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SCHUBERT POLYNOMIALS FOR THE CLASSICAL GROUPS 

SARA BILLEY AND MARK HAIMAN 

1. INTRODUCTION 

The task of a theory of Schubert polynomials is to produce explicit represen-
tatives for Schubert classes in the cohomology ring of a flag variety, and to do 
so in a manner that is as natural as possible from a combinatorial point of view. 

To explain more fully, let us review a special case, the Schubert calculus 
for Grassmannians, where one asks for the number of linear spaces of given 
dimension satisfying certain geometric conditions. A typical problem is to find 
the number of lines meeting four given lines in general position in 3-space 
(answer below). For each of the four given lines, the set of lines meeting it is a 
Schubert variety in the Grassmannian and we want the number of intersection 
points of these four subvarieties. 

In the modem solution of this problem, the Schubert varieties induce canon-
ical elements of the cohomology ring of the Grassmannian, called Schubert 
classes. The product of these Schubert classes is the class of a point times the 
number of intersection points, counted with appropriate multiplicities. This 
reformulation of the problem, though one of the great achievements of alge-
braic geometry, is only part of a solution. It remains to give a concrete model 
for the cohomology ring that makes explicit computation with Schubert classes 
possible. 

As it happens, the cohomology rings of Grassmannians can be identified with 
quotients of a polynomial ring so that Schubert classes correspond to Schur 
functions. Intersection numbers such as we are considering then tum out to be 
Littlewood-Richardson coefficients. For example, the answer to our four-lines 
problem is the coefficient of the Schur function S(2, 2) in the product Stl) , or 
2. For an extended treatment and history of the subject, see [10], [11], [18]. 

The identification of Schur functions as Schubert polynomials for Grass-
mannians is a consequence of a more general and now highly developed the-
ory of Schubert polynomials for the flag varieties of the special linear groups 
SL(n, C). The starting point for this more general theory is a construction of 
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Schubert classes by Bernstein-Gelfand-Gelfand [1] and Demazure [4]. Consid-
ering the flag variety of any simple complex Lie group, they show that beginning 
with a cohomology class of highest codimension (the Schubert class of a point), 
one obtains all Schubert classes by applying a succession of divided difference 
operators corresponding to simple roots. 

At the level of computation in the cohomology ring, the preceding construc-
tion is quite explicit. It can be made even more explicit by selecting a spe-
cific polynomial to represent the top cohomology class. At first glance one sees 
no preferred way of making this choice. For the groups SL(n, C), however, 
Lascoux and Schiitzenberger [12] made the crucial observation that one par-
ticular choice yields Schubert polynomials that represent the Schubert classes 
simultaneously for all n. This has led to a far-reaching theory with beautiful 
combinatorial ramifications, developed in [3], [7], [13]. 

Our goal in the present work is to replicate the theory of SL(n, C) Schubert 
polynomials for the other infinite families of classical Lie groups and their flag 
varieties-the orthogonal groups SO(2n, C) and SO(2n + 1, C) and the sym-
plectic groups Sp(2n, C). In principle, the program for doing this is simple. 
Within each family, the flag variety of order n embeds into the one of order 
n + 1 as a Schubert variety, inducing maps on cohomology that send Schubert 
classes to Schubert classes. This set-up yields Schubert polynomials in the in-
verse limit, which can be calculated as the unique solution of an infinite system 
of divided difference equations. 

In practice, there are delicate aspects to carrying out the program. The ring in 
which the Schubert polynomials lie must be correctly identified, and a particular 
change of variables made in order to express them in their natural form. The 
divided difference equations corresponding to generators of the symmetric group 
are easily dealt with, because our theory for SL(n, C) reduces to the existing 
Lascoux-Schiitzenberger theory. The action of the 'extra' generators for the 
other Weyl groups is subtle, however, and their proper handling is the key to 
our calculations. 

Ultimately, we solve the defining equations with polynomials defined by two 
equivalent formulas. One is an analog of the Billey-Jockusch-Stanley formula, 
while the other, which has no counterpart in the SL(n) theory, expresses our 
polynomials in terms of SL(n) Schubert polynomials and Schur Q- or P-
functions. Our second formula involves the 'shifted Edelman-Greene corre-
spondences' introduced in [9]. The mysterious 'third' correspondence found 
in that paper (and inappropriately called "type C" there) turns out to be the 
natural correspondence for the family D n of even orthogonal groups. 

Implicit in our results are new proofs of theorems of Pragacz [15] identifying 
the Schubert polynomials for isotropic Grassmannians-varieties consisting of 
subspaces isotropic with respect to a symplectic form on C2n or a symmetric 
form on C2n or C2n+!. Pragacz shows that these Schubert polynomials are 
Schur Q- or P-functions, in the same sense that the Schubert polynomials for 
ordinary Grassmannians are ordinary Schur functions. 
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Fomin and Kirillov [6] independently conjectured a formula almost iden-
tical to our Theorem 3, (2.5) for symplectic Schubert polynomials, based on 
considerations very different from ours. This suggests the possibility that these 
polynomials may be significant in as yet unexpected contexts. 

Logically speaking, geometry enters our work primarily as motivation, the 
proofs of the main theorems being entirely elementary in nature. The one 
exception for which we must appeal to a geometric proof is Theorem 5-the 
non-negativity of product expansion coefficients. In principle, the paper can 
be read and understood without any knowledge of Lie groups, flag varieties, 
or cohomology, if one is willing to accept on faith the raison d'etre for the 
construction. 

2. DEFINITIONS, SYNOPSIS, AND GEOMETRIC UNDERPINNINGS 

We begin this section with our definition of Schubert polynomials and a 
synopsis of the main theorems, followed by a review of the geometry needed 
to justify our definitions as correct and essentially inevitable, and to establish 
Theorem 5. 

In Section 3 we introduce the combinatorial and symmetric function ma-
chinery we will need. Finally in Section 4, having formulated the problem as 
a system of divided difference equations, we prove directly that the solutions 
exist, are unique, are given by our formulas, and form an integral basis for the 
ring in which they lie. 

Let Q[ZI' z2' ... ] be the ring of polynomials in countably many variables 
Z j' Although the number of variables is infinite, a polynomial always has a 
finite number of terms. Let Pk = + z; + . .. denote the k-th power sum-a 
formal power series, not a polynomial. Then Q[z I ' z2' ... ; PI ' P3 ' ... ] is the 
ring of formal power series which are polynomials in the Zj and the Pk (k 
odd). These are all algebraically independent, so Q[zl' z2' ... ; PI' P3' ... ] 
can also be regarded simply as the polynomial ring in variables Zj and Pk' 

The infinite hyperoctahedral group Boo is the union U: IBn' where B n is 
the group of signed permutations on {I, ... , n}. Here we regard Bm as a 
subgroup of Bn for m < n in the obvious way. Boo is generated by the 
transpositions (Jj = (i i + 1) and the sign change (Jo(1) = T. We make Boo 
act on the formal power series ring Q[ZI' z2' ... ] by letting (Jj interchange 
Zj and Zj+I' for i 1, and letting (Jo replace zi with -ZI' Restricting this 
action to the rings Q[ZI' z2' ... ] and Q[zl' z2' ... ; PI' P3' ... ], we see that 
the (Jj act as described on the Z /s, that (Jjfixes the Pk's for i 1, and that 

k 
(JoPk = h - 2z I . 

The symmetric groups Sn and their union Soo act as subgroups of Boo 
generated by the transpositions (Jj for i 1 . 

The group Dn is the subgroup of elements W E Bn which make an even 
number of sign changes. Their union we denote D 00' The standard generators 
for these groups are (Jj for i 1 and an additional generator (Jj = (JO(JI (Jo 
which replaces ZI with -z2 and Z2 with -ZI' 
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On the rings Q[ZI' Z2' ... ] and Q[zl' z2' ... ; PI' P3' ... ] we define di-
vided difference operators 

aJ= f-aJ (i2:1), 
Zi - zi+1 

a f = f - aof 
o -2z' 

I 

aB f _ f - aof 
o - -z ' 

I 

(2.1 ) 

a-f- f - aif 
I - . -ZI - z2 

The denominator in each case is a linear form defining the hyperplane fixed by 
the reflection ai' so these fractions are actually polynomials. 

Definition. The Schubert polynomials of type A are elements 6 w E 
Q[ZI' z2' ... ] for w E Soo satisfying the equations 

(2.2) a.6 = {6wUj if l(wai ) < l(w), 
I W 0 if l(wa) > l(w), 

for all i 2: 1 , together with the condition that the constant term of 6 w is 1 if 
w = 1 and 0 otherwise. 

