# Consequences of the Lakshmibai-Sandhya Theorem; the ubiquity of permutation patterns <br> in Schubert calculus and related geometry 

Sara Billey<br>University of Washington

http://www.math.washington.edu/~billey/japan
MSJ-SI 2012 Schubert calculus, July 17- 20, 2012

## Review of Lecture 1: Classical Results

1. Every Schubert variety $X(w) \subset G L_{n} / B$ is defined by determinantal equations coming from rank conditions.
2. $\boldsymbol{X}(\boldsymbol{v}) \subset X(\boldsymbol{w})$ if and only if $\boldsymbol{v} \leq \boldsymbol{w}$ in Bruhat order.
3. (Lakshmibai-Seshadri) The tangent space at $\boldsymbol{v}$ to $\boldsymbol{X}(\boldsymbol{w})$ has dimension $\#\left\{t_{i j}: v t_{i j} \leq w\right\}$.
4. The Bruhat graph on $\boldsymbol{w}$ has vertices indexed by $\{\boldsymbol{v}: \boldsymbol{v} \leq \boldsymbol{w}\}$ and edges between vertices which differ by a transposition.
5. (Lakshmibai-Sandhya) $\boldsymbol{X}_{\boldsymbol{w}}$ is smooth iff $\boldsymbol{w}$ avoids 3412 and 4231.

## Review of Lecture 2: Properties Defined By

1. Smooth permutations: 3412 and 4231 avoiding.
2. Permutation patterns determine the irreducible components of singular loci of Schubert varieties.
3. Factorial Schubert varieties: $\mathbf{4 2 3 1}$ and $\mathbf{3 4 1 2}$ avoiding.
4. Gorenstein Schubert varieties: 31542 and 24153 with Bruhat restrictions plus Grassmannian condition.
5. Schubert varieties "defined by inclusions": 4231, 35142, 42513, 351624.
6. Deodhar permutations/ 321-hexagon avoiding: 321, 56781234, 56718234, 46781235, 46718235.
7. Boolean permutations: $\mathbf{3 2 1}$ and $\mathbf{3 4 1 2}$ avoiding.
8. $\boldsymbol{K} \boldsymbol{L}_{\mathbf{2}}$ permutations: $653421,632541,463152,526413,546213$, and 465132 and the singular locus of $\boldsymbol{X}_{\boldsymbol{w}}$ has exactly 1 component.
9. LCI permutations: $53241,52341,52431,35142,42513$, and 426153.

10 Vexillary nermutations. 2143 avoiding

## Pattern Avoidance For Any Coxeter Group

Outline.

1. Coxeter Groups
2. Generalized Pattern Avoidance
3. Applications
4. Open Problems

## Notation

- $\boldsymbol{G}=$ Coxeter graph with vertices $\{\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}\}$, edges labeled by $\mathbb{Z}_{\geq \mathbf{3}} \cup$ $\infty$.
$\bullet_{1}-4 \bullet_{2}-\frac{3}{} \bullet_{3}-\bullet_{4} \quad \approx \quad \bullet_{1} \underline{4} \bullet_{2}-\bullet_{3}-\bullet_{4}$
- $\boldsymbol{W}=$ Coxeter group generated by $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ with relations

1. $s_{i}^{2}=1$.
2. $s_{i} s_{j}=s_{j} s_{i} \quad$ if $i, j$ not adjacent in $G$.
3. $\underbrace{s_{i} s_{j} s_{i} \cdots}_{m(i, j) \text { gens }}=\underbrace{s_{j} s_{i} s_{j} \cdots}_{m(i, j) \text { gens }}$ if $i, j$ connected by edge labeled $m(i, j)$.

## Examples

Dihedral groups: $\mathbf{D i h}_{\mathbf{1 0}}$
$\bullet_{1} \xrightarrow{5} \bullet_{2}$
Symmetric groups: $\boldsymbol{S}_{5}$
$\bullet_{1}-\bullet_{2}-\bullet_{3}-\bullet_{4}$

Hyperoctahedral groups: $\boldsymbol{B}_{\mathbf{4}} \quad \boldsymbol{\bullet}_{\mathbf{1}} \underline{\mathbf{4}} \boldsymbol{\bullet}_{\mathbf{2}}-\boldsymbol{\bullet}_{\mathbf{3}} \boldsymbol{\bullet}_{\mathbf{4}}$
$\boldsymbol{E}_{8}: \quad \bullet_{1}-\bullet_{2}-\bullet_{3}-\bullet_{4}-\bullet_{5}-\bullet_{6}-\bullet_{7}$
|
$\bullet_{8}$

