Consequences of the Lakshmibai-Sandhya Theorem; the ubiquity of permutation patterns in Schubert calculus and related geometry

Sara Billey University of Washington http://www.math.washington.edu/~billey/japan

MSJ-SI 2012 Schubert calculus, July 17- 20, 2012

Review of Lecture 1: Classical Results

- 1. Every Schubert variety $X(w) \subset GL_n/B$ is defined by determinantal equations coming from rank conditions.
- 2. $X(v) \subset X(w)$ if and only if $v \leq w$ in Bruhat order.
- 3. (Lakshmibai-Seshadri) The tangent space at v to X(w) has dimension $\#\{t_{ij}: vt_{ij} \leq w\}$.
- 4. The Bruhat graph on w has vertices indexed by $\{v : v \leq w\}$ and edges between vertices which differ by a transposition.
- 5. (Lakshmibai-Sandhya) X_w is smooth iff w avoids 3412 and 4231.

Review of Lecture 2: Properties Defined By Patterns

- 1. Smooth permutations: 3412 and 4231 avoiding.
- 2. Permutation patterns determine the irreducible components of singular loci of Schubert varieties.
- 3. Factorial Schubert varieties: 4231 and 3412 avoiding.
- 4. Gorenstein Schubert varieties: **31542** and **24153** with Bruhat restrictions plus Grassmannian condition.
- 5. Schubert varieties "defined by inclusions": 4231, 35142, 42513, 351624.
- Deodhar permutations/ 321-hexagon avoiding: 321, 56781234, 56718234, 46781235, 46718235.
- 7. Boolean permutations: 321 and 3412 avoiding.
- 8. KL_2 permutations: 653421, 632541, 463152, 526413, 546213, and 465132 and the singular locus of X_w has exactly 1 component.
- 9. LCI permutations: 53241, 52341, 52431, 35142, 42513, and 426153.
- 10 Vexillary permutations: 2143 avoiding

Pattern Avoidance For Any Coxeter Group

Outline.

- 1. Coxeter Groups
- 2. Generalized Pattern Avoidance
- 3. Applications
- 4. Open Problems

Notation

• $G=\mathit{Coxeter graph}$ with vertices $\{1,2,\ldots,n\}$, edges labeled by $\mathbb{Z}_{\geq 3}\cup\infty$.

$$\bullet_1 \stackrel{4}{-} \bullet_2 \stackrel{3}{-} \bullet_3 \stackrel{3}{-} \bullet_4 \quad \approx \quad \bullet_1 \stackrel{4}{-} \bullet_2 \stackrel{\bullet}{-} \bullet_3 \stackrel{\bullet}{-} \bullet_4$$

- $W = \mathit{Coxeter \ group}$ generated by $\{s_1, s_2, \ldots, s_n\}$ with relations
 - 1. $s_i^2 = 1$. 2. $s_i s_j = s_j s_i$ if i, j not adjacent in G. 3. $\underbrace{s_i s_j s_i \cdots}_{m(i,j) \text{ gens}} = \underbrace{s_j s_i s_j \cdots}_{m(i,j) \text{ gens}}$ if i, j connected by edge labeled m(i, j).

Examples

Dihedral groups: Dih_{10} $\bullet_1 \xrightarrow{5} \bullet_2$ Symmetric groups: S_5 $\bullet_1 - \bullet_2 - \bullet_3 - \bullet_4$ Hyperoctahedral groups: $B_4 \qquad \bullet_1 \stackrel{4}{--} \bullet_2 \stackrel{---}{--} \bullet_3 \stackrel{----}{--} \bullet_4$ E_8 : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \bullet_3 \longrightarrow \bullet_4 \longrightarrow \bullet_5 \longrightarrow \bullet_6 \longrightarrow \bullet_7$ •8

Notation

- $W = Coxeter \ group$ generated by $S = \{s_1, s_2, \dots, s_n\}$ with special relations.
- $R = Reflections = \bigcup_{w \in W} wSw^{-1}$.
- $\ell(w) = length$ of w = length of a reduced expression for w.
- Bruhat order: $x \leq y \iff \ell(x) < \ell(y)$ and $xy^{-1} \in R$.
- Observation(Chevalley): $x \leq y$ if $y = s_{i_1}s_{i_2}\dots s_{i_p}$ (reduced expression) and $x = s_{i_1}^{\sigma_1}s_{i_2}^{\sigma_2}\dots s_{i_p}^{\sigma_p}$ for some mask $\sigma_1\dots\sigma_p \in \{0,1\}^p$.

