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. Every Schubert variety X (w) C GL, /B is defined by determinantal
equations coming from rank conditions.

. X(v) C X(w) if and only if v < w in Bruhat order.

. (Lakshmibai-Seshadri) The tangent space at v to X (w) has dimension
#{tij . vtij S ’UJ}

. The Bruhat graph on w has vertices indexed by {v : v < w} and edges
between vertices which differ by a transposition.

. (Lakshmibai-Sandhya) X, is smooth iff w avoids 3412 and 4231.
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. Smooth permutations: 3412 and 4231 avoiding.

. Permutation patterns determine the irreducible components of singular

loci of Schubert varieties.
Factorial Schubert varieties: 4231 and 3412 avoiding.

Gorenstein Schubert varieties: 31542 and 24153 with Bruhat restrictions
plus Grassmannian condition.

. Schubert varieties “defined by inclusions”: 4231, 35142, 42513, 351624.

Deodhar permutations/ 321-hexagon avoiding: 321, 56781234, 56718234,
46781235, 46718235.

Boolean permutations: 321 and 3412 avoiding.

K Lo permutations: 653421, 632541, 463152, 526413, 546213, and 465132
and the singular locus of X,, has exactly 1 component.

LCI permutations: 53241, 52341, 52431, 35142, 42513, and 426153.

\evillary nermiitatiocne: 2142 avnidino



Outline.

1. Coxeter Groups
2. Generalized Pattern Avoidance
3. Applications

4. Open Problems



o G = Coxeter graph with vertices {1, 2,...,n}, edges labeled by Z>3 U
o0 .

~ 4
®q LD o3 — 0y ~ o — 0o — 03 — 04

e W = Coxeter group generated by {s1, S2,...,8,} with relations

2 _
1. s = 1.
2. s;8; = s8; if 1,7 not adjacent in G.

3. 8;8j8;++ = 88;8;+++ ift,J connected by edge labeled m(z, 3).

m(i,j) gens  m(i,5) gens




Dihedral groups: Dihyq o, > o,

Symmetric groups: Sk o, — o, o3 o,
Hyperoctahedral groups: By o, 2 o030,
Es: ®; 0> 03 0, 05 05 Oy



W = Coxeter group generated by S = {s1,82,...,8,} with special
relations.

R = Reflections= |J,,cpy wSw™".
¢(w) = length of w = length of a reduced expression for w.
Bruhat order: ¢ <y <= £(x) < £(y) and xzy~' € R.

Observation(Chevalley): = < y if y = s;,8;, ...5;, (reduced expres-

72 . ..8,? for some mask o1 ...0, € {0,1}P.

- - Gl
sion) and & = s;'s;%...s;’



Algorithm. Generates canonical representative for each element in a Coxeter
group using its graph.
(See Mozes 1990, Eriksson-Eriksson 1998, Bjorner-Brenti Book)

Input: Coxeter graph G and expression s;, 85, ... 8;, = w.

Start: Each vertex of graph G assigned value 1. Replace each edge (i,7)
of G' by two opposing directed edges labeled f;; > 0 and f;; > 0 so that

fiifii = 4cos? (m(:,j)) or fijfii = 4if m(e,5) = oo.

Good choices:

m(i,7) | fij | fji
3 1 | 1
4 2 | 1
6 3 |1




LLoop. For each s;, in s;, S, ... s, fire node ig.

To fire node ¢, add to the value of each neighbor 3 the current value at node 2
multiplied by f;;. Negate the value on node <.

Output.: G(w) = the final values on the nodes of G.



LLoop. For each s;, in s;, S, ... s, fire node ig.

To fire node ¢, add to the value of each neighbor 3 the current value at node 2
multiplied by f;;. Negate the value on node <.

Output.: G(w) = the final values on the nodes of G.

Properties:

1. Output only depends on the product s;, s;, - - . S8i, and not on the partic-
ular choice of expression.

2. Node % is negative in G(w) iff ws; < w.
3. Node 2 never has value 0.

4. If I C S, modify the game to get representatives for W /W7 by starting
with initial value 0 on nodes in I. Then ws; = w iff node 2 has value 0.
Useful for Grassmannians and affine Grassmannians.



