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Review of Lecture 1: Classical Results

1. Every Schubert variety X(w) ⊂ GLn/B is defined by determinantal
equations coming from rank conditions.

2. X(v) ⊂ X(w) if and only if v ≤ w in Bruhat order.

3. (Lakshmibai-Seshadri) The tangent space at v to X(w) has dimension
#{tij : vtij ≤ w}.

4. The Bruhat graph on w has vertices indexed by {v : v ≤ w} and edges
between vertices which differ by a transposition.

5. (Lakshmibai-Sandhya) Xw is smooth iff w avoids 3412 and 4231.



Review of Lecture 2: Properties Defined By

Patterns

1. Smooth permutations: 3412 and 4231 avoiding.

2. Permutation patterns determine the irreducible components of singular
loci of Schubert varieties.

3. Factorial Schubert varieties: 4231 and 3412 avoiding.

4. Gorenstein Schubert varieties: 31542 and 24153 with Bruhat restrictions

plus Grassmannian condition.

5. Schubert varieties “defined by inclusions”: 4231, 35142, 42513, 351624.

6. Deodhar permutations/ 321-hexagon avoiding: 321, 56781234, 56718234,
46781235, 46718235.

7. Boolean permutations: 321 and 3412 avoiding.

8. KL2 permutations: 653421, 632541, 463152, 526413, 546213, and 465132
and the singular locus of Xw has exactly 1 component.

9. LCI permutations: 53241, 52341, 52431, 35142, 42513, and 426153.

10. Vexillary permutations: 2143 avoiding.



Pattern Avoidance For Any Coxeter Group

Outline.
1. Coxeter Groups

2. Generalized Pattern Avoidance

3. Applications

4. Open Problems



Notation

• G = Coxeter graph with vertices {1, 2, . . . , n}, edges labeled by Z≥3 ∪
∞ .

•1
4 •2

3 •3
3 •4 ≈ •1

4 •2 •3 •4

• W = Coxeter group generated by {s1, s2, . . . , sn} with relations

1. s2i = 1.

2. sisj = sjsi if i, j not adjacent in G.

3. sisjsi · · ·︸ ︷︷ ︸
m(i,j) gens

= sjsisj · · ·︸ ︷︷ ︸
m(i,j) gens

if i, j connected by edge labeledm(i, j).



Examples

Dihedral groups: Dih10 •1
5 •2

Symmetric groups: S5 •1 •2 •3 •4

Hyperoctahedral groups: B4 •1
4 •2 •3 •4

E8: •1 •2 •3 •4 •5 •6 •7

|

•8



Notation

• W = Coxeter group generated by S = {s1, s2, . . . , sn} with special
relations.

• R = Reflections=
⋃

w∈W wSw−1.

• `(w) = length of w = length of a reduced expression for w.

• Bruhat order : x ≤ y ⇐⇒ `(x) < `(y) and xy−1 ∈ R.

• Observation(Chevalley): x ≤ y if y = si1si2 . . . sip (reduced expres-

sion) and x = sσ1

i1
sσ2

i2
. . . s

σp

ip
for some mask σ1 . . . σp ∈ {0, 1}

p.



Mozes Numbers Game

Algorithm. Generates canonical representative for each element in a Coxeter
group using its graph.
(See Mozes 1990, Eriksson-Eriksson 1998, Björner-Brenti Book)

Input: Coxeter graph G and expression si1si2 . . . sip = w.

Start: Each vertex of graph G assigned value 1. Replace each edge (i, j)
of G by two opposing directed edges labeled fij > 0 and fji > 0 so that

fijfji = 4cos2
(

π

m(i,j)

)
or fijfji = 4 if m(i, j) =∞.

Good choices:
m(i, j) fij fji

3 1 1
4 2 1
6 3 1



Mozes Numbers Game

Loop. For each sik in si1si2 . . . sip fire node ik.

To fire node i, add to the value of each neighbor j the current value at node i
multiplied by fij . Negate the value on node i.

Output.: G(w) = the final values on the nodes of G.



Mozes Numbers Game

Loop. For each sik in si1si2 . . . sip fire node ik.

To fire node i, add to the value of each neighbor j the current value at node i
multiplied by fij . Negate the value on node i.

Output.: G(w) = the final values on the nodes of G.

Properties:
1. Output only depends on the product si1si2 . . . sip and not on the partic-

ular choice of expression.

2. Node i is negative in G(w) iff wsi < w.

3. Node i never has value 0.

4. If I ⊂ S, modify the game to get representatives for W/WI by starting
with initial value 0 on nodes in I. Then wsi = w iff node i has value 0.
Useful for Grassmannians and affine Grassmannians.