## Notation

- $\boldsymbol{W}=$ Coxeter group generated by $\boldsymbol{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ with special relations.
- $\boldsymbol{R}=$ Reflections $=\bigcup_{\boldsymbol{w} \in \boldsymbol{W}} \boldsymbol{w} \boldsymbol{S} \boldsymbol{w}^{-\mathbf{1}}$.
- $\ell(\boldsymbol{w})=$ length of $\boldsymbol{w}=$ length of a reduced expression for $\boldsymbol{w}$.
- Bruhat order: $\boldsymbol{x} \leq \boldsymbol{y} \Longleftrightarrow \boldsymbol{\ell}(\boldsymbol{x})<\boldsymbol{\ell}(\boldsymbol{y})$ and $\boldsymbol{x} \boldsymbol{y}^{-\mathbf{1}} \in \boldsymbol{R}$.
- Observation(Chevalley): $\boldsymbol{x} \leq \boldsymbol{y}$ if $\boldsymbol{y}=\boldsymbol{s}_{\boldsymbol{i}_{1}} \boldsymbol{s}_{\boldsymbol{i}_{\boldsymbol{2}}} \ldots \boldsymbol{s}_{\boldsymbol{i}_{\boldsymbol{p}}}$ (reduced expression) and $\boldsymbol{x}=s_{i_{1}}^{\sigma_{1}} s_{i_{2}}^{\boldsymbol{\sigma}_{2}} \ldots s_{\boldsymbol{i}_{p}}^{\boldsymbol{\sigma}_{p}}$ for some mask $\sigma_{1} \ldots \sigma_{p} \in\{\mathbf{0}, \mathbf{1}\}^{p}$.


## Mozes Numbers Game

Algorithm. Generates canonical representative for each element in a Coxeter group using its graph.
(See Mozes 1990, Eriksson-Eriksson 1998, Björner-Brenti Book)
Input: Coxeter graph $\boldsymbol{G}$ and expression $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}=\boldsymbol{w}$.
Start: Each vertex of graph $\boldsymbol{G}$ assigned value 1. Replace each edge $(\boldsymbol{i}, \boldsymbol{j})$ of $\boldsymbol{G}$ by two opposing directed edges labeled $\boldsymbol{f}_{\boldsymbol{i j}}>\mathbf{0}$ and $\boldsymbol{f}_{\boldsymbol{j i}}>\mathbf{0}$ so that $f_{i j} f_{j i}=4 \cos ^{2}\left(\frac{\pi}{m(i, j)}\right)$ or $f_{i j} f_{j i}=4$ if $m(i, j)=\infty$.

Good choices:

| $m(i, j)$ | $f_{i j}$ | $f_{j i}$ |
| :---: | :---: | :---: |
| 3 | 1 | 1 |
| 4 | 2 | 1 |
| 6 | 3 | 1 |

## Mozes Numbers Game

Loop. For each $s_{i_{k}}$ in $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}$ fire node $i_{k}$.
To fire node $\boldsymbol{i}$, add to the value of each neighbor $\boldsymbol{j}$ the current value at node $\boldsymbol{i}$ multiplied by $f_{i j}$. Negate the value on node $\boldsymbol{i}$.

Output.: $\boldsymbol{G}(\boldsymbol{w})=$ the final values on the nodes of $\boldsymbol{G}$.

## Mozes Numbers Game

Loop. For each $s_{i_{k}}$ in $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}$ fire node $i_{k}$.
To fire node $\boldsymbol{i}$, add to the value of each neighbor $\boldsymbol{j}$ the current value at node $\boldsymbol{i}$ multiplied by $f_{i j}$. Negate the value on node $\boldsymbol{i}$.

Output.: $\boldsymbol{G}(\boldsymbol{w})=$ the final values on the nodes of $\boldsymbol{G}$.
Properties:

1. Output only depends on the product $s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}$ and not on the particular choice of expression.
2. Node $\boldsymbol{i}$ is negative in $G(\boldsymbol{w})$ iff $\boldsymbol{w} \boldsymbol{s}_{\boldsymbol{i}}<\boldsymbol{w}$.
3. Node $i$ never has value 0 .
4. If $I \subset S$, modify the game to get representatives for $W / W_{I}$ by starting with initial value 0 on nodes in $\boldsymbol{I}$. Then $\boldsymbol{w} s_{i}=\boldsymbol{w}$ iff node $\boldsymbol{i}$ has value 0 . Useful for Grassmannians and affine Grassmannians.