Mozes Numbers Game

Algorithm. Generates canonical representative for each element in a Coxeter group using its graph. (See Mozes 1990, Eriksson-Eriksson 1998, Björner-Brenti Book)

Input: Coxeter graph G and expression $s_{i_1}s_{i_2} \dots s_{i_p} = w$.

Start: Each vertex of graph G assigned value 1. Replace each edge (i, j) of G by two opposing directed edges labeled $f_{ij} > 0$ and $f_{ji} > 0$ so that $f_{ij}f_{ji} = 4\cos^2\left(\frac{\pi}{m(i,j)}\right)$ or $f_{ij}f_{ji} = 4$ if $m(i,j) = \infty$.

Good choices:

m(i,j)	f_{ij}	f_{ji}
3	1	1
4	2	1
6	3	1

Mozes Numbers Game

Loop. For each s_{i_k} in $s_{i_1}s_{i_2}\ldots s_{i_p}$ fire node i_k .

To fire node i, add to the value of each neighbor j the current value at node i multiplied by f_{ij} . Negate the value on node i.

Output.: G(w) = the final values on the nodes of G.

Mozes Numbers Game

Loop. For each s_{i_k} in $s_{i_1}s_{i_2}\ldots s_{i_p}$ fire node i_k .

To fire node i, add to the value of each neighbor j the current value at node i multiplied by f_{ij} . Negate the value on node i.

Output.: G(w) = the final values on the nodes of G.

Properties:

- 1. Output only depends on the product $s_{i_1}s_{i_2} \dots s_{i_p}$ and not on the particular choice of expression.
- 2. Node *i* is negative in G(w) iff $ws_i < w$.
- 3. Node i never has value 0.
- 4. If $I \subset S$, modify the game to get representatives for W/W_I by starting with initial value 0 on nodes in I. Then $ws_i = w$ iff node i has value 0. Useful for Grassmannians and affine Grassmannians.

Linear Reps for Coxeter groups

Associate to a Coxeter group W a "root system" $\Phi \subset V = \mathbb{R}^{|S|}$ such that 1. $\{\alpha_s : s \in S\}$ forms an orthogonal basis of V.

- 2. W acts linearly on V, and Φ is W-invariant.
- 3. $\Phi_+ = \text{positive roots} = \{ \alpha \in \Phi : \alpha = \sum c_s \alpha_s, c_s \ge 0 \},$ $\Phi_- = \text{negative roots} = \{ \alpha \in \Phi : \alpha = \sum c_s \alpha_s, c_s \le 0 \},$ then $\Phi = \Phi_+ \cup \Phi_-$ (disjoint).

Reflection Representations for Coxeter groups

Associate to a Coxeter group W a "root system" $\Phi \subset V = \mathbb{R}^{|S|}$ such that 1. $\{\alpha_s : s \in S\}$ forms a basis of V.

- 2. W acts linearly on V, and Φ is W-invariant.
- 3. $\Phi_+ = \text{positive roots} = \{ \alpha \in \Phi : \alpha = \sum c_s \alpha_s, c_s \ge 0 \},$ $\Phi_- = \text{negative roots} = \{ \alpha \in \Phi : \alpha = \sum c_s \alpha_s, c_s \le 0 \},$ then $\Phi = \Phi_+ \cup \Phi_-$ (disjoint).

4. Bijection:
$$\alpha: R \longleftrightarrow \Phi_+$$
.

5. For $r \in R, w \in W$, $rw > w \iff \alpha_r \in w\Phi_+$.

(See construction in Björner-Brenti: Combinatorics of Coxeter groups.)

Examples

Assume e_1, \ldots, e_n is the standard orthonormal basis of \mathbb{R}^n .

•
$$A_{n-1}$$
: $\Phi_+ = \{e_i - e_j : i < j\}$

•
$$B_n$$
: $\Phi_+ = \{e_i - e_j : i < j\} \cup \{e_i + e_j : i < j\} \cup \{e_i : i\}$

•
$$C_n$$
: $\Phi_+ = \{e_i - e_j : i < j\} \cup \{e_i + e_j : i < j\} \cup \{2e_i : i\}$

•
$$D_n$$
: $\Phi_+ = \{e_i - e_j : i < j\} \cup \{e_i + e_j : i < j\}$

Examples

John Stembridge's rendering of the root system for E_8 projected from \mathbb{R}^8 . Edges connect nearest neighbors. Color determined by furthest distance of a pair to 0.