Definition. The Schubert polynomials of type C are elements ctw E 
Q[ZI' z2' ... ; PI' P3' ... ] for w E Boo satisfying the equations 

(2.3) a.ct = {ctWUj if l(wai ) < l(w), 
I W 0 if l(wai ) > l(w), 

for all i 2: 0, together with the condition that the constant term of ctw is 
if w = 1 and 0 otherwise. The Schubert polynomials of type B are lEw = 
rS(W)ctw ' where s(w) is the number of signs changed by w. These satisfy 
equations (2.3) with in place of aD. 
Definition. The Schubert polynomials of type D are elements 1) W E 
Q[zl' z2' ... ; PI' P3' ... ] for w E Doo satisfying the equations 

(2.4) a.1) = I {
1)wu if l(wai ) < l(w), 

I W 0 if l(wa) > l(w), 

for all i 2: 1 and i = i , together with the condition that the constant term of 
1) W is 1 if w = land 0 otherwise. 

In the above definitions l(w) refers to the minimum length of an expression 
for w as a product of the simple reflections a i generating the given group. 
This is well defined in S 00 ' Boo' and D 00 ' since length of w in the Coxeter 
group Sn' Bn , or Dn is independent of n. 
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Theorem 1. Solutions of the defining equations for each type of Schubert polyno-
mial exist and are unique. 

Theorem 2. The Schubert polynomials of type A are the same as those defined 
by Lascoux-Schutzenberger [12]. 

To state our main results in their most attractive form, we replace the ring 

with the isomorphic ring 

Q[z" z2' ... ;p,(X),P3(X), ... ], 

where Pk(X) = + x; + ... are power sums in new variables, and we identify 
Pk(X) with -Pk(Z)/2. 

Recall (or see Section 3) that the Schur Q-functions Q,u(X) , for /1 a partition 
with distinct parts, form a basis for the subring Q[P, (X), P3(X) , ... ] of the 
ring of symmetric functions in the variables X. One also defines P,u(X) = 
2-/(/L)Q/L(X), Then the sub rings Z[Q,u(X)] and Z[P,u(X)] have integral bases 
{Q,u(X)} and {P/L(X)} respectively. 

Theorem 3. The Schubert polynomials <tw are given by 

(2.5) <t = w 
uv=w /(u)+/(v)=/(w) 
VESoo 

where Fu(X) is a certain non-negative integral linear combination of Schur 
Q-functions computed from u E Boo via the B n Edelman-Greene corre-
spondence (see Section 3). The polynomials <tw are a Z-basis for the ring 
Z[z, ' z2' '" ; Q/L(X)], The polynomials IBw = TS(W)<tw are a Z-basis for 
Z[z, ' Z2' ... ; P/L(X)], Given a partition /1 = (/1, > /12 > ... > /1t) with distinct 
parts, let 

(2.6) 

Then we have 

(2.7) 

In (2.6) the bars denote minus signs, and the ellipsis at the end stands for the 
remaining positive integers, omitting the /1j'S, in increasing order. These nota-
tional conventions for signed permutations will be used below without further 
comment. 

Theorem 4. The Schubert polynomials :D ware given by 

(2.8) :D = w 
UV=w t(u)+t(v)=t(w) 
vESoo 
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where Eu(X) is a certain non-negative integral linear combination of Schur 
P-functions computed from u E Doo via the Dn Edelman-Greene corre-
spondence (see Section 3). The polynomials :Dw are a Z-basis for the ring 
Z[zl' Z2' ... ; Pjl(X)], Given a partition /-l = (/-ll > /-l2 > ... > /-l/) with distinct 
parts, let Vi = 1 + /-li' taking /-l/ = 0 if necessary to make the number of parts 
even. Then for 

(2.9) W=VI V 2 ···v/12.·· , 

we have 

(2.10) 

Further formulas expressing lEw' Itw' and :Dw as sums over admissible 
monomials for reduced decompositions of ware given in Section 4, where 
they playa crucial role in the proofs of the theorems. 

Theorem 5. In the product expansions 

(2.11 ) 

and like expansions for types B, C, and D, the coefficients c:v are non-
negative. 
Proof For n large enough, we have a homomorphism sending the Schubert 
polynomials appearing here to Schubert classes. The coefficient c:v is therefore 
the same as that appearing in (2.12) below. 0 

We now review the facts we require about flag varieties and their cohomology 
rings. The goal is to discover a uniform definition of Schubert polynomials for 
the classical families, and finally to specialize it to obtain our definitions (2.1)-
(2.4) of Schubert polynomials of types A, B, C, and D. Along the way we fix 
notation for the classical groups, describe their flag varieties concretely, and state 
enough properties of Schubert classes to justify Theorem 5. The general theory 
applies to any connected and simply connected semisimple complex Lie group 
G, but we make things fully explicit only for the classical families. Primary 
references are [1], [2]. 

Let B be a Borel subgroup of G. Abstractly, the flag variety is the space 
of cosets X = G/B = {gB I g E G}, which is a smooth complex projective 
variety. For the classical groups, the flag varieties have the following more 
concrete descriptions. 

For type An_I' G = SL(n, q acts naturally on en. The Borel subgroup B 
of upper triangular matrices can be described as the stabilizer of the sequence 
of subspaces E = (0 c (e l ) C (el ' e2) C ... C (e l ' e2, ... , en_I) C en), where 
ei are the unit coordinate vectors. Hence we may identify X = G / B with the 
variety of flags of subspaces F = (0 C FI C F2 C .. , c Fn_I c en) satisfying 
dimFd = d. 
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For types Bn (G = SO(2n + 1, e)), Cn (G = Sp(2n, C)), and Dn (G = 
SO(2n, C)), G is by definition the group of automorphisms preserving a non-
degenerate bilinear form (-, -) on V = e2n or e2n+\. For SO, this will 
be a symmetric form; for Sp, a skew form (x, y) = -(y, x). To be definite, 
let us agree that the matrix [(ej , e)]j,j of the form on unit coordinate vectors 

shall be J2n or J2n+\ for SO, and for Sp, where J1 is the / x / 
'reverse identity matrix' with entries I on the anti-diagonal and 0 elsewhere. 
With these choices, the upper triangular matrices in G form a Borel subgroup 
in each case, which we take as B. 

A subspace W S; V is isotropic if (x, y) = 0 for all x, YEW. An isotropic 
flag is a partial flag F = (0 C F\ C F2 C ... c Fn) with dimFd = d and Fn 
isotropic. (Note that maximal isotropic subspaces have dimension n.) Letting 

.l .l .l Fj denote the orthogonal complement of Fj' we have Fn C Fn_\ C ... C 

F\.l C V and Fn S; Fn.l (in fact Fn = Fn.l except for type Bn)' By adding the 
orthogonal complements F/ ' we thus extend each isotropic flag to a complete 
flag, which of course has the same stabilizer in G. In particular, B is the sta-
bilizer of the isotropic flag E = (0 c (e\) c (e\, e2) C ... C (e\, e2 , ... ,en))' 
Hence we identify X = G / B with the variety of isotropic flags. (Except for 
type D n ' where the space of isotropic flags has two components, correspond-
ing to the two cosets of SO(2n, C) in 0(2n, C), and we identify X with the 
component containing E.) 

The B-orbits in X correspond to double cosets BgB in G. By the Bruhat 
decomposition G = UWEW BwB , the flags wE for w in the Weyl group W 
forma system of representatives for these orbits. The orbit Xw = BwE S; X 
is isomorphic to the affine cell e/(w) , where /(w) denotes length of w. These 
cells are called Schubert cells and their closures X w Schubert varieties. Since 
X w is B-stable, it is a union of B-orbits Xv' 

For each w E W , the fundamental homology class of the subvariety X w S; X 
determines an element [Xw] E H 2/(W)(X ,Z) and the decomposition of X into 
Schubert cells implies that the elements [X w] form a Z-basis of H* (X, Z) . The 

-Schubert classes Cw E H (X, Q) are the dual basis defined by (Cw ' [X v]) = 
w' where (-, -) is the natural pairing of cohomology and homology. 

'Let Wo denote the longest element of W. Then by [1], Corollary 3.19, 
we have Cw wCw = Cw ' and CvCw = 0 for /(v) + /(w) = /(wo) and v =I-

o 0 
wow. Thus Cw is the cohomology class associated via Poincare duality with 
the algebraic cycle X ; in other words [Xw w] is the cap product of Cw with 

WOW 0 

[Xw] . 
o 

By intersection theory it follows that the coefficients c:v defined for /(u) + 
/(v) = /(w) by setting 

(2.12) CuCv = L c:vCw' 
wEW 

or equivalently 
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in H*(X, Q) are non-negative integers. Namely, c:v is the intersection number 
of cycles equivalent to X W u' X W v ' and X w in general position. 

o 0 
As in [1], Proposition 1.3, we identify the rational cohomology ring H*(X) 

with the quotient Q[P]I I of the symmetric algebra of the root space P by the 
ideal I generated by all non-constant homogeneous W -invariant polynomials. 
For each simple root a and corresponding reflection aa' we then define the 
divided difference operator aa on Q[P] as in [1] by 

(2.13) a 1= 1- aal. 
a a 

If aag = g then clearly aa(gl) = gaal, which shows that the operators aa 
carry the ideal I into itself, and therefore induce well-defined operators aa on 
H*(X). Theorem 3.14 of [1] states that the Schubert classes Cw satisfy 

(2.14 ) a C = Q { CW(T if l(waJ < l(w), 
a W 0 if l(waa ) > /(w). 