## Linear Reps for Coxeter groups

Associate to a Coxeter group $\boldsymbol{W}$ a "root system" $\boldsymbol{\Phi} \subset \boldsymbol{V}=\mathbb{R}^{|S|}$ such that 1. $\left\{\alpha_{s}: s \in S\right\}$ forms an orthogonal basis of $\boldsymbol{V}$.
2. $\boldsymbol{W}$ acts linearly on $\boldsymbol{V}$, and $\boldsymbol{\Phi}$ is $\boldsymbol{W}$-invariant.
3. $\Phi_{+}=$positive roots $=\left\{\alpha \in \Phi: \alpha=\sum c_{s} \alpha_{s}, c_{s} \geq 0\right\}$, $\Phi_{-}=$negative roots $=\left\{\alpha \in \Phi: \alpha=\sum c_{s} \alpha_{s}, c_{s} \leq 0\right\}$, then $\boldsymbol{\Phi}=\mathbf{\Phi}_{+} \cup \mathbf{\Phi}_{-}$(disjoint) .

## Reflection Representations for Coxeter groups

Associate to a Coxeter group $\boldsymbol{W}$ a "root system" $\boldsymbol{\Phi} \subset \boldsymbol{V}=\mathbb{R}^{|\boldsymbol{S}|}$ such that 1. $\left\{\alpha_{s}: s \in S\right\}$ forms a basis of $V$.
2. $\boldsymbol{W}$ acts linearly on $\boldsymbol{V}$, and $\boldsymbol{\Phi}$ is $\boldsymbol{W}$-invariant.
3. $\boldsymbol{\Phi}_{+}=$positive roots $=\left\{\alpha \in \Phi: \alpha=\sum c_{s} \alpha_{s}, c_{s} \geq 0\right\}$, $\Phi_{-}=$negative roots $=\left\{\alpha \in \Phi: \alpha=\sum c_{s} \alpha_{s}, c_{s} \leq 0\right\}$, then $\boldsymbol{\Phi}=\boldsymbol{\Phi}_{+} \cup \boldsymbol{\Phi}_{-}$(disjoint).
4. Bijection: $\boldsymbol{\alpha}: \boldsymbol{R} \longleftrightarrow \Phi_{+}$.
5. For $\boldsymbol{r} \in \boldsymbol{R}, \boldsymbol{w} \in \boldsymbol{W}, \boldsymbol{r} \boldsymbol{w}>\boldsymbol{w} \Longleftrightarrow \boldsymbol{\alpha}_{r} \in \boldsymbol{w} \Phi_{+}$.
(See construction in Björner-Brenti: Combinatorics of Coxeter groups.)

## Examples

Assume $e_{1}, \ldots, e_{n}$ is the standard orthonormal basis of $\mathbb{R}^{n}$.

- $A_{n-1}: \quad \Phi_{+}=\left\{e_{i}-e_{j}: i<j\right\}$
- $B_{n}$ :

$$
\Phi_{+}=\left\{e_{i}-e_{j}: i<j\right\} \cup\left\{e_{i}+e_{j}: i<j\right\} \cup\left\{e_{i}: i\right\}
$$

- $C_{n}$ :

$$
\Phi_{+}=\left\{e_{i}-e_{j}: i<j\right\} \cup\left\{e_{i}+e_{j}: i<j\right\} \cup\left\{2 e_{i}: i\right\}
$$

- $D_{n}$ :

$$
\Phi_{+}=\left\{e_{i}-e_{j}: i<j\right\} \cup\left\{e_{i}+e_{j}: i<j\right\}
$$

## Examples

John Stembridge's rendering of the root system for $\boldsymbol{E}_{8}$ projected from $\mathbb{R}^{8}$. Edges connect nearest neighbors. Color determined by furthest distance of a pair to 0 .


## Inversion Sets

- For $\boldsymbol{r} \in \boldsymbol{R}, \boldsymbol{w} \in \boldsymbol{W}, \boldsymbol{r} \boldsymbol{w}>\boldsymbol{w} \Longleftrightarrow \alpha_{r} \in \boldsymbol{w} \Phi_{+}$.
- The analog of the inversion set is $\boldsymbol{w} \boldsymbol{\Phi}_{+} \cap \boldsymbol{\Phi}_{-}$.