Associate to a Coxeter group W a “root system” ® C V = RI®! such that
1. {as: s € S} forms an orthogonal basis of V.

2. W acts linearly on V', and ® is W-invariant.

3. &, = positive roots = {aa € ® : a« = )  csas, cs > 0},
®_ = negative roots = {a € P : a = ) csa;, cs < 0}, then
$ =&, Ud_ (disjoint).



Associate to a Coxeter group W a “root system” ® C V = RI®! such that
1. {as : s € S} forms a basis of V.

2. W acts linearly on V', and ® is W-invariant.

3. &, = positive roots = {aa € ® : a« = )  csas, cs > 0},
®_ = negative roots = {a € P : a = ) csa;, cs < 0}, then
$ =&, Ud_ (disjoint).

4. Bijection: v : R +— P .

5. Forre Rwe W, rw>w < o, € wdP,.

(See construction in Bjorner-Brenti: Combinatorics of Coxeter groups.)



Assume eq, ..., e, is the standard orthonormal basis of R"™.

o A, 1: (I)_|_:{6i—6j:’l:<j}
o B,,: (I)_|_={€i—€j:i<j}U{€7;—|—€j:’i<j}U{€i:i}
o C,: b, ={e;—ej:i1<jtU{e;+e:1<gU{2e;:1}

e D,: b, ={e;—e;j:t1<jtU{e;+e:t1<j}



Examples

John Stembridge’s rendering of the root system for Eg projected from R3. Edges
connect nearest neighbors. Color determined by furthest distance of a pair to O.
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e Forrc R,we W, rw>w < a, € wdP,.

e The analog of the inversion set is w®yL N P_.

Def. If H: V — R is a linear function,
Iy ={a € ®: H(a) > 0}.
H is generic if H(a) # 0 Va € ®.

Example. If Hy : V — R defined by Hy(as) = 1Vs € S, then
HHl — (I)_|_.

Def. Set H, = Hyow™! forallw € W. Then, &g = wd,.



Key Fact. If H is generic, then Il = w®_ for some unique w € W.

Below are the positive roots for two types of Coxeter groups drawn projectively
in 2-d. Intersecting each picture with a half spaces, identifies an inversion set.

B23
B-: A3 = S4I
B1+ B2 P11+ 202
1 @ ® o ® 32 313 524
(31 and 31 + 235 are long roots B1a
P12 B34

B1 + B2 and B2 are short roots
Biz2 = B1, P23 = B2, PBsa = Ps,
Bi13 = B1 + B2, B24 = B2 + Bs,
B1a = B1 + B2 + Bs



D — 4 embedding



Def. If U C V is a subspace, then

o ®U = & N U is a root subsystem of ®.

e WU = group generated by reflections r, for o« € &Y.

e RV =RNWUY

Fact. WV is a Coxeter group with simple reflections SV = xIx~! for some
I C S and x € W. Any subgroup of this form is a parabolic subgroup.



Def. Given a subspace U € V, we get a pattern map or a flattening map
iy : W — WUV
given by mapping w to the unique element € WV such that

w®, NU ={acUN®: H,(a) > 0}
= {a € ®Y : H (a) > 0} where H' = H, |y
— U
—:13<I>+.



Def. Given a subspace U € V, we get a pattern map or a flattening map
fly : W — WY
given by mapping w to the unique element € WV such that
w®, NU ={acUNn®: H,(ax) > 0}
= {a € ®Y : H (a) > 0} where H' = H, |y
= :1:<I>$.

B23
Example.

B13 B24
w = 2431 U = span(B34, B23)

B1a
B12 B34



Def. Given a subspace U € V, we get a pattern map or a flattening map
fly : W — WY
given by mapping w to the unique element € WV such that
w®, NU ={acUNn®: H,(ax) > 0}
= {a € ®Y : H (a) > 0} where H' = H, |y
= :1:<I>$.