Inversion Sets

- For $r\in R, w\in W$, $rw>w\iff lpha_r\in w\Phi_+.$
- The analog of the *inversion set* is $w\Phi_+ \cap \Phi_-$.

Def. If $H: V \longrightarrow \mathbb{R}$ is a linear function,

$$\Pi_H = \{lpha \in \Phi: H(lpha) > 0\}.$$

H is *generic* if $H(\alpha) \neq 0 \ \forall \alpha \in \Phi$.

Example. If $H_1: V \longrightarrow \mathbb{R}$ defined by $H_1(\alpha_s) = 1 \forall s \in S$, then $\Pi_{H_1} = \Phi_+$.

Def. Set $H_w = H_1 \circ w^{-1}$ for all $w \in W$. Then, $\Phi_{H_w} = w \Phi_+$.

Inversion Sets

Key Fact. If H is generic, then $\Pi_H = w\Phi_+$ for some unique $w \in W$.

Below are the positive roots for two types of Coxeter groups drawn projectively in 2-d. Intersecting each picture with a half spaces, identifies an inversion set.

D-4 embedding

Root subsystems

Def. If $U \subset V$ is a subspace, then

- $\Phi^U = \Phi \cap U$ is a *root subsystem* of Φ .
- W^U = group generated by reflections r_{lpha} for $lpha \in \Phi^U$.
- $\bullet \ R^U = R \cap W^U$

Fact. W^U is a Coxeter group with simple reflections $S^U = xIx^{-1}$ for some $I \subset S$ and $x \in W$. Any subgroup of this form is a *parabolic subgroup*.

Coxeter Group Patterns

Def. Given a subspace $U \in V$, we get a *pattern map* or a *flattening map*

$$\mathrm{fl}_U: W \longrightarrow W^U$$

given by mapping w to the unique element $x \in W^U$ such that

$$egin{aligned} w\Phi_+ \cap U &= \{lpha \in U \cap \Phi: H_w(lpha) > 0\} \ &= \{lpha \in \Phi^U: H'(lpha) > 0\} ext{ where } H' = H_w|_U \ &= x\Phi^U_+. \end{aligned}$$

Coxeter Group Patterns

Def. Given a subspace $U \in V$, we get a *pattern map* or a *flattening map*

$$\mathrm{fl}_U: W \longrightarrow W^U$$

given by mapping w to the unique element $x \in W^U$ such that

$$egin{aligned} w\Phi_+ \cap U &= \{lpha \in U \cap \Phi: H_w(lpha) > 0\} \ &= \{lpha \in \Phi^U: H'(lpha) > 0\} ext{ where } H' = H_w|_U \ &= x\Phi^U_+. \end{aligned}$$

$$U={\sf span}\langleeta_{34},eta_{23}
angle$$

Coxeter Patterns

Def. Given a subspace $U \in V$, we get a *pattern map* or a *flattening map*

$$\mathrm{fl}_U: W \longrightarrow W^U$$

given by mapping w to the unique element $x \in W^U$ such that

$$egin{aligned} w\Phi_+ \cap U &= \{lpha \in U \cap \Phi : H_w(lpha) > 0\} \ &= \{lpha \in \Phi^U : H'(lpha) > 0\} ext{ where } H' = H_w|_U \ &= x\Phi^U_+. \end{aligned}$$

Coxeter Patterns

Thm. (Billey-Braden)

- 1. fl_U is W^U -equivariant: $\mathrm{fl}(wx) = w \mathrm{fl}(x) \ \forall \ w \in W^U, \ x \in W.$
- 2. If $fl(x) \leq^U fl(wx)$ in Bruhat order on W^U for some $w \in W^U$, then $x \leq wx$ in W.
- 3. \mathbf{fl}_U is the unique map with properties (1) and (2).

Applications of Coxeter Patterns

Notation.

- G= Semisimple Lie group over $\mathbb C$
- B = Borel subgroup
- $T \subset B$ maximal torus.
- W = N(T)/T = Weyl group for G (a finite Coxeter group)

The finite Weyl groups/root systems that arise this way have been completely classified into types $A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$.