Def. If $\boldsymbol{H}: \boldsymbol{V} \longrightarrow \mathbb{R}$ is a linear function,

$$
\Pi_{H}=\{\alpha \in \Phi: H(\alpha)>0\} .
$$

$H$ is generic if $H(\alpha) \neq 0 \forall \alpha \in \Phi$.
Example. If $\boldsymbol{H}_{\mathbf{1}}: \boldsymbol{V} \longrightarrow \mathbb{R}$ defined by $\boldsymbol{H}_{\mathbf{1}}\left(\boldsymbol{\alpha}_{s}\right)=\mathbf{1} \forall s \in \boldsymbol{S}$, then $\Pi_{H_{1}}=\boldsymbol{\Phi}_{+}$.

Def. Set $\boldsymbol{H}_{\boldsymbol{w}}=\boldsymbol{H}_{\mathbf{1}} \circ \boldsymbol{w}^{-1}$ for all $\boldsymbol{w} \in \boldsymbol{W}$. Then, $\boldsymbol{\Phi}_{\boldsymbol{H}_{\boldsymbol{w}}}=\boldsymbol{w} \boldsymbol{\Phi}_{+}$.

## Inversion Sets

Key Fact. If $\boldsymbol{H}$ is generic, then $\boldsymbol{\Pi}_{\boldsymbol{H}}=\boldsymbol{w} \boldsymbol{\Phi}_{+}$for some unique $\boldsymbol{w} \in \boldsymbol{W}$.
Below are the positive roots for two types of Coxeter groups drawn projectively in 2-d. Intersecting each picture with a half spaces, identifies an inversion set.

$$
\begin{aligned}
& B_{2}: \\
& \beta_{1}+\beta_{2} \quad \beta_{1}+2 \beta_{2}
\end{aligned}
$$

$\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{\mathbf{1}}+\mathbf{2} \boldsymbol{\beta}_{\mathbf{2}}$ are long roots
$\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}$ and $\boldsymbol{\beta}_{\mathbf{2}}$ are short roots

$$
\begin{gathered}
A_{3}=S_{4} \\
\beta_{12}=\beta_{1}, \quad \beta_{23}=\beta_{2}, \quad \beta_{34}=\beta_{3} \\
\beta_{13}=\beta_{1}+\beta_{2}, \beta_{24}=\beta_{2}+\beta_{3} \\
\beta_{14}=\beta_{1}+\beta_{2}+\beta_{3}
\end{gathered}
$$

$D-4$ embedding

## Root subsystems

Def. If $\boldsymbol{U} \subset \boldsymbol{V}$ is a subspace, then

- $\boldsymbol{\Phi}^{U}=\boldsymbol{\Phi} \cap \boldsymbol{U}$ is a root subsystem of $\boldsymbol{\Phi}$.
- $W^{U}=$ group generated by reflections $r_{\alpha}$ for $\alpha \in \Phi^{U}$.
- $\boldsymbol{R}^{U}=R \cap W^{U}$

Fact. $W^{U}$ is a Coxeter group with simple reflections $S^{U}=\boldsymbol{x I} \boldsymbol{x}^{-1}$ for some $\boldsymbol{I} \subset S$ and $\boldsymbol{x} \in \boldsymbol{W}$. Any subgroup of this form is a parabolic subgroup.

## Coxeter Group Patterns

Def. Given a subspace $\boldsymbol{U} \in \boldsymbol{V}$, we get a pattern map or a flattening map

$$
\mathrm{fl}_{U}: W \longrightarrow W^{U}
$$

given by mapping $\boldsymbol{w}$ to the unique element $\boldsymbol{x} \in \boldsymbol{W}^{\boldsymbol{U}}$ such that

$$
\begin{aligned}
w \Phi_{+} \cap U & =\left\{\alpha \in U \cap \Phi: H_{w}(\alpha)>0\right\} \\
& =\left\{\alpha \in \Phi^{U}: H^{\prime}(\alpha)>0\right\} \text { where } H^{\prime}=\left.H_{w}\right|_{U} \\
& =x \Phi_{+}^{U} .
\end{aligned}
$$

## Coxeter Group Patterns

Def. Given a subspace $\boldsymbol{U} \in \boldsymbol{V}$, we get a pattern map or a flattening map

$$
\mathrm{fl}_{U}: W \longrightarrow W^{U}
$$

given by mapping $\boldsymbol{w}$ to the unique element $\boldsymbol{x} \in \boldsymbol{W}^{\boldsymbol{U}}$ such that

$$
\begin{aligned}
w \Phi_{+} \cap U & =\left\{\alpha \in U \cap \Phi: H_{w}(\alpha)>0\right\} \\
& =\left\{\alpha \in \Phi^{U}: H^{\prime}(\alpha)>0\right\} \text { where } H^{\prime}=\left.H_{w}\right|_{U} \\
& =x \Phi_{+}^{U} .
\end{aligned}
$$