Linear Reps for Coxeter groups

Associate to a Coxeter group W a “root system” Φ ⊂ V = R|S| such that
1. {αs : s ∈ S} forms an orthogonal basis of V .

2. W acts linearly on V , and Φ is W -invariant.

3. Φ+ = positive roots = {α ∈ Φ : α =
∑

csαs, cs ≥ 0},
Φ− = negative roots = {α ∈ Φ : α =

∑
csαs, cs ≤ 0}, then

Φ = Φ+ ∪ Φ− (disjoint).



Reflection Representations for Coxeter groups

Associate to a Coxeter group W a “root system” Φ ⊂ V = R|S| such that
1. {αs : s ∈ S} forms a basis of V .

2. W acts linearly on V , and Φ is W -invariant.

3. Φ+ = positive roots = {α ∈ Φ : α =
∑

csαs, cs ≥ 0},
Φ− = negative roots = {α ∈ Φ : α =

∑
csαs, cs ≤ 0}, then

Φ = Φ+ ∪ Φ− (disjoint).

4. Bijection: α : R←→ Φ+.

5. For r ∈ R,w ∈W , rw > w ⇐⇒ αr ∈ wΦ+.

(See construction in Björner-Brenti: Combinatorics of Coxeter groups.)



Examples

Assume e1, . . . , en is the standard orthonormal basis of Rn.

• An−1: Φ+ = {ei − ej : i < j}

• Bn: Φ+ = {ei − ej : i < j} ∪ {ei + ej : i < j} ∪ {ei : i}

• Cn: Φ+ = {ei − ej : i < j} ∪ {ei + ej : i < j} ∪ {2ei : i}

• Dn: Φ+ = {ei − ej : i < j} ∪ {ei + ej : i < j}



Examples

John Stembridge’s rendering of the root system forE8 projected from R8. Edges
connect nearest neighbors. Color determined by furthest distance of a pair to 0.



Inversion Sets

• For r ∈ R,w ∈W , rw > w ⇐⇒ αr ∈ wΦ+.

• The analog of the inversion set is wΦ+ ∩ Φ−.

Def. If H : V −→ R is a linear function,

ΠH = {α ∈ Φ : H(α) > 0}.

H is generic if H(α) 6= 0 ∀α ∈ Φ.

Example. If H1 : V −→ R defined by H1(αs) = 1∀s ∈ S, then
ΠH1

= Φ+.

Def. Set Hw = H1 ◦ w
−1 for all w ∈W . Then, ΦHw

= wΦ+.



Inversion Sets

Key Fact. If H is generic, then ΠH = wΦ+ for some unique w ∈W .

Below are the positive roots for two types of Coxeter groups drawn projectively
in 2-d. Intersecting each picture with a half spaces, identifies an inversion set.

B2:

β1

β1 + β2 β1 + 2β2

β2

β1 and β1 + 2β2 are long roots

β1 + β2 and β2 are short roots

A3 = S4:

β12

β23

β34

β13 β24

β14

β12 = β1, β23 = β2, β34 = β3,

β13 = β1 + β2, β24 = β2 + β3,

β14 = β1 + β2 + β3



D − 4 embedding



Root subsystems

Def. If U ⊂ V is a subspace, then

• ΦU = Φ ∩ U is a root subsystem of Φ.

• WU = group generated by reflections rα for α ∈ ΦU .

• RU = R ∩WU

Fact. WU is a Coxeter group with simple reflections SU = xIx−1 for some
I ⊂ S and x ∈W . Any subgroup of this form is a parabolic subgroup.



Coxeter Group Patterns

Def. Given a subspace U ∈ V , we get a pattern map or a flattening map

flU : W −→WU

given by mapping w to the unique element x ∈WU such that

wΦ+ ∩ U = {α ∈ U ∩ Φ : Hw(α) > 0}

= {α ∈ ΦU : H′(α) > 0} where H′ = Hw|U

= xΦU
+.



Coxeter Group Patterns

Def. Given a subspace U ∈ V , we get a pattern map or a flattening map

flU : W −→WU

given by mapping w to the unique element x ∈WU such that

wΦ+ ∩ U = {α ∈ U ∩ Φ : Hw(α) > 0}

= {α ∈ ΦU : H′(α) > 0} where H′ = Hw|U

= xΦU
+.