B23
Example.

B13 B24
w = 2431 U = span(B34, B23)

B14
Bi2 Bs,  f(w) = f1(243) = 132



Thm. (Billey-Braden)
1. iy is WV-equivariant: l(wz) = w fi(z) Vw € WV, = € W.

2. If i(x) <Y fi(wz) in Bruhat order on WV for some w € WV, then
r < wxin W.

3. flyy is the unique map with properties (1) and (2).



Notation.
e G= Semisimple Lie group over C

e B = Borel subgroup
e T' C B maximal torus.

e W = N(T)/T = Weyl group for G (a finite Coxeter group)

The finite Weyl groups/root systems that arise this way have been completely
classified into types A,,, B,,, Cy,, Dy, Eg, Er, Eg, F4, G>.

Bruhat Decomposition. G = | | BwB.
weW



Notation.

e G/B = (generalized) flag manifold
o C, = B :-w = Schubert cell

e X, = B - w = Schubert variety

T'hm.(Billey-Postnikov, 2006)

X,, is smooth <= for every stellar parabolic subgroup WV, the Schu-
bert variety indexed by flyy(w) is smooth in the corresponding flag manifold
corresponding with U'.



T'hm.(Billey-Postnikov, 2006)
X, is smooth <= for every stellar parabolic subgroup WY,
X (fiyy (w)) is smooth in GY /BY.

Def. WU is stellar if its Coxeter graph has one central vertex v and all other
vertices are only adjacent to v.

1 2 1 2 3 1 2 3
Bs = o—>0 A3 = o—o0o—o0 Dy =
4
1 2 1 2 3 1 2 3
Go = oo Bs = o——o0=—0 C3 = o—o<0

Dynkin diagrams of stellar root systems

2 patterns in Ag, 1 pattern in By, 6 patterns of type Bz and C3, 1 pattern of
type Dy, 5 patterns of type G2.



Example. In type B,, using just classical pattern avoidance on signed per-
mutations, the smooth Schubert varieties are classified by avoiding
(-2 -1)
(12-3 (1-2-3 (-12-3) (2-1-3) (-21-3) 3-21)
(2-431) (-2-431) (3412 (34-12) (-3412)
413-2) (4-13-2) 4231 423-1)(-42231)))

All length 4 patterns come from Ag root subsystems.

Example. In type Dy, there are 49 singular Schubert varieties, only does
not comes from Ag root subsystems: w = S5 + 8S1S83S84 * S = 1432.

Sing X (s251535452) = X (s2)
Sing X(82818382) = X(Sz) (3412 case)
Sing X (s3s1828183) = X (s183) (4231 case)



Observation. The definition of a Kazhdan-Lusztig polynomial P, ., (t)
easily generalizes to all Coxeter groups.

Def. A point v € X, is rationally smooth iff P, .,(t) = 1.
Smooth = rationally smooth.

Thm. (Deodhar, Peterson) For types A, D, E, X,, is smooth iff it's rationally
smooth.

Note, by (Mitchell,Billey-Crites) not true for zA)n. So, need a stronger condi-
tion than just simply laced ( all edges in Coxeter graph have label 3).



Thm. (Carrell-Peterson, Jantzen) The following are equivalent
1. X Is rationally smooth at v.

2. Py ow(t) =1

3. Bruhat graph on [v, w] is regular of degree l(w) — I(v).

Thm. The following are equivalent
1. X 1s rationally smooth.
2. Pigw(t) =1
3. Py(t) =Y,y t**) is palindromic. (C-P)

4. Py(t) =T[(1 +t+t2 4 - - 4 t°)
(conj McGovern, Akyildiz-Carrell 2010)



T'hm.(Billey-Postnikov, 2006) X, is rationally smooth <= for every stellar
parabolic subgroup WY, X (fly(w)) is rationally smooth in GV /BY.

Minimal patterns: 2 patterns in Az, 6 patterns of type Bg and C, 1 pattern

of type Dy.

Remark. The rationally smooth but not smooth patterns are only the 1
pattern in By and 5 patterns of type G5.