## Example.

$$
w=2431
$$



$$
\boldsymbol{U}=\operatorname{span}\left\langle\boldsymbol{\beta}_{\mathbf{3 4}}, \boldsymbol{\beta}_{\mathbf{2 3}}\right\rangle
$$

## Coxeter Patterns

Def. Given a subspace $\boldsymbol{U} \in \boldsymbol{V}$, we get a pattern map or a flattening map

$$
\mathrm{fl}_{U}: W \longrightarrow W^{U}
$$

given by mapping $\boldsymbol{w}$ to the unique element $\boldsymbol{x} \in \boldsymbol{W}^{\boldsymbol{U}}$ such that

$$
\begin{aligned}
w \Phi_{+} \cap U & =\left\{\alpha \in U \cap \Phi: H_{w}(\alpha)>0\right\} \\
& =\left\{\alpha \in \Phi^{U}: H^{\prime}(\alpha)>0\right\} \text { where } H^{\prime}=\left.H_{w}\right|_{U} \\
& =x \Phi_{+}^{U} .
\end{aligned}
$$

Example.

$$
w=2431
$$



$$
\begin{gathered}
\boldsymbol{U}=\operatorname{span}\left\langle\boldsymbol{\beta}_{\mathbf{3 4}}, \boldsymbol{\beta}_{\mathbf{2 3}}\right\rangle \\
\mathrm{fl}(\boldsymbol{w})=\mathrm{fl}(\mathbf{2 4 3})=\mathbf{1 3 2}
\end{gathered}
$$

## Coxeter Patterns

Thm. (Billey-Braden)

1. $\mathrm{fl}_{U}$ is $\boldsymbol{W}^{U}$-equivariant: $\mathrm{fl}(\boldsymbol{w} \boldsymbol{x})=\boldsymbol{w} \mathrm{f}(\boldsymbol{x}) \forall \boldsymbol{w} \in \boldsymbol{W}^{U}, \boldsymbol{x} \in \boldsymbol{W}$.
2. If $\mathrm{fl}(\boldsymbol{x}) \leq^{\boldsymbol{U}} \mathrm{f}(\boldsymbol{w} \boldsymbol{x})$ in Bruhat order on $\boldsymbol{W}^{\boldsymbol{U}}$ for some $\boldsymbol{w} \in \boldsymbol{W}^{\boldsymbol{U}}$, then $\boldsymbol{x} \leq \boldsymbol{w} \boldsymbol{x}$ in $\boldsymbol{W}$.
3. $\mathrm{fl}_{U}$ is the unique map with properties (1) and (2).

## Applications of Coxeter Patterns

## Notation.

- $G=$ Semisimple Lie group over $\mathbb{C}$
- $\boldsymbol{B}=$ Borel subgroup
- $\boldsymbol{T} \subset B$ maximal torus.
- $W=N(T) / T=$ Weyl group for $G$ (a finite Coxeter group)

The finite Weyl groups/root systems that arise this way have been completely classified into types $A_{n}, B_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, \boldsymbol{F}_{4}, \boldsymbol{G}_{2}$.

Bruhat Decomposition. $G=\bigcup_{w \in W} B w B$.

## Applications of Coxeter Patterns

## Notation.

- $\boldsymbol{G} / \boldsymbol{B}=$ (generalized) flag manifold
- $\boldsymbol{C}_{\boldsymbol{w}}=\boldsymbol{B} \cdot \boldsymbol{w}=$ Schubert cell
- $\boldsymbol{X}_{\boldsymbol{w}}=\overline{\boldsymbol{B} \cdot \boldsymbol{w}}=$ Schubert variety

Thm.(Billey-Postnikov, 2006)
$\boldsymbol{X}_{\boldsymbol{w}}$ is smooth $\Longleftrightarrow$ for every stellar parabolic subgroup $\boldsymbol{W}^{\boldsymbol{U}}$, the Schubert variety indexed by $\mathrm{f}_{\boldsymbol{U}}(\boldsymbol{w})$ is smooth in the corresponding flag manifold corresponding with $\boldsymbol{U}$.