Example.

w = 2431: U = span〈β34, β23〉

β12

β23

β34

β13 β24

β14



Coxeter Patterns

Def. Given a subspace U ∈ V , we get a pattern map or a flattening map

flU : W −→WU

given by mapping w to the unique element x ∈WU such that

wΦ+ ∩ U = {α ∈ U ∩ Φ : Hw(α) > 0}

= {α ∈ ΦU : H′(α) > 0} where H′ = Hw|U

= xΦU
+.

Example.

w = 2431: U = span〈β34, β23〉

fl(w) = fl(243) = 132β12

β23

β34

β13 β24

β14



Coxeter Patterns

Thm. (Billey-Braden)
1. flU is WU -equivariant: fl(wx) = w fl(x) ∀ w ∈WU , x ∈W.

2. If fl(x) ≤U fl(wx) in Bruhat order on WU for some w ∈ WU , then
x ≤ wx in W .

3. flU is the unique map with properties (1) and (2).



Applications of Coxeter Patterns

Notation.
• G= Semisimple Lie group over C

• B = Borel subgroup

• T ⊂ B maximal torus.

• W = N(T )/T = Weyl group for G (a finite Coxeter group)

The finite Weyl groups/root systems that arise this way have been completely
classified into types An, Bn, Cn, Dn, E6, E7, E8, F4, G2.

Bruhat Decomposition. G =
⋃

w∈W

BwB.



Applications of Coxeter Patterns

Notation.

• G/B = (generalized) flag manifold

• Cw = B · w = Schubert cell

• Xw = B · w = Schubert variety

Thm.(Billey-Postnikov, 2006)
Xw is smooth ⇐⇒ for every stellar parabolic subgroup WU , the Schu-
bert variety indexed by flU(w) is smooth in the corresponding flag manifold
corresponding with U .



Applications of Coxeter Patterns

Thm.(Billey-Postnikov, 2006)
Xw is smooth ⇐⇒ for every stellar parabolic subgroup WU ,
. X(flU(w)) is smooth in GU/BU .

Def. WU is stellar if its Coxeter graph has one central vertex v and all other
vertices are only adjacent to v.

B2 =
1 2

A3 =
1 2 3

D4 =
1 2

4

3

G2 =
1 2

B3 =
1 2 3

C3 =
1 2 3

Dynkin diagrams of stellar root systems

2 patterns in A3, 1 pattern in B2, 6 patterns of type B3 and C3, 1 pattern of
type D4, 5 patterns of type G2.



Minimal Patterns

Example. In type Bn using just classical pattern avoidance on signed per-
mutations, the smooth Schubert varieties are classified by avoiding

(-2 -1)

(1 2 -3) (1 -2 -3) (-1 2 -3) (2 -1 -3) (-2 1 -3) (3 -2 1)

(2 -4 3 1) (-2 -4 3 1) (3 4 1 2) (3 4 -1 2) (-3 4 1 2)

(4 1 3 -2) (4 -1 3 -2) (4 2 3 1) (4 2 3 -1) (-4 2 3 1)))

All length 4 patterns come from A3 root subsystems.

Example. In type D4, there are 49 singular Schubert varieties, only does
not comes from A3 root subsystems: w = s2 · s1s3s4 · s2 = 1̄43̄2.

Sing X(s2s1s3s4s2) = X(s2)
Sing X(s2s1s3s2) = X(s2) (3412 case)
Sing X(s3s1s2s1s3) = X(s1s3) (4231 case)



Rational Smoothness

Observation. The definition of a Kazhdan-Lusztig polynomial Pv,w(t)
easily generalizes to all Coxeter groups.

Def. A point v ∈ Xw is rationally smooth iff Pv,w(t) = 1.

Smooth =⇒ rationally smooth.

Thm. (Deodhar, Peterson) For typesA,D,E, Xw is smooth iff it’s rationally
smooth.

Note, by (Mitchell,Billey-Crites) not true for (̃A)n. So, need a stronger condi-
tion than just simply laced ( all edges in Coxeter graph have label 3).



Rational Smoothness

Thm. (Carrell-Peterson, Jantzen) The following are equivalent
1. Xw is rationally smooth at v.

2. Pv,w(t) = 1

3. Bruhat graph on [v, w] is regular of degree l(w)− l(v).

Thm. The following are equivalent

1. Xw is rationally smooth.

2. Pid,w(t) = 1

3. Pw(t) =
∑

v≤w t`(v) is palindromic. (C-P)

4. Pw(t) =
∏
(1 + t + t2 + · · ·+ tei)

(conj McGovern, Akyildiz-Carrell 2010)



Rational Smoothness

Thm.(Billey-Postnikov, 2006) Xw is rationally smooth ⇐⇒ for every stellar
parabolic subgroup WU , X(flU(w)) is rationally smooth in GU/BU .