These equations, together with their dimensions and the fact that C1 = 1, 
determine the classes Cw • 

Embeddings of flag varieties, root systems, and Weyl groups arise when the 
Dynkin diagram of one group is a subdiagram of another. Let D be a Dynkin 
diagram of finite type and 9 the semisimple complex Lie algebra constructed 
from it, with Cartan subalgebra Borel sub algebra b, root system d, and 
basis of simple roots Let H B G be the corresponding connected and 
simply connected semisimple complex Lie group with maximal torus Hand 
Borel subgroup B. Given a subset S of the simple roots let D' D be 
the subdiagram whose vertices correspond to the elements of S. We then have 
maps ¢: G' '---+ G and d¢: g' '---+ g, with ¢(B') Band ¢(H') H. 

Dual to d ¢ we have a map 7C: P ---> P' between the root spaces. The map 7C 

carries the subspace Q(S) P spanned by S onto P' and sends (d n Q(S) , S) 
isomorphically onto the root system (d', Ifwe identify the Weyl group W' 
with the subgroup of W generated by {aa I a E S} ,then 7C is W' -equivariant. 

The isomorphisms Q[P]II H*(GIB) of [1] commute with the maps 
¢*: H*(GIB) ---> H*(G'IB') induced by ¢: G'IB' ---> GIB, and it: Q[P]II---> 
Q[P']I I' induced by 7C: P ---> P'. Letting aa' denote respectively the di-
vided difference operators on Q[P]I I, Q[P']I I' corresponding to a root a E S, 
we have itaa = Hence by the remark following (2.14), ¢*(Cw ) = 
where Cw and denote the respective Schubert classes in H* (G I B) and 
H* (G' I B') indexed by w E W' . 

For each classical family, let Gn denote the n-th group-SL(n), Sp(2n) , 
SO(2n + 1), or SO(2n). We define maps ¢n : Gn '---+ Gn+1 from Dynkin 
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diagram embeddings as shown below. 

(2.15) 

(2.16) 

(2.17) 
O!I O!I 

TypeD: ... '--> ... O!n.-1 

In terms of the explicit matrix representations described earlier the maps <Pn 
take the forms 

(2.18) <Pn (M) = I for type A; [ 1 0 0] o M 0 for types B, C, D. 
001 

For type A, G = SL(n), we express the elements of H-the diagonal 
matrices-in the form 

(2.19) exp [" ". J, where z, + ... + z. O. 

Then the root space is Pn = Q(zl' ... , zn)/Q(zi + ... + zn)' the Weyl group 
W is Sn' and the cohomology ring is Q[Pn1/In = Q[ZI' •.. , znl/(Pl' P2 , ... ) 
where Pk = + ... + From (2.18) above we see that the map 
it: Q[ZI'"'' zn+ll/(P1,P2, ... ) -+ Q[ZI"'" zn 1/(P1,P2' ... ) is given by 
sending zn+1 to zero. The simple roots are O!i = zi - Zi+1 • 

For types B, C, and D, G = SO(2n + 1), Sp(2n) , or SO(2n) , we express 
elements of H in the form 

-Zn 

-z, 
for SO(2n + 1), or exp 0 

z, 

(2.20) Zn 

-Zn 

exp -z, for Sp(2n), SO(2n). z, 

Zn 

In each case we then have Pn = Q(ZI"" , zn)' W = Bn for types B, 
C or Dn for type D, Q[Pnl/In = Q[ZI"'" zn1/(p2 ,P4 , ... ) for types 
Band C, modulo an additional invariant zl'" zn E In for type D, and 
it: Q[Pn+d/In+1 -+ Q[Pnl/ In given by sending zn+1 to zero. The simple roots 
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are a O' ai' ... ,an_I for types B, e, and aj' ai' ... ,an_I for type D, 
where a o = -ZI for type e, a o = -2z1 for type B, aj = -zi - z2' and 
a i = Zi - zi+1 for i = 1,2, ... as before. 

Now we come to the general definition of Schubert polynomials. 

Definition. For any of the classical families A, B, e, or D, let the n-th group 
be Gn , with Weyl group Wn and flag variety X n . Let Woo = funWn be the 
direct limit of the Weyl groups. For W E Woo the Schubert polynomial SW IS 

the element limew in the inverse limit limH*(Xn) of the system 

(2.21 ) ... H* (X ) H* (X ) ... n n+1 . 

In the explicit coordinates (2.19)-(2.20) the general divided difference equa-
tions (2.13)-(2.14) clearly specialize to our definitions (2.1)-(2.4). To fully 
justify the original definitions we have only to verify that the Schubert polyno-
mials, defined now as elements of the inverse limit lim Q[Pnll In ' belong to the 
ring R = Q[zi' z2' ... ] (type A) or R = Q[zi' z2' ... ; Pi' P3' ... ] (types 
B, e, D). Strictly speaking, we mean that the Sw belong to the image of R 
under the map R '-+ lim Q[Pn]/ In induced by the obvious maps R ---+ Q[Pn]/ In . 

Given W E Woo' let N be large enough so that W E WN • Then the equa-
tions 8iS w = 0 for i > N imply that Sw is symmetric in all the variables 
zN+I' zN+2' .... Since Sw is also homogeneous of degree l(w), its image in 
Q[PnllIn lies in the image of the subring R' = Q[ZI' ... , ZN' PI' ... ,Pl(w)]. 
But the image of R' in Q[Pnll In is constant for n > N, so the inverse limit 
of this subsystem is the image of R' in lim Q[Pn]/ In . This shows Sw E R. 

Finally, a few words on how our results generalize those of Pragacz [15] on 
isotropic Grassmannians. Projecting each isotropic flag (0 C FI C F2 C ... c 
Fn) on its last component Fn , we map the flag variety of type B, e, or D 
onto the corresponding isotropic Grassmannian, or variety of maximal isotropic 
subspaces with respect to the given symmetric or symplectic form. In group-
theoretic terms, this projection is the natural map from G / B onto G / P , where 
the parabolic subgroup P is the stabilizer of the space En in the base flag E. 
The Schubert varieties in the Grassmannian are, by definition, the closures of 
B-orbits. 

The map X = G / B ---+ G / P induces a map embedding the cohomology ring 
of the isotropic Grassmannian into H*(X) as the subring of Wp-invariants, 
where Wp is the "parabolic" subgroup of the Weyl group for which P = WpB. 
The embedding sends Schubert classes to Schubert classes, so we may identify 
the Schubert polynomials for G / P with those Schubert polynomials for X 
which are Wp invariant (see [1] for details). 

For isotropic Grassmannians, Wp is Sn' so the relevant Schubert polyno-
mials <tw ' or 1)w are the ones indexed by signed permutations w with 
w (i) < w (i + 1) for all i. Of course, such a w has all its negative values 
w(i) at the beginning, in decreasing order of absolute value, followed by all the 
positive values in increasing order. In short, it has the form of equation (2.6) 
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or (2.9), and the corresponding Schubert polynomial is therefore a Schur Q-
or P-function, according to Theorem 3 or 4. Thus we recover the theorems of 
Pragacz. 

3. THE SHIFTED EDELMAN-GREENE CORRESPONDENCE 

In this section we review the shifted Edelman-Greene correspondences from 
[9] and use them to define symmetric functions associated with elements of 
the Weyl groups Bn and Dn. These symmetric functions are the natural Bn 
and Dn analogs of symmetric functions defined for elements of An by Stanley 
[17]. For this reason we call them Stanley functions. Just as the An Stanley 
functions are now understood to be 'stable' type A Schubert polynomials [13], 
the Bn and Dn Stanley functions turn out to be specializations of type Band 
D Schubert polynomials. 

Our central results here are identities between the defining tableau forms 
of the Stanley functions and more explicit monomial forms given by Propo-
sitions 3.4 and 3.10. Expressed in tableau form, the Stanley functions are 
transparently non-negative integral combinations of Schur Q- and P-functions, 
respectively. Expressed in monomial form, they are amenable to detailed com-
putations with divided difference operators. Both aspects are essential for the 
proofs of our main theorems in Section 4. 