## Applications of Coxeter Patterns

Thm.(Billey-Postnikov, 2006)
$\boldsymbol{X}_{\boldsymbol{w}}$ is smooth $\Longleftrightarrow$ for every stellar parabolic subgroup $\boldsymbol{W}^{\boldsymbol{U}}$, $\boldsymbol{X}\left(\mathrm{f}_{U}(w)\right)$ is smooth in $G^{U} / \boldsymbol{B}^{U}$.

Def. $\boldsymbol{W}^{\boldsymbol{U}}$ is stellar if its Coxeter graph has one central vertex $\boldsymbol{v}$ and all other vertices are only adjacent to $\boldsymbol{v}$.

Dynkin diagrams of stellar root systems
2 patterns in $\boldsymbol{A}_{\mathbf{3}}, 1$ pattern in $\boldsymbol{B}_{\mathbf{2}}, 6$ patterns of type $\boldsymbol{B}_{\mathbf{3}}$ and $\boldsymbol{C}_{\mathbf{3}}, 1$ pattern of type $\boldsymbol{D}_{\mathbf{4}}, 5$ patterns of type $\boldsymbol{G}_{\boldsymbol{2}}$.

## Minimal Patterns

Example. In type $\boldsymbol{B}_{\boldsymbol{n}}$ using just classical pattern avoidance on signed permutations, the smooth Schubert varieties are classified by avoiding

$$
\begin{aligned}
& \text { (-2 }-1 \text { ) } \\
& \left(\begin{array}{lll}
1 & 2 & -3
\end{array}\right)\left(\begin{array}{lll}
1 & -2 & -3
\end{array}\right)\left(\begin{array}{lll}
-1 & 2 & -3
\end{array}\right)\left(\begin{array}{lllllll}
2 & -1 & -3
\end{array}\right)\left(\begin{array}{llll}
-2 & 1 & -3
\end{array}\right)\left(\begin{array}{lll}
3 & -2 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
2 & -4 & 3 & 1
\end{array}\right)\left(\begin{array}{llll}
-2 & -4 & 3 & 1
\end{array}\right)\left(\begin{array}{llll}
3 & 4 & 1 & 2
\end{array}\right)\left(\begin{array}{llll}
3 & 4 & -1 & 2
\end{array}\right)\left(\begin{array}{llll}
-3 & 4 & 1 & 2
\end{array}\right) \\
& \text { (4 } \left.143-2)\left(\begin{array}{llll}
4 & -1 & 3 & -2
\end{array}\right)\left(\begin{array}{llll}
4 & 2 & 3 & 1
\end{array}\right)\left(\begin{array}{llll}
4 & 2 & 3 & -1
\end{array}\right)\left(\begin{array}{llll}
-4 & 2 & 3 & 1
\end{array}\right)\right) \text { ) }
\end{aligned}
$$

All length 4 patterns come from $\boldsymbol{A}_{\mathbf{3}}$ root subsystems.
Example. In type $\boldsymbol{D}_{4}$, there are 49 singular Schubert varieties, only does not comes from $\boldsymbol{A}_{\mathbf{3}}$ root subsystems: $\boldsymbol{w}=s_{2} \cdot s_{1} s_{3} s_{4} \cdot s_{2}=\overline{\mathbf{1}} 4 \overline{3} 2$.

Sing $X\left(s_{2} s_{1} s_{3} s_{4} s_{2}\right)=X\left(s_{2}\right)$ Sing $X\left(s_{2} s_{1} s_{3} s_{2}\right)=X\left(s_{2}\right)$
(3412 case)
Sing $X\left(s_{3} s_{1} s_{2} s_{1} s_{3}\right)=X\left(s_{1} s_{3}\right)$
(4231 case)

## Rational Smoothness

Observation. The definition of a Kazhdan-Lusztig polynomial $\boldsymbol{P}_{\boldsymbol{v}, \boldsymbol{w}}(\boldsymbol{t})$ easily generalizes to all Coxeter groups.

Def. A point $\boldsymbol{v} \in \boldsymbol{X}_{\boldsymbol{w}}$ is rationally smooth iff $\boldsymbol{P}_{\boldsymbol{v}, \boldsymbol{w}}(\boldsymbol{t})=\mathbf{1}$.
Smooth $\Longrightarrow$ rationally smooth.
Thm. (Deodhar, Peterson) For types $\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{X}_{\boldsymbol{w}}$ is smooth iff it's rationally smooth.