Bruhat Decomposition. $G = \bigcup_{w \in W} BwB$.

Applications of Coxeter Patterns

Notation.

- G/B = (generalized) flag manifold
- $C_w = B \cdot w =$ Schubert cell
- $X_w = \overline{B \cdot w} = \mathsf{Schubert}$ variety

Thm.(Billey-Postnikov, 2006)

 X_w is smooth \iff for every *stellar* parabolic subgroup W^U , the Schubert variety indexed by $\mathrm{fl}_U(w)$ is smooth in the corresponding flag manifold corresponding with U.

Applications of Coxeter Patterns

 $\begin{array}{l} {\rm Thm.}({\rm Billey-Postnikov,\ 2006})\\ X_w \ {\rm is\ smooth} \ \Longleftrightarrow \ {\rm for\ every\ stellar}\ {\rm parabolic\ subgroup\ }W^U,\\ . \qquad \qquad X({\rm fl}_U(w))\ {\rm is\ smooth\ in\ }G^U/B^U. \end{array}$

Def. W^U is *stellar* if its Coxeter graph has one central vertex v and all other vertices are only adjacent to v.

Dynkin diagrams of stellar root systems

2 patterns in A_3 , 1 pattern in B_2 , 6 patterns of type B_3 and C_3 , 1 pattern of type D_4 , 5 patterns of type G_2 .

Minimal Patterns

Example. In type B_n using just classical pattern avoidance on signed permutations, the smooth Schubert varieties are classified by avoiding

$$(-2 -1)$$

(1 2 -3) (1 -2 -3) (-1 2 -3) (2 -1 -3) (-2 1 -3) (3 -2 1)
(2 -4 3 1) (-2 -4 3 1) (3 4 1 2) (3 4 -1 2) (-3 4 1 2)
(4 1 3 -2) (4 -1 3 -2) (4 2 3 1) (4 2 3 -1) (-4 2 3 1)))

All length 4 patterns come from A_3 root subsystems.

Example. In type D_4 , there are 49 singular Schubert varieties, only does not comes from A_3 root subsystems: $w = s_2 \cdot s_1 s_3 s_4 \cdot s_2 = \overline{1} 4 \overline{3} 2$.

Sing
$$X(s_2s_1s_3s_4s_2) = X(s_2)$$

Sing $X(s_2s_1s_3s_2) = X(s_2)$ (3412 case)
Sing $X(s_3s_1s_2s_1s_3) = X(s_1s_3)$ (4231 case)

Rational Smoothness

Observation. The definition of a Kazhdan-Lusztig polynomial $P_{v,w}(t)$ easily generalizes to all Coxeter groups.

Def. A point $v \in X_w$ is rationally smooth iff $P_{v,w}(t) = 1$.

Smooth \implies rationally smooth.

Thm. (Deodhar, Peterson) For types A, D, E, X_w is smooth iff it's rationally smooth.

Note, by (Mitchell,Billey-Crites) not true for $(A)_n$. So, need a stronger condition than just simply laced (all edges in Coxeter graph have label 3).

Rational Smoothness

Thm. (Carrell-Peterson, Jantzen) The following are equivalent 1. X_w is rationally smooth at v.

2. $P_{v,w}(t) = 1$

3. Bruhat graph on [v, w] is regular of degree l(w) - l(v).

Thm. The following are equivalent

- 1. X_w is rationally smooth.
- 2. $P_{id,w}(t) = 1$
- 3. $P_w(t) = \sum_{v \leq w} t^{\ell(v)}$ is palindromic. (C-P)
- 4. $P_w(t) = \prod (1 + t + t^2 + \dots + t^{e_i})$ (conj McGovern, Akyildiz-Carrell 2010)

Rational Smoothness

Thm.(Billey-Postnikov, 2006) X_w is rationally smooth \iff for every *stellar* parabolic subgroup W^U , $X(\mathrm{fl}_U(w))$ is rationally smooth in G^U/B^U .

Minimal patterns: 2 patterns in A_3 , 6 patterns of type B_3 and C_3 , 1 pattern of type D_4 .

Remark. The rationally smooth but not smooth patterns are only the 1 pattern in B_2 and 5 patterns of type G_2 .