At the end of this section we evaluate the Stanley functions for various special 
elements of the Weyl groups. Most of these evaluations and some others not 
given here were also found by J. Stembridge, T.-K. Lam, or both, in work not 
yet published. They take the monomial forms as the definition, attributing 
this to Fomin. We give a self-contained treatment here, since our methods are 
new and the proofs simple. Note, however, that Propositions 3.13 and 3.14 
were first proved by Stembridge, and Proposition 3.16 by Lam. They consider 
Proposition 3.17 to be well known! 

We begin by reviewing the combinatorial definition of Schur Q- and P-
functions. Recall that when J.l = (J.l, > J.l2 > ... > J.l,) is a partition with 
distinct parts, the corresponding shifted shape is a sort of Ferrers diagram of 
J.l , but with each row indented one space at the left from the preceding row, as 
shown here for J.l = (7, 4, 3, 1). 

(3.1 ) 

A tableau of shape J.l is a function assigning to each cell in the shape an entry 
from some totally ordered alphabet, so that the entries are non-decreasing along 
each row and column. If the alphabet is the set of numbers {I, ... , n} , where 
n = 1J.l1, and the assignment of numbers to cells is bijective, the tableau is a 
standard tableau. If the alphabet consists of numbers 1, 2, ... and circled 
numbers 10

, 20 , ••• , with the ordering 10 < 1 < 20 < 2 < ... , the tableau is a 
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circled tableau provided that no circled number is repeated in any row and no 
uncircled number is repeated in any column. 

If T is a circled tableau, its weight is the monomial x T in variables 
XI' x2 ' ••• formed by taking the product over all entries in T of the variable 
Xi for an entry i or t . 
Definition. The Schur Q-function Q)l(X) is the sum LTXT, taken over all 
circled tableaux of shifted shape f.1. The Schur P-function P)l(X) is defined to 
be Z-1()l)Q)l(X) , where 1(f.1) is the number of parts of f.1. 

Note that the rules defining circled tableaux always permit free choice of 
the circling for entries along the main diagonal. Consequently, P)l can also be 
described as the sum LT x T , taken over circled tableaux with no circled entries 
on the diagonal. 

The following well-known basic facts can be derived (albeit with some effort) 
from various theorems and exercises in [14]. 

Proposition 3.1. The Schur P- and Q-functions are the specializations 
P)l(X; -1) and Q)l(X; -1) of the Hall-Littlewood polynomials P)l(X; t) and 
Q)l(X; t), for f.1 with distinct parts. Consequently, they are symmetric func-
tions in the variables X and they depend only upon the power sums Pk(X) for 
k odd. Moreover, the sets {P)l(X)} and {Q)l(X)} are Q-bases for the algebra 
Q[PI (X), P3(X) , ... ] generated by odd power sums, and Z-basesfor the subrings 
Z[P)l] and Z[Q)l] , respectively. 

For more detail on the combinatorial interpretation of P- and Q-functions, 
consult [16], [20]. 

Next we need a description of Q-functions in terms of standard tableaux. If 
T is a (shifted) standard tableau of size n, we say that j E {I, ... , n - I} 
is a descent of T if j + 1 appears in a lower row than j in T. The set of 
descents is denoted D(T). We say that j E {2, ... , n - I} is a peak of T if 
j - 1 is an ascent and j is a descent. The set of peaks we denote P(T). 

Given a set P {2, ... , n - I} (to be thought of as a peak set), we say that 
a sequence i l ::; i2 ::; ... ::; in is P-admissible if we do not have ij _ 1 = ij = ij +1 
for any j E P. Letting A(P) denote the set of P-admissible sequences, we 
define the shifted quasi-symmetric function 

(3.2) Iii 2 x· x· ···x· , 
II 12 In 

(il 
EA(P) 

where Iii denotes the number of distinct values ij in the admissible sequence, 
i.e., the number of distinct variables in the monomial. 

Proposition 3.2. The Schur Q-function Q)l is equal to the sum LT (X) , 
where T ranges over standard tableau of shifted shape f.1. 
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Proof Our argument is a routine one, involving subscripting the entries of each 
circled tableau to get a standard tableau, so we only sketch it. A similar proof 
of the analogous formula for Schur S-functions originated in unpublished work 
of I. Gessel. 

Given a circled tableau T, all entries t and i for any given i form a 
rim hook, not necessarily connected, with the t's occupying the vertical por-
tions and the i's occupying the horizontals. To obtain an underlying standard 
tableau, we distinguish all occurrences of t by subscripts , . .. , proceed-
ing downward by rows. In a similar fashion we distinguish occurrences of i 
proceeding to the right by columns. By this subscripting we totally order all 
entries of T; replacing them by the numbers 1 through n = I TI in the same 
order gives a standard tableau S(T). 

Given S(T) and the weight monomial XT, we immediately recover T, 
except for the circling. The entries of S(T) corresponding to t and i form 
a sequence which descends and then ascends, i.e., a sequence with no peak. 
Henceforth we refer to such a sequence as a vee. We must have t along the 
descending part of the vee and i along the ascending part. Only the circling at 
the 'valley' of the vee is undetermined. Thus there are 21il circled tableaux with 
this particular weight and underlying standard tableau, where Iii is the number 
of distinct indices in the weight monomial. Moreover, the combinations of 
standard tableau S and weight monomial Xi Xi ... Xi that occur are exactly 

I 2 n 
those where the sequence it ::; ... ::; in is admissible for the peak set P(S). 
This proves the proposition. 0 

Having completed our review of Q- and P-functions, we tum to the 
Edelman-Greene correspondences and associated Stanley functions. We treat 
Bn first since everything we need is proven in [9]; for Dn we will have to add 
something. 

Definition. A reduced word for an element W E Bn is a sequence a = at a2 ··· a, 
of indices 0 ::; ai ::; n - 1 such that w is the product of simple reflections 
(1 ••• (1 and 1 = I(w) is minimal. We denote by R(w) the set of reduced a l a, 
words for w. The peak set P(a) is the set {i E {2, ... ,1- I} I ai- t < ai > 
ai+ t }· 

Definition. Let P n denote the shifted 'staircase' shape (2n - 1 , 2n - 3, ... , 1) 
of size n2 • Let its comers be labeled 0, 1, . .. , n - 1 from the bottom row 
to the top. If T is a standard tableau of shape P n ' its promotion sequence 
p(T) is the sequence at'" an2 in which ai is the label of the comer occupied 

2 . 

by the largest entry of pn -1(T). Here the promotion operator p is defined as 
follows: to compute p(T), delete the largest entry of T, perform a (shifted) 
jeu-de-taquin slide into its cell, and fill the vacated upper-left comer with a new 
least entry. 

Since this definition is a bit complicated, we illustrate with a simple example. 
Taking n = 2, let T be the first tableau pictured below. Its promotions p(T) , 
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p2(T) , p3(T) are shown to its right, except we have suppressed the new entries 
that should fill the upper left. 

(3.3) ITIlliJ Dill] [Ill] [II] 
p p p 

Each ai is 0 or 1, according to which comer is occupied by the largest entry 
of p4-i(T). Note that the largest entry of p4-i(T) is i itself, so ai records 
the comer ultimately reached by entry i in the promotion process. Here the 
sequence a = p( T) is 0101. 

Proposition 3.3 (En Edelman-Greene correspondence). The map T fi(T) is 
a bijection from standard tableaux of shape P n to reduced words for the longest 
element Wo = T 2· .. "if of En. The initial segment a, ... ak of the reduced word 
fi(T) determines the initial segment Tlk containing entries 1 through k of T. 
Denoting Tlk by r(a, ... ak), the number 

(3.4) = I{a E R(w) I r(a) = S}I 

depends only on wand on the shape }l of S. Finally, we have P(a) = P(r(a)) 
for the peak sets. 
Proof All but the part about peak sets is proved in Proposition 6.1 and Theorem 
6.3 of [9]. For the peak set part it suffices to show P(T) = P(fi(T)) for T of 
shape P n. For a peak at position n2 - 1 , that is, involving the largest three 
entries of T, it is obvious that T has a peak if and only if fi(T) does. For 
other positions, the result follows because shifted jeu-de-taquin preserves the 
peak set of a tableau. 0 

Using Proposition 3.3 we can now introduce well-defined symmetric func-
tions associated with elements of B n • 

Definition. Let w be an element of Bn. The En Stanley function Fw(X) is 
defined by 

(3.5) Fw(X) = 
J1 

The following crucial identity is an immediate consequence of Proposi-
tions 3.2 and 3.3. 

Proposition 3.4. 

(3.6) Iii =" " 2 x· x· .. ·x·. L L 1112 II 
aER(w) (i1S···Sil) 

EA(P(a)) 

From (3.6) we obtain another important identity. 