Note, by (Mitchell,Billey-Crites) not true for $\widetilde{(A)_{n}}$. So, need a stronger condition than just simply laced ( all edges in Coxeter graph have label 3).

## Rational Smoothness

Thm. (Carrell-Peterson, Jantzen) The following are equivalent

1. $\boldsymbol{X}_{\boldsymbol{w}}$ is rationally smooth at $\boldsymbol{v}$.
2. $P_{v, w}(t)=1$
3. Bruhat graph on $[\boldsymbol{v}, \boldsymbol{w}]$ is regular of degree $\boldsymbol{l}(\boldsymbol{w})-\boldsymbol{l}(\boldsymbol{v})$.

Thm. The following are equivalent

1. $\boldsymbol{X}_{\boldsymbol{w}}$ is rationally smooth.
2. $P_{i d, w}(t)=1$
3. $P_{w}(t)=\sum_{v \leq w} t^{\ell(v)}$ is palindromic. (C-P)
4. $P_{w}(t)=\Pi\left(1+t+t^{2}+\cdots+t^{e_{i}}\right)$
(conj McGovern, Akyildiz-Carrell 2010)

## Rational Smoothness

Thm.(Billey-Postnikov, 2006) $\boldsymbol{X}_{\boldsymbol{w}}$ is rationally smooth $\Longleftrightarrow$ for every stellar parabolic subgroup $\boldsymbol{W}^{U}, \boldsymbol{X}\left(\mathrm{f}_{U}(\boldsymbol{w})\right)$ is rationally smooth in $G^{U} / \boldsymbol{B}^{U}$.

Minimal patterns: 2 patterns in $\boldsymbol{A}_{\mathbf{3}}, 6$ patterns of type $\boldsymbol{B}_{\mathbf{3}}$ and $\boldsymbol{C}_{\mathbf{3}}, 1$ pattern of type $\boldsymbol{D}_{\mathbf{4}}$.

Remark. The rationally smooth but not smooth patterns are only the 1 pattern in $\boldsymbol{B}_{\mathbf{2}}$ and 5 patterns of type $\boldsymbol{G}_{\mathbf{2}}$.

## Outline of proof

- Step 1: For classical types $\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$, use Lakshmibai's characterization of the tangent space basis.
- Step 2: Use an analog of Gasharov's theorem to the factor Poincaré polynomial for any signed permutation not containing a singular pattern.
- Step 3: Use Kumar's criterion for (rational) smoothness in the nil-Hecke ring to test $\boldsymbol{G}_{\boldsymbol{2}}$ and $\boldsymbol{F}_{\mathbf{4}}$ by computer.
- Step 4: Run a massive parallel computer on the $696,729,600$ elements $\boldsymbol{w} \in \boldsymbol{E}_{\mathbf{8}}$.
- If $\boldsymbol{w}$ has a pattern from type $\boldsymbol{A}$ or $\boldsymbol{D}$, calculate the number the coefficient of $\boldsymbol{t}^{1}$ and $\boldsymbol{t}^{\ell(\boldsymbol{w})-1}$ and compare, if different, $\boldsymbol{w}$ is done. If not, calculate the coefficient of $\boldsymbol{t}^{2}$ and $\boldsymbol{t}^{\ell(\boldsymbol{w})-2}$, etc. Eventually one pair differed in every case.
- If $\boldsymbol{w}$ avoids all patterns from type $\boldsymbol{A}$ or $\boldsymbol{D}$, use analog of Gasharov's algorithm for factoring $\boldsymbol{P}_{\boldsymbol{w}}(\boldsymbol{t})$.


## Outline of proof

Question. What is the value of a computer proof?

## Outline of proof

Question. What is the value of a computer proof?

Answer. We know the statement is true!

## Outline of proof

Question. What is the value of a computer proof?

Answer. We know the statement is true!

Furthermore, we find miracles happen which make computation possible! See for example, the proof of the 4 Color Theorem of Robertson, Sanders, Seymour, Thomas (1997).

