 & 1 & 6 & 3\end{array}\right)$
(2 1 6 4 7 5 3) (5 27614 3)

(2 65581437$)\left(\begin{array}{lllllll}6 & 8 & 2 & 1 & 4 & 3 & 7\end{array}\right)\left(\begin{array}{llllllll}3 & 4 & 1 & 2 & 7 & 8 & 5 & 6\end{array}\right)$

(5 $\left.147 \begin{array}{lllll}7 & 6 & 2 & 8 & 4\end{array}\right)\left(\begin{array}{lllllll}5 & 1 & 7 & 6 & 3 & 2 & 8\end{array}\right)\left(\begin{array}{llllllll}6 & 1 & 8 & 3 & 7 & 2 & 5 & 4\end{array}\right)$
(6 18873254$)(2547618 l)\left(\begin{array}{lllllll}5 & 4 & 7 & 2 & 6 & 1 & 8\end{array}\right)$
(5 4762183$)\left(\begin{array}{lllllll}2 & 6 & 4 & 7 & 1 & 5 & 3\end{array}\right)\left(\begin{array}{llllllll}6 & 4 & 8 & 2 & 1 & 5 & 3\end{array}\right)$

Future Work

Open Problems.

1. Characterize the Gorenstein, Ici and factorial locus of $\boldsymbol{X}(\boldsymbol{w})$ using patterns. (Woo-Yong)
2. (From Úlfarsson) Is there a nice generating function to count the number of Gorenstein/Ici permutations or Schubs defined by inclusions, etc.
3. Find a geometric explanation why a finite number of patterns suffice in all cases above.
4. What nice properties does the inversion arrangement have for other pattern avoiding families?
5. $\boldsymbol{K} \boldsymbol{L}_{\boldsymbol{m}}$ is closed under taking patterns. Can it always be described by a finite set of patterns?
6. Conjecture (Woo): The Schubert varieties with multiplicity ≤ 2 can be characterized by pattern avoidance.
7. What other filtrations on the set of all permutations can be characterized by (generalized) patterns?