- Step 1: For classical types B, C, D, use Lakshmibai's characterization of the tangent space basis.
- Step 2: Use an analog of Gasharov's theorem to the factor Poincaré polynomial for any signed permutation not containing a singular pattern.
- Step 3: Use Kumar's criterion for (rational) smoothness in the nil-Hecke ring to test G_2 and F_4 by computer.
- Step 4: Run a massive parallel computer on the 696,729,600 elements $w \in E_8$.
 - If w has a pattern from type A or D, calculate the number the coefficient of t^1 and $t^{\ell(w)-1}$ and compare, if different, w is done. If not, calculate the coefficient of t^2 and $t^{\ell(w)-2}$, etc. Eventually one pair differed in every case.
 - If w avoids all patterns from type A or D, use analog of Gasharov's algorithm for factoring $P_w(t)$.

Question. What is the value of a computer proof?

Question. What is the value of a computer proof?

Answer. We know the statement is true!

Question. What is the value of a computer proof?

Answer. We know the statement is true!

Furthermore, we find miracles happen which make computation possible! See for example, the proof of the 4 Color Theorem of Robertson, Sanders, Seymour, Thomas (1997).

Things we learned:

- Only 99.989% of cases only required checking first coefficient.
- To find a factored form for $P_w(t)$ only need to consider quotients using leaf nodes in the Coxeter graph.
- Conjecture: one only needs to check at most n coefficients in to detect the non-palindromic property for any rank n Weyl group. (See Richmond-Slofstra 2012)

Kazhdan-Lusztig Values

Notation.

- $oldsymbol{W} =$ Weyl group or affine Weyl group
- W^U = parabolic subgroup of W associated to a vector space U
- M(x,w;U)= maximal elements in $[id,w]\cap W^Ux$ with respect to a new partial order \leq_x

$$wx \leq_x w'x \iff \mathrm{fl}(wx) \leq^U \mathrm{fl}(w'x).$$

Thm. (Billey-Braden) If $x, w \in W$, then

$$P_{x,w}(1) \geq \sum_{y \in M(x,w;U)} P_{y,w}(1) P^U_{\mathrm{fl}(x),\mathrm{fl}(y)}(1).$$

Cor. $P_{x,w}(1) \ge P_{\mathrm{fl}(x),\mathrm{fl}(y)}^U(1)$.

Pattern geometry

Thm.(Billey-Braden) If $X_{\mathrm{fl}(w)}^U$ is singular, then X_w is singular.

Proof Outline.

Realize G^U/B^U as the fixed points of a certain torus action.

Use a theorem of Fogarty-Norman saying that for all smooth algebraic T-schemes X the fixed point scheme X^G is smooth.

Cor. If w contains a pattern $v \in W^U$ and X_v^U is not smooth, then X_w cannot be smooth.

Pattern avoidance in Coxeter groups

- 1. (Stembridge ca 1998) Characterized the fully commutative elements in types B, D with signed patterns.
- 2. (R.Green, 2002) 321-avoiding elements in affine Weyl groups.
- 3. (Reading, 2005) Characterized Coxeter-sortable elements and showed they are equinumerous with clusters and with noncrossing partitions.
- 4. (Billey-Jones, 2008) Deodhar elements for all Weyl groups.
- 5. (Billey-Crites, 2012) The rationally smooth Schubert varieties in the affine type A flag manifold are characterized as 3412, 4231 avoiding plus one extra family of twisted spiral varieties.
- 6. (Chen-Crites-Kuttler, preprint) An affine Schubert variety X_w is smooth $\iff w \in \widetilde{S}_n$ avoids 3412 and 4231. Furthermore, the tangent space to X_w at the identity can be described in terms of reflection over real and imaginary roots.
- 7. (Matthew Samuel, preprint) An affine Schubert varieties for all types can be characterized by patterns using a new version of pattern avoidance for Coxeter groups based on reflection groups.

Open Problems

- 1. Describe the maximal singular locus of a Schubert variety for other semisimple Lie groups using generalized pattern avoidance.
- 2. Give a pattern based algorithm to produce the factorial and/or Gorenstein locus of a Schubert variety in other types.
- 3. Is there a nice generating function to count the number of smooth, factorial and/or Gorenstein permutations in other types?
- 4. Find a geometric explanation why a finite number of patterns suffice in all cases above.
- 5. What is the right notion of patterns for GKM spaces?
- 6. Say X_w is combinatorially smooth if $\ell(w) = \#\{t_{ij} : t_{ij} \leq w$. Conjecture: the combinatorially smooth elements characterized by generalized pattern avoidance.