Things we learned:

- Only $99.989 \%$ of cases only required checking first coefficient.
- To find a factored form for $\boldsymbol{P}_{\boldsymbol{w}}(\boldsymbol{t})$ only need to consider quotients using leaf nodes in the Coxeter graph.
- Conjecture: one only needs to check at most n coefficients in to detect the non-palindromic property for any rank $\boldsymbol{n}$ Weyl group. (See Richmond-Slofstra 2012)


## Kazhdan-Lusztig Values

## Notation.

- $\boldsymbol{W}=$ Weyl group or affine Weyl group
- $\boldsymbol{W}^{\boldsymbol{U}}=$ parabolic subgroup of $\boldsymbol{W}$ associated to a vector space $\boldsymbol{U}$
- $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w} ; \boldsymbol{U})=$ maximal elements in $[\boldsymbol{i d}, \boldsymbol{w}] \cap \boldsymbol{W}^{\boldsymbol{U}} \boldsymbol{x}$ with respect to a new partial order $\leq_{x}$

$$
\boldsymbol{w} \boldsymbol{x} \leq_{\boldsymbol{x}} \boldsymbol{w}^{\prime} \boldsymbol{x} \Longleftrightarrow \mathrm{fl}(\boldsymbol{w} \boldsymbol{x}) \leq^{\boldsymbol{U}} \mathrm{fl}\left(\boldsymbol{w}^{\prime} \boldsymbol{x}\right)
$$

Thm. (Billey-Braden) If $\boldsymbol{x}, \boldsymbol{w} \in \boldsymbol{W}$, then

$$
P_{x, w}(1) \geq \sum_{y \in M(x, w ; U)} P_{y, w}(1) P_{\mathrm{f}(x), \mathrm{f}(y)}^{U}(1) .
$$

Cor. $P_{x, w}(1) \geq P_{f(x), \mathrm{f}(y)}^{U}(1)$.

## Pattern geometry

Thm. (Billey-Braden) If $\boldsymbol{X}_{\mathrm{f}(\boldsymbol{w})}^{U}$ is singular, then $\boldsymbol{X}_{\boldsymbol{w}}$ is singular.

Proof Outline.
Realize $G^{U} / B^{U}$ as the fixed points of a certain torus action.
Use a theorem of Fogarty-Norman saying that for all smooth algebraic $\boldsymbol{T}$-schemes $\boldsymbol{X}$ the fixed point scheme $\boldsymbol{X}^{\boldsymbol{G}}$ is smooth.

Cor. If $\boldsymbol{w}$ contains a pattern $\boldsymbol{v} \in \boldsymbol{W}^{\boldsymbol{U}}$ and $\boldsymbol{X}_{\boldsymbol{v}}^{\boldsymbol{U}}$ is not smooth, then $\boldsymbol{X}_{\boldsymbol{w}}$ cannot be smooth.

## Pattern avoidance in Coxeter groups

1. (Stembridge ca 1998) Characterized the fully commutative elements in types $\boldsymbol{B}, \boldsymbol{D}$ with signed patterns.
2. (R.Green, 2002) 321-avoiding elements in affine Weyl groups.
3. (Reading, 2005) Characterized Coxeter-sortable elements and showed they are equinumerous with clusters and with noncrossing partitions.
4. (Billey-Jones, 2008) Deodhar elements for all Weyl groups.
5. (Billey-Crites, 2012) The rationally smooth Schubert varieties in the affine type A flag manifold are characterized as 3412, 4231 avoiding plus one extra family of twisted spiral varieties.
6. (Chen-Crites-Kuttler, preprint) An affine Schubert variety $\boldsymbol{X}_{\boldsymbol{w}}$ is smooth $\Longleftrightarrow w \in \widetilde{S}_{n}$ avoids 3412 and 4231. Furthermore, the tangent space to $\boldsymbol{X}_{\boldsymbol{w}}$ at the identity can be described in terms of reflection over real and imaginary roots.
7. (Matthew Samuel, preprint) An affine Schubert varieties for all types can be characterized by patterns using a new version of pattern avoidance for Coxeter groups based on reflection groups.

## Open Problems

1. Describe the maximal singular locus of a Schubert variety for other semisimple Lie groups using generalized pattern avoidance.
2. Give a pattern based algorithm to produce the factorial and/or Gorenstein locus of a Schubert variety in other types.
3. Is there a nice generating function to count the number of smooth, factorial and/or Gorenstein permutations in other types?
4. Find a geometric explanation why a finite number of patterns suffice in all cases above.
5. What is the right notion of patterns for GKM spaces?
6. Say $\boldsymbol{X}_{\boldsymbol{w}}$ is combinatorially smooth if $\ell(\boldsymbol{w})=\#\left\{\boldsymbol{t}_{\boldsymbol{i j}}: \boldsymbol{t}_{\boldsymbol{i j}} \leq \boldsymbol{w}\right.$. Conjecture: the combinatorially smooth elements characterized by generalized pattern avoidance.