Corollary 3.S. For all w, Fw(X) = Fw-l (X). 
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Proof Since Fw is a symmetric function, it is unaltered by reversing the indices 
of the variables. Therefore (3.6) is equal to 

(3.7) Iii 2 x. x· ···x., 
I[ 12 II 

aER(w) ... 
EA(P(a» 

where the admissibility condition on a decreasing sequence is just as before: 
no ij _ 1 = ij = ij +t when j is a peak. But then (it ... if) is admissible 
for Pea) if and only if the reversed sequence (if '" it) is admissible for 
P(aT ) , where aT is the reverse of a, i.e., a general element of R(w- t ). So (3.7) 
reduces to (3.6) for w- t • 0 

The situation for Dn is analogous to that for En' but requires some new 
information about the relevant Edelman-Greene correspondence. 

Definition. A reduced word for wED n is a sequence at a2 ... af of the symbols 
i, 1,2, ... ,n - I such that (Ja ···(Ja = wand I = I(w) is minimal. As 

[ I 

before, R(w) denotes the set of reduced words for w. A flattened word is a 
word obtained from a D n reduced word by changing all the i's to 1 'so The peak 
set Pea) is defined to be the peak set (in the obvious sense) of the corresponding 
flattened word. A winnowed word is a word obtained from a En reduced word 
by deleting all the O's. 

Definition. Let tS n denote the shifted 'staircase' shape (2n - 2, 2n - 4, ... , 2) 
of size n (n - 1). Let its comers be labeled 1, ... , n - 1 from the bottom row 
to the top. If T is a standard tableau of shape tS n ' its promotion sequence peT) 
is the sequence at ... an(n-t) in which ai is the label of the comer occupied by 
the largest entry of pn(n-t)-i(T). 

In [9] it is shown that T ....... peT) defines a bijection from standard tableaux 
of shape tS n to winnowed words for the longest element of En and conjectured 
that initial segments of peT) determine the corresponding initial segments of 
T. Here we extend these results by proving the conjecture just mentioned and 
relating the correspondence to D n • 

The first step is to identify both flattened words and winnowed words with 
words of a third kind. In what follows, flattened words and winnowed words 
are always for the longest element of Dn or En unless mention is made to the 
contrary. Recall that the longest element of Dn is = T 2" ... n if n is even, 
or 1 2" ... n if n is odd. 

Definition. A visiting word at ... an(n-t) is a sequence of symbols 1 a j < n 
such that 

(1) the product (Ja .•• (J is the identity in the symmetric group S ,and 
I an{n_l) n 

(2) for all k E {I , 2, ... , n}, there is a j such that (J ••• (J (1) = k. 
a[ aj 
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These conditions mean that as the adjacent transpositions (Ja 1 ' (Ja2 ' • •• are 
applied in succession, beginning with the identity permutation 1 2··· n , each 
of the numbers 1 through n visits the leftmost position at some point, and 
ultimately returns to its original position. Note that n(n - 1) is the minimum 
length for such a sequence, since each number has to switch places twice with 
every other. 

Proposition 3.6. The sets of visiting words, flattened words, and winnowed words 
of order n are all the same. 
Proof. Flattening or winnowing a reduced word gives its image under the natural 
homomorphism from Dn or Bn to Sn in which sign changes are ignored. In Dn 
and Bn , when the application of (Jj or (Jo to a (signed) permutation changes 
the sign of a number, that number must occupy the leftmost position before or 
after the sign change. From this it is clear that every flattened word and every 
winnowed word is also a visiting word. 

It is also clear that every visiting word is a winnowed word, since to un-
winnow it is only necessary for each k to insert a 0 at some point during 
which k occupies the leftmost position. 

The only difficulty is now to see that given a visiting word a, there is always 
D a way of changing some 1 's to 1 's to make a reduced word for Wo . To a 

we associate a graph G(a) with vertex set {I, ... , n} by introducing for each 
aj equal to 1 an edge connecting viI) and vj (2) , where Vj = (Ja 1 ••• (Jaj • 

In other words, applying the transpositions (J in succession, each time there ai 

is a change in the leftmost position we introduce an edge between the former 
occupant and its replacement. In general G(a) can have multiple edges, but 
not loops. 

Given a subset of the 1 's in a, there is a corresponding subset of the edges 
in G(a) , forming a subgraph H. If we change the 1 's in the given subset to 
i's, we get a word describing an element v E D n whose unsigned underlying 
permutation remains the identity. The sign of v(k) is negative if and only if an 
odd number of edges in H are incident at vertex k , since these edges represent 
the transpositions (Jj involving k . To un-flatten a, we need v = ; our word 
will automatically be reduced since its length is n(n - 1). Equivalently, we must 
find a function from the edges of G to Z2 such that its sum over all incident 
edges is 1 at every vertex, except possibly vertex 1. It is well known and easy 
to prove that a suitable function exists if G(a) is connected. 

For each i E {2, ... , n}, let h(i) be the number which i replaces on its 
first visit to the leftmost position. Note that i and h(i) are linked by an 
edge of G(a). Moreover h(i) makes its first visit to the leftmost position 
before i does, showing that the sequence i, h(i), h(h(i)) , ... never repeats 
and therefore ultimately reaches 1. This proves G(a) is connected. 0 

From the above proof we can extract something more. The un-flattenings of a 
given flattened word correspond to solutions of a system of n - 1 independent 
linear equations over Z2 in m variables, where m is the number of edges in 
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G(a). There are 2m -n+1 such solutions. More generally, the same reasoning 
applies to reduced words for an arbitrary W E Dn ' but with G(a) only having 
vertices for numbers that actually reach the leftmost position. This gives the 
following result. 

Proposition 3.7. If b is the flattened word of a reduced word for W E Dn , then 
the number of reduced words a E R(w) which flatten to b is 2m- k+l , where m 
is the number of 1 's in band k is the number of visitors to the leftmost position, 
i.e., the number of distinct values taken by (Jb ... (Jb (1) as j varies from 0 to 

I ) 

l(w) . 

Note that m - k + 1 is the number of repeat visits occurring as the transpo-
sitions (Jb are successively applied, i.e., the number of times an application of 
(JI moves' a number into the leftmost position which has been there before. In 
what follows, we denote the number of repeat visits by r(b) and the number 
k - 1 = m - r(b) of first visits by f(b). Abusing notation, we also write r(a) 
and f(a) for these when a is a reduced word flattening to b. 

To obtain a further corollary to the proof of Proposition 3.6, observe that the 
subgraph H can be chosen as a subgraph of any given spanning tree of G(a). 
Indeed, H will then be unique, since it will be given by k - 1 independent 
linear equations in k - 1 variables. In particular, the last paragraph of the 
proof shows that edges of the form (i, h(i)) corresponding to first visits form 
a spanning tree, proving the following. 

Proposition 3.8. If b is a flattened word for w, then there is a unique reduced 
word a for w with flattened word b, such that all the i 's in a correspond to 
1 's representing first visits in b. 

Now we come to the Dn analog of Proposition 3.3. 

Proposition 3.9 (Dn Edelman-Greene correspondence). The map T 1-+ p(T) is 
a bijection from standard tableaux of shape lJ n to flattened words for the longest 
element of Dn' The initial segment bl ··· bk of p(T) determines the initial 
segment Tlk containing entries 1 through k of T. Given a reduced word a 
with flattened word b, denote Tlk by r(a l ... ak ). Then the number 

(3.8) 11 = '"" 2-0 (a) ew , 
aER(w) 
r(a)=S 

where o(a) denotes the total number of 1 's and i's in a, depends only on w 
and on the shape J.l of S. Finally, we have P(a) = P(r(a)) for the peak sets. 
Proof The bijection is Theorem 5.16 of [9], since we now know that flattened 
words and winnowed words are the same. The peak set statement follows exactly 
as in the proof of Proposition 3.3 above. 

For the assertion about initial segments, we show that whenever be and be' 
are flattened words for the longest element, with common initial segment b, 
then e and c' are connected by a chain of Sn Coxeter relations. This given, 
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the proof of Proposition 6.1 in [9] applies, with one change. Namely, for the 
argument involving the Coxeter relation 121 +-t 212 to go through, when the two 
flattened words are b121 and b212, their corresponding tableaux must differ 
only in the largest three entries. But this is shown by the proof of Proposition 
5.15 in [9]. 

Now consider two flattened words be and be' . Treating them as winnowed 
words, note that a winnowed word can be canonically un-winnowed by inserting 
a 0 at the beginning, and after every 1 that represents a first visit. Since the 
presence of each 0 is controlled by the initial segment of the word up to that 
point, the words be and be' un-winnow to ad and ad' for some a, d, and 
d' whose winnowed words are b, e, and e' . Then d and d' are connected by 
a chain of Bn Coxeter relations, which after winnowing reduce to Sn Coxeter 
relations connecting e to e' . 