Minimal patterns: 2 patterns in A3, 6 patterns of type B3 and C3, 1 pattern
of type D4.

Remark. The rationally smooth but not smooth patterns are only the 1
pattern in B2 and 5 patterns of type G2.



Outline of proof

• Step 1: For classical types B,C,D, use Lakshmibai’s characterization of
the tangent space basis.

• Step 2: Use an analog of Gasharov’s theorem to the factor Poincaré poly-
nomial for any signed permutation not containing a singular pattern.

• Step 3: Use Kumar’s criterion for (rational) smoothness in the nil-Hecke
ring to test G2 and F4 by computer.

• Step 4: Run a massive parallel computer on the 696,729,600 elements
w ∈ E8.

– If w has a pattern from type A or D, calculate the number the
coefficient of t1 and t`(w)−1 and compare, if different, w is done. If
not, calculate the coefficient of t2 and t`(w)−2, etc. Eventually one
pair differed in every case.

– If w avoids all patterns from type A or D, use analog of Gasharov’s
algorithm for factoring Pw(t).



Outline of proof

Question. What is the value of a computer proof?



Outline of proof

Question. What is the value of a computer proof?

Answer. We know the statement is true!



Outline of proof

Question. What is the value of a computer proof?

Answer. We know the statement is true!

Furthermore, we find miracles happen which make computation possible!
See for example, the proof of the 4 Color Theorem of Robertson, Sanders,
Seymour, Thomas (1997).

Things we learned:

– Only 99.989% of cases only required checking first coefficient.

– To find a factored form for Pw(t) only need to consider quotients
using leaf nodes in the Coxeter graph.

– Conjecture: one only needs to check at most n coefficients in to
detect the non-palindromic property for any rank n Weyl group. (See
Richmond-Slofstra 2012)



Kazhdan-Lusztig Values

Notation.
• W = Weyl group or affine Weyl group

• WU = parabolic subgroup of W associated to a vector space U

• M(x,w;U) = maximal elements in [id, w] ∩WUx with respect to a
new partial order ≤x

wx ≤x w′x ⇐⇒ fl(wx) ≤U fl(w′x).

Thm. (Billey-Braden) If x,w ∈W , then

Px,w(1) ≥
∑

y∈M(x,w;U)

Py,w(1)PU
fl(x),fl(y)(1).

Cor. Px,w(1) ≥ PU
fl(x),fl(y)(1).



Pattern geometry

Thm.(Billey-Braden) If XU
fl(w) is singular, then Xw is singular.

Proof Outline.
Realize GU/BU as the fixed points of a certain torus action.

Use a theorem of Fogarty-Norman saying that for all smooth algebraic T -schemes
X the fixed point scheme XG is smooth.

Cor. If w contains a pattern v ∈ WU and XU
v is not smooth, then Xw

cannot be smooth.



Pattern avoidance in Coxeter groups

1. (Stembridge ca 1998) Characterized the fully commutative elements in
types B,D with signed patterns.

2. (R.Green, 2002) 321-avoiding elements in affine Weyl groups.

3. (Reading, 2005) Characterized Coxeter-sortable elements and showed they
are equinumerous with clusters and with noncrossing partitions.

4. (Billey-Jones, 2008) Deodhar elements for all Weyl groups.

5. (Billey-Crites, 2012) The rationally smooth Schubert varieties in the affine
type A flag manifold are characterized as 3412, 4231 avoiding plus one
extra family of twisted spiral varieties.

6. (Chen-Crites-Kuttler, preprint) An affine Schubert variety Xw is smooth

⇐⇒ w ∈ S̃n avoids 3412 and 4231. Furthermore, the tangent space
to Xw at the identity can be described in terms of reflection over real and
imaginary roots.

7. (Matthew Samuel, preprint) An affine Schubert varieties for all types can
be characterized by patterns using a new version of pattern avoidance for
Coxeter groups based on reflection groups.



Open Problems

1. Describe the maximal singular locus of a Schubert variety for other semisim-
ple Lie groups using generalized pattern avoidance.

2. Give a pattern based algorithm to produce the factorial and/or Gorenstein
locus of a Schubert variety in other types.

3. Is there a nice generating function to count the number of smooth, factorial
and/or Gorenstein permutations in other types?

4. Find a geometric explanation why a finite number of patterns suffice in all
cases above.

5. What is the right notion of patterns for GKM spaces?

6. Say Xw is combinatorially smooth if `(w) = #{tij : tij ≤ w. Con-
jecture: the combinatorially smooth elements characterized by generalized
pattern avoidance.