Step 1: For classical types B, C, D, use Lakshmibai's characterization of
the tangent space basis.

Step 2: Use an analog of Gasharov's theorem to the factor Poincaré poly-
nomial for any signed permutation not containing a singular pattern.

Step 3: Use Kumar's criterion for (rational) smoothness in the nil-Hecke
ring to test Go and F4 by computer.

Step 4: Run a massive parallel computer on the 696,729,600 elements
w €& ES-

— If w has a pattern from type A or D, calculate the number the
coefficient of 1 and t¥(®)—1 and compare, if different, w is done. If
not, calculate the coefficient of ¢2 and t¢(*)—2, etc. Eventually one
pair differed in every case.

— If w avoids all patterns from type A or D, use analog of Gasharov's
algorithm for factoring P, (%).



Outline of proof

(Question. What is the value of a computer proof?



(Question. What is the value of a computer proof?

Answer. We know the statement is true!



(Question. What is the value of a computer proof?

Answer. We know the statement is true!

Furthermore, we find miracles happen which make computation possible!
See for example, the proof of the 4 Color Theorem of Robertson, Sanders,
Seymour, Thomas (1997).

Things we learned:
— Only 99.989% of cases only required checking first coefficient.

— To find a factored form for P, (t) only need to consider quotients
using leaf nodes in the Coxeter graph.

— Conjecture: one only needs to check at most n coefficients in to

detect the non-palindromic property for any rank n Weyl group. (See
Richmond-Slofstra 2012)



Notation.
o W = Weyl group or affine Weyl group

e WU = parabolic subgroup of W associated to a vector space U

e M(x,w;U) = maximal elements in [id, w] N WUz with respect to a
new partial order <,

wx <, wr <= fl(wz) <Y fi(w'x).
Thm. (Billey-Braden) If z,w € W, then

Pow(1) > ), Pyuw()Phie) an) 1)
yGM(:L','w;U)

Cor. Ppw(1) > Pyiay ap) (1)



Thm.(Billey-Braden) If Xfll](w) is singular, then X, is singular.

Proof Outline.

Realize GY /BY as the fixed points of a certain torus action.

Use a theorem of Fogarty-Norman saying that for all smooth algebraic T'-schemes
X the fixed point scheme X is smooth.

Cor. If w contains a pattern v € WV and X,f)] is not smooth, then X,
cannot be smooth.



. (Stembridge ca 1998) Characterized the fully commutative elements in
types B, D with signed patterns.

. (R.Green, 2002) 321-avoiding elements in affine Weyl groups.

. (Reading, 2005) Characterized Coxeter-sortable elements and showed they
are equinumerous with clusters and with noncrossing partitions.

. (Billey-Jones, 2008) Deodhar elements for all Weyl groups.

. (Billey-Crites, 2012) The rationally smooth Schubert varieties in the affine
type A flag manifold are characterized as 3412, 4231 avoiding plus one
extra family of twisted spiral varieties.

. (Chen-Crites-Kuttler, preprint) An affine Schubert variety X,, is smooth
<—> w € §n avoids 3412 and 4231. Furthermore, the tangent space
to X, at the identity can be described in terms of reflection over real and
Imaginary roots.

. (Matthew Samuel, preprint) An affine Schubert varieties for all types can
be characterized by patterns using a new version of pattern avoidance for
Coxeter groups based on reflection groups.



. Describe the maximal singular locus of a Schubert variety for other semisim-
ple Lie groups using generalized pattern avoidance.

. Give a pattern based algorithm to produce the factorial and/or Gorenstein
locus of a Schubert variety in other types.

. Is there a nice generating function to count the number of smooth, factorial
and/or Gorenstein permutations in other types?

. Find a geometric explanation why a finite number of patterns suffice in all
cases above.

. What is the right notion of patterns for GKM spaces?

. Say X, is combinatorially smooth if £(w) = #{t:; : t;; < w. Con-
jecture: the combinatorially smooth elements characterized by generalized
pattern avoidance.