What remains is to show that the numbers don't depend upon the partic-
ular tableau S , only on its shape. Let Sand S' be elementary dual equivalent 
tableaux of shape J.l. Let a be a reduced word for w with rea) = S and let 
b be the corresponding flattened word. Note that S is really a function of b 
and is the initial segment of any tableau corresponding to an extension of b. 

By Lemma 5.2 of [9], if we extend S to a tableau T of shape on' and 
let T' be the corresponding extension of S' , then peT) and p(T') differ by 
a certain substitution in the positions corresponding to the segment involved 
in the elementary dual equivalence S S'. The complete list of possible 
substitutions is given in Table 5 of [9]. 

All but two of these substitutions are special cases of Sn Coxeter relations 
other than 121 +-t 212. It is easy to see that whenever b is a flattened word 
for wand b' differs from b by any Sn Coxeter relation besides 121 +-t 212, 
then b' is also a flattened word for wand feb') = feb) . 

The two remaining substitutions are 1121 +-t 1212 and 1211 +-t 2121. For 
these pairs it is again easy to see that if a flattened word b for w contains 
one of the pair, substituting the other yields another flattened word b' for w. 
Furthermore, we have feb) = feb') , for the second of the consecutive l's in 
1121 or 1211 never represents a first visit, while the other two bring about 
visits by the same two numbers as do the two l's in the substituted 1212 or 
2121. 

Summarizing, we have bijections between flattened words b for w with 
reb) = S and words b' with reb') = S' , and these bijections preserve the 
number of first visits. Since 2r (b) reduced words for w correspond to each 
flattened word b we find that the sum 

(3.9) L l(b) = L 2-r(a)(/(a) 

bEF(w) aER(w) 
f(b)=S f(a)=S 

is not changed by replacing S with S'. Here F(w) denotes the set of flat-
tened words for w. Since all tableaux of shape J.l are connected by chains of 
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elementary dual equivalences, (3.9) depends only on wand f.l, and hence so 
does (3.8), by setting t = 1/2. 0 

Now we have the Dn analog of (3.5). 

Definition. Let w be an element of Dn. The Dn Stanley function Ew(X) is 
defined by 

(3.10) Ew(X) = 
jl 

Just as for Bn ' we immediately obtain an identity from Propositions 3.2 and 
3.9, and the corresponding corollary, with the same proof as Corollary 3.5. 

Proposition 3.10. 

(3.11 ) 

E (X) = '"' 2-o(a)el (w)(X) 
w L Pta) 

aER(w) 

=2: 
aER(w) (il 

EA(P(a)) 

Corollary 3.11. For all w, Ew(X) = EW-l (X). 

Although the coefficients need not be integers, it is nevertheless true that 
Ew (X) is an integral linear combination of P-functions, as we show next. 

For this purpose we must extract a concept which is implicit in the proof of 
Proposition 3.9. We define flattened words band bl to be dual equivalent if 
they are connected by a chain of substitutions from Table 5 of [9]. The proof 
of Proposition 3.9 shows that band b' are then flattened words for the same 
elements w, and that the map r is a bijection from each dual equivalence 
class to the set of all standard tableaux of some shape f.l. Moreover, f(b) is 
constant on dual equivalence classes. 

Proposition 3.12. The Stanley functions Ew(X) are integral linear combinations 
of Schur P-functions. 
Proof This amounts to saying that 2/(jl) is an integer. Since is given by 
(3.9) with t = 1/2, and (3.9) is a polynomial with integer coefficients, it suffices 
to show that l(f.l) 2: f(b) for every flattened word b such that r(b) has shape 
f.l. 

Since both f.l and f(b) are constant on dual equivalence classes, we can 
assume that r(b) is the tableau To formed by numbering the cells of f.l from 
left to right, one row at a time. The peaks of To occur at the end of each row 
except the last, so IP(To)1 = IP(b)1 = I(f.l) - 1 . For any flattened word, we have 
f(b) :s IP(b)1 + 1, since each first visit is represented by a 1 in b, no two of 
these 1 's can be consecutive, and between every two non-consecutive 1 's there 
is at least one peak. This shows f(b) :s I (f.l) , as required. 0 

To close, we evaluate Ew and Fw for some special values of w. 
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Proposition 3.13. Let fi = (fi l > ... > fit), where fit is taken to be zero if 
necessary to make the number of parts even. Let vi = fii + 1 and let w = 
vI V2 '" v t 12.·· . Then Ew(X) = P)l(X), 
Proof Our method is to give an explicit description of the reduced words for 
wand compute Ew directly. In order to do this, we introduce a new bijection 
¢ , different from r, from reduced words for w to standard tableaux of shape 
fi· 

For any element v of D n the inversions of v are (1) pairs i < j for which 
v(i) > v(j) ; (2) pairs i < j for which the larger in absolute value of v(i) and 
v(j) is negative. (A pair can count twice, once in each category.) The length 
I (v) is the number of inversions. In particular, we have I (w) = lfi I since there 
are no inversions of type (1) and each i, 1 :S i :S I , is involved in fii inversions 
of type (2). Let m = lfil = I(w). 

We now claim that a = a l a2 •.. am is a reduced word for w if and only if 
at every stage j, applying aa j to the signed permutation aa 1 ••• aa j _ 1 does one 
of two things: 

(1) moves one of the numbers vk which is still positive at this stage to the 
left across a number which is not a positive vi' or 

(2) if the smallest two currently positive v;'s occupy positions 1 and 2, 
applies ai to exchange them and make them negative. 

To justify the claim, we note first that such a sequence of operations clearly 
realizes w after m steps, hence a is a reduced word for w . To see that every 
reduced word for w has this form, it is only necessary to check that the form is 
preserved when a is modified by any Dn Coxeter relation. For this, note that 
Coxeter relations of the form aba ...... bab with a, b adjacent never apply, nor 
does 1 i ...... i 1. For all others, of the form ac ...... ca with a, c non-adjacent, 
the verification is trivial. 

Now, given a reduced word a for w, let v· = a ... a . Let k. be the 
} } 

number of vi'S which appear with positive sign and not in position 1 in the 
signed permutation vj , and let Aj be the partition whose parts are one less 
than the positions of these vi'S, a partition with k j distinct parts. Observe that 
in passing from Vj to Vj+1 by move (1) or (2) above, exactly one part of Aj 

is reduced by 1 to give Aj +1 ' and the available choices for a move correspond 
one-to-one with the comers of the Ferrers diagram of Aj • Also observe that 
AO = fi· Therefore the sequence of shapes 0 = Am CAm_I C ... C AO = fi 
describes the initial segments of a unique standard tableau ¢(a) of shape fi, 
every standard tableau occurs, and the tableau contains sufficient information 
to reconstruct the sequence of moves and thus a. This shows ¢ is a bijection 
from reduced words for w to standard tableaux of shape fi. 

Note that m - j is a descent of ¢(a) if and only if the move made at stage j 
occurs to the left of the move made at stage j + 1 . This shows that the descent 
set D(¢(a)) is the same as that of the reversed reduced word a' = amam_1 ..• a l • 

Hence their peak sets are also equal. Note also that each reduced word contains 
a total of II's and i's, all representing first visits, so there is one reduced word 
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per flattened word, or in other words, the flattenings of the reduced words are 
all distinct. 

Formula (3.11) for EW-l thus reduces to 

(3.12) 2-/ L 
shT=J1. 

which is PJ1.(X) by Proposition 3.2. Since Ew = Ew-l by Corollary 3.11, the 
proof is complete. 0 

Proposition 3.14. Let J..l = (J..ll > ... > J..l/) and let w = J..l 1 J..l2··· J..l/12.·· . Then 
Fw(X) = QJ1.(X), 
Proof Since the argument here is virtually identical to that used for the preced-
ing proposition, we only give a sketch. 

Again we have l(w) = 1J..l1 by straightforward considerations. (Inversions for 
Bn are the same as those for Dn , plus one for every negative v(i).) 

In this case the allowable "moves" associated with a reduced word are: 
(1) move a currently positive J..lk left across anything except a positive J..l i , 

or 
(2) if a positive J..l i occupies position 1, apply 0"0 to change its sign. 
The tableau ¢(a) is formed from a sequence of shapes Aj exactly as before, 

except now the parts of Aj are the positions of all the positive J..l/s (including 
in position 1, and without subtracting one). This ¢ is a bijection exactly as 
before, and again we have P(¢(a)) = P(a'). Hence using formula (3.6) for 
FW-l , Proposition 3.2, and Corollary 3.5, we find Fw ;:::: QJ1. as asserted. 0 

For our remaining special case computations we require some facts about the 
un shifted Edelman-Greene correspondence. 

Definition. Let an denote the straight (i.e., not shifted) staircase shape (n-
1 , n - 2, . .. , 1) , of size m. Let its comers be labeled 1, 2, . .. , n - 1 from 
bottom to top. If T is a standard tableau of shape an' its promotion sequence 
p(T) is the sequence a 1 •.. am in which ai is the label of the comer occupied 

by the largest entry of pm-i(T). 

Proposition 3.15 (Edelman-Greene correspondence). The map T -> p(T) is a 
bijection from standard tableaux of shape an to reduced words for the longest 
element of Sn' The initial segment a 1 ... ak of p(T) determines the initial seg-
ment Tlk containing entries 1 through k of T. Denoting Tlk by r(a1 ••• ak), 
the number 

(3.13) A gv = I{a E R(v) I r(a) = S}I 

depends only on v and on the shape A of S. We have D(a) = D(r(a)) for the 
descent sets. 
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Definition. Let v be an element of Sn. The Stanley function Gv(X) is defined 
by 

(3.14) Gv(X) = L g:s;.(X) , 
A 

where SA denotes the usual Schur S-function. 

Proposition 3.15 is proved in [9], where it is also shown that the above def-
inition of Sn Stanley functions agrees with the original definition in [17]. (In 
[17], and also in Chapter 7 of [13], where Gv is shown to be a 'stable' Schubert 
polynomial of type A, Gv and are denoted Fv and a(A, v).) 

Now we can express the functions F Band E Vv' for v E Sn ' in terms of wov Wo 
the quantities just defined. 

Proposition 3.16. Let and Vo be the longest elements of Bn , Dn , and 
Sn' respectively. Let Jk denote the partition (k, k - 1, ... , 1). Then we have 
for every v E Sn 

( 3.15) 

(3.16) 

Equivalently, F Band Ewvv are the images of Gv v under linear transforma-
Wo v 0 0 

tions sending Schur functions SA to Qo +A and Po +A' respectively. 
n n-l 

Proof Fix a reduced word c for V-I. Then the reduced words for vov are 
exactly the initial parts a of those reduced words ac for Vo which end in c. 
Similar statements apply with and in place of vo. 

From this observation and Proposition 3.15 it follows that v is equal to the 
o 

number of tableaux S of skew shape 0: IA for which peS) = c. Similarly, fll-B 
n WoV 

is the number of tableaux T of shape Pnlf.l for which peT) = c. But there 
are no O's in c, and therefore fll-B is non-zero only if the shape f.l contains 

WoV 
the corner with label 0, that is, if f.l = In + A for some A. In this case, the 
rules for computing peS) and peT) are identical, showing that t"n+A = v . 

Wo v 0 

This proves (3.15). 
For (3.16), we need 2n - 1e\-I+A = l and ell- v = 0 if f.l is not of the 

Wo v VoV Wo v 

form I n- 1 + A. Since is negative for all k E {2, ... , n}, we 
have f(a) = n - 1 for all a E In the proof of Proposition 3.12 we 
showed that feb) :::; l(f.l) whenever reb) has shape f.l. This shows <vv is 

o 
non-zero only for f.l of the form In_1 + A. Moreover, using the left-hand side 
of(3.9) with t= 1/2 to evaluate ell-v , we find that 2n- I ell- v isthenumberof 

WoV WoV 
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flattened words b for v with reb) = S , for any given tableau S of shape 
fl· 

If b is a flattened word for v , then be is clearly a flattened word for 
Every element of Sn has a reduced word containing at most one I, so 

we may choose e with this property. For such e, we claim the converse holds: 
if be is a flattened word for , then b is a flattened word for v. This 
amounts to saying that be can be un-flattened without changing any 1 's in e 
to i's. If there are no 1 's in e, this is trivial. If there is a single 1, then 
it is the last 1 in the visiting word be, corresponding to the transposition 
moving 1 into the leftmost position for the last time. As such, it represents a 
repeat visit, so Proposition 3.8 shows we can un-flatten be without changing it 
to a i. 

In view of the claim just proven, Proposition 3.9 shows that 2n- 1 e)1 D is 
wov 

equal to the number of tableaux T of shape 0 n I fl for which p (T) = e. Exactly 
as in the argument above for Bn ' this is the same as g: v for fl = t5n- 1 +).. D 

o 

We give one final special case evaluation for its inherent interest, even though 
we will not need it later. 

Proposition 3.17. Let ¢ be the homomorphism from the ring of symmetric func-
tions onto the subring generated by odd power sums defined by 

(3.17) ¢(Pk) = {20Pk for k odd, 
for k even. 

Then for v E Sn' we have 

( 3.18) 

and ifin addition v(l) = 1, 

( 3.19) 

Proof If a is a reduced word for v E Sn' let us denote the corresponding 
tableaux rea) under the An' B n , and Dn Edelman-Greene correspondences 
by r A(a), r B(a) , and r D(a). It is easy to show that r B(a) and r D(a) are both 
identical to the tableau obtained by bringing rA(a) to normal shifted shape via 
shifted jeu-de-taquin. Hence for S of shape fl, ft = I{a E R(v) I rB(a) = 
S}I = 2:;. kf g: ' where kf is the number of standard tableaux of straight shape 
A. carried by shifted jeu-de-taquin to any given tableau of shifted shape fl. 

In [20] it is shown that ¢(s;.) = 2:)1kfQ)1' Equation (3.18) follows immedi-
ately. Equation (3.19) follows because when v( 1) = 1 , there are no 1 's in any 
reduced word for v, and therefore < = ft. D 

4. PROOFS OF THE MAIN THEOREMS 

In this section we prove Theorems 1 through 4. Our central results are con-
tained in Theorems 3 and 4. Below we have split each theorem into three 
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separate statements, labeled A, B, C. Theorems 3A and 4A are the promised 
formulas for Schubert polynomials. Parts Band C are the additional results 
that the Schubert polynomials form a Z-basis for the relevant ring and that 
they reduce to Schur P- and Q-functions in the special cases corresponding 
to Schubert classes for isotropic Grassmannians. We conclude the section with 
some auxiliary results useful for computing Schubert polynomials of type C 
and D, as well as tables for the groups B3 and D3 . 

Theorem 1. Solutions of the defining equations for each type of Schubert polyno-
mial exist and are unique. 
Proof The existence follows from Theorems 2, 3A, and 4A. To show unique-
ness, let {Sw} be a family of polynomials satisfying the defining recurrence 
relations (2.2), (2.3), or (2.4), together with the constant term conditions. Sup-
pose is another solution. For each i, 

(4.1 ) a. S - S = I I I ( , ) {Sw(] - if l(wa) < l(w), 
I W W 0 if l(wai) > l(w). 

By induction on the length of w, we may assume SW(] - = O. Then 
ai(Sw - = 0 for each i, so Sw - is invariant the ;elevant group 
Soc' Boc ' or Doc' The only Soc invariants in Q[ZI' z2' ... ] are constants, 
as are the Boc or Doc invariants in Q[ZI' z2' ... ; PI' P3' ... ], because the 
even power sums are missing. Hence Sw - is constant, so Sw = by the 
constant term conditions. D 

Theorem 2. The Schubert polynomials of type A are the same as those defined 
by Lascoux-Schiitzenberger [12]. Namely, for each w E Sn' 

(4.2) 

where a l a2 •• 'a, E R(wow- I ) and Wo = (n, n - 1, ... ,1) is the permutation 
of longest length in Sn' 
Proof In [12] it is shown that 6 w is well defined by (4.2), independent of n, 
and satisfies the defining recurrence (2.2). For complete details, see Chapter 4 
of [13]. D 

Theorems 3A and 4A involve 'admissible monomial' forms of formulas (2.5) 
and (2.8), derived from formulas (3.6) and (3.11) and the admissible monomial 
formula for type A Schubert polynomials, (4.5) below. In order to distinguish 
between two notions of admissibility we will make the following conventions. If 
a = a l a2 •·• a, is a reduced word for an element w E Boc or Doc' we let 
denote the set of admissible monomials xC> = X;2 . , = Xi Xi '" Xi ' 

I 2 , 

such that (il i2 '" if) E A(P(ar )) , where ar is the reversed sequence 
a,'" a2a l , Equivalently, consists of monomials xC> = xiI'" Xi, for 
which 

(1) j I ? j2 ? .. , ? j, ' 
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(2) i k - I = i k = i k+1 implies k tj. P(a) . 
By Corollary 3.5 we have for WEEn' 

(4.3) Fw(X) = L 2i("')X"' , 

aER(w) 
xUE.w:,(a) 

467 

where i(a) is the number of distinct variables with non-zero exponent in x'" . 
By Corollary 3.11, we have 

(4.4) Ew(X) = L 2i (",)-o(a)x'" 

aER(w) 
xOE.w:,(a) 

for each wED n . 

If a = a1a2 ··· a/ is a reduced word for WE Sn' we let denote the set 
of monomials z'" = Zit··· Zit satisfying the following admissibility constraints: 

(1) i l 50i2 50···50i/, 
(2) ii = ii+1 implies ai > ai+1 ' 
(3) ii 50 ai for all i. 

Proposition 4.1 ([3]). For all W E Soo ' 

(4.5) 6 w (zl' z2' ... ) = L z'" 
aER(w) 

Theorem 3A. The Schubert polynomials <!:w are given by the two equivalent for-
mulas: 

(4.6) 

(4.7) 

<!: = w 
UV=w 

/(u)+/(v)=/(w) 
VESco 

Theorem 4A. The Schubert polynomials 1) ware given by the two equivalent 
formulas: 

(4.8) 

(4.9) 

1) = w 
UV=w 

/(u)+/(v)=/(w) 
VESco 

We prove several lemmas before proving Theorems 3A and 4A. 
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Lemma 4.2. For any f and g, and any i, we have 

(4.10) 

Proof Expand both sides and observe they are equal. 0 

Lemma 4.3. Let W denote any of the groups Soo' Boo' or Doo. Let Gu(Z) be 
arbitrary symmetric functions indexed by elements u E Wand define 

(4.11) H = 
W 

UV=W 
/(u)+/(v)=/(w) 

vESoo 

Then for all i > 0 and w E W, 

(4.12) oR = {Hwu j ifl(wa) < I(w), 
I W 0 ifl(waJ > I(w). 

Proof For i > 0, the operator OJ commutes with multiplication by the sym-
metric function Gu(Z). Hence, 

( 4.13) 

( 4.14) = 

uV=W 
/(u)+/(v)=/(w) 

vESoo 

uV=W 
/(u)+/(v)=/(w) 

vESoo 
/(vuj)</(v) 

by the defining recurrence for the Schubert polynomials 6 w . 
If l(waJ > I(w), then the conditions uv = w, I(u) + I(v) = I(w), v E Soo' 

and I(va j ) < I(v) are never satisfied, so (4.14) is equal to zero. 
On the other hand, if l(waJ </(w), then the map (u, v) t-+ (u, vaj ) is 

a bijection from all (u, v) such that uv = w, I(u) + I(v) = I(w), v E Soo ' 
I I ' , " I' I' I and (va j ) < (v) to all (u , v ) such that u v = wa j , (u) + (v) = (waJ, 

v' E Soo. Therefore (4.14) is Hwu. 0 
I 

From here out, symmetric functions in X depend only on odd power sums 
and really represent symmetric functions in Z via the relation Pk(X) = 
-Pk(Z)/2. 

Lemma 4.4. For any symmetric function G(X) belonging to the ring generated 
by odd power sums, we have 

( 4.15) 

( 4.16) 

aoG(X) = G(z) + X), 

o G(X) = G(X) - G(z) + X) 
o 2' - z) 

where G(z) + X) = G(z), x)' x 2 ' ••• ). 
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Proof Because ao is a ring homomorphism, it suffices to verify (4.15) for 
G(X) = Pk(X) , an odd power sum. 

1 
aoPk(X) = -"2aoPk (Z) 

1 
= -"2Pk( -Zl ' Z2' ... ) 

( 4.17) k 1 
= zl - "2Pk(Zl' z2' ... ) 

k 
= Z, + Pk(X) 
= Pk(Zl + X). 

Equation (4.16) follows from (4.15). 0 

We will not be using the next corollary for the proofs that follow. However, 
it is useful for computing tables of Schubert polynomials. 

Corollary 4.5. The action of 80 on QJ.I(X) is given by 

( 4.18) 

Proof QJ.I belongs to the ring generated by odd power sums, so Lemma 4.4 
applies. We have QJ.I(ZI + X) = Q;.(z,)QJ.I/;'(X) , where QJ.I/). for a skew 
shifted shape is given by the obvious extension of Proposition 3.2. The factor 
Q;. (z,) is equal to zero unless A. = (k) is a one row shape, in which case it is 
equal to 1 if k = 0 and if k > o. Therefore, 

( 4.19) 

which simplifies to (4.18). 0 

Definition. A reduced word a = a1 a2 •.• a, and monomial XO E will 
be referred to as a reduced word admissible monomial pair, and denoted by 
(:a). Similarly, [:r] will denote a reduced word admissible monomial pair if . 
zY 

The notation is merely a bookkeeping device to exhibit the reduced word as-
sociated with a particular term. By our convention, when these symbols appear 
in a polynomial the value of (:a) is XO • We multiply the symbols by concate-
nating the reduced words and multiplying the monomials. Note the use of the 
notation [:r] implies that 0 and i do not appear in the reduced word c, by 
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the definition of With this notation, (4.7) becomes 

(4.20) Q: = 2i(a) ( a ) [ b ] 
w x a zP 

abER(w) 
zP ENz(b) 

(4.21 ) 

'" 
Here the symbol L indicates that the sum ranges over all possible admissible 
monomials for each a and b. 

Lemma 4.6. For any reduced word admissible monomial pair [:?], where zY = 
Zil ... , we have 

( 4.22) 
YI odd, 
YI even. 

Proof Equation (4.22) follows immediately from the definition 80 f = 
(f-(Jof)/(-2z l ). 0 

Recall that a sequence bl > b2 > ... > bj < ... < bk having no peak is said 
to be a vee. 

Lemma 4.7. For all u E Boo' 

8 F (X) = 2i(a) ( a ) ( b ) o u Z XU zk, 
I abER(u) I 

(4.23) 

k>O 

where the notation signifies that a and b range over reduced word admissible 
monomial pairs such that ab E R(u) and b is a vee of length k > O. 
Proof By Lemma 4.4, 
(4.24) 

8 F (X) = Fu(X) - Fu(ZI + X) 
o u -2z 

I 

(4.25) = [ t 2i(Y) (:Y) - t 2i(a)+Xk (;u) (:k)], 
I cER(u) abER(u) I 

where Xk is 1 if k > 0 and 0 otherwise. In the second sum a and b range 
over all pairs such that ab E R(u) and b is a vee; k is the length of b. Note 
that the requirement that b is a vee is implicit in the use of the symbol 

Zl 

The terms in the first sum are just the terms with k = 0 in the second sum. 
Hence 

( 4.26) 8 F (X) = _1 2i (a)+1 ( a ) ( b ) o u 2z x a zk, 
I abER(u) I 

k>O 

which is the same as (4.23). 0 
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Lemma 4.8. Let (!:w denote the polynomial defined by (4.6) and (4.7). For all 
WE Boo' 

(4.27) 8o(!:w =: t 2i ("') (:"') [b l b2 [ZY2 ... ] , 
I abcER(w) ZI I 2 3 

bk=O 

where the notation implies the restriction bl > b2 > ... > bk = 0 and b = 
bl b2 ... bk has length k > o. 
Proof From the definition, we have 

(4.28) 

By Lemma 4.2, we can expand (4.28) as the sum of two polynomials. The 
first term of (4.10) yields 

(4.29) 

t (80Fu(X))(ao[;y]) 
l(u)+l(;;)=l(w) cER(v) 

vES"" 

(4.30) 

(4.31 ) 

The second term of (4.10) yields 

(4.32) 

(4.33) 

Next we examine the coefficient CA of the general term 

(4.34) 
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in the sum of (4.31) and (4.33). Here the bracket () denotes the entire fac-
tor involving ZI' for which b is, in general, a vee followed by a decreasing 
sequence. From (4.31) there is a contribution of (-1/'1 = (-1 )m-k to C A for 
every k such that 

(4.35) (b l bm ) = (b l bk ) J ' 

i.e., such that bI ••• bk is a vee, bk+1 > ... > bm and bm =f:. 0 unless k = m. 
From (4.33) there is a contribution of -1 provided bl > ... > bm , m is odd, 
and bm =f:. O. 

We need to verify that CA = 0 unless bl > ... > bm = 0, and then CA = 1. 
Case 1: bm =f:. O. First assume there is an index i such that bi < bi+1 ' and 
choose i to be as large as possible. Then (4.31) contributes two terms, for 
k = i and k = i + 1 , which cancel, while (4.33) contributes nothing. 

Otherwise, assume bl > b2 > ... > bm > O. For each 1 k m, 
there is a contribution of (_I)m-k from (4.31). If m is even, then CA = 
L:;=I(_I)m-k = O. If m is odd there is also a contribution from (4.33) so 
CA = -1 + L:;=I (-1 )m-k = O. Therefore, every term A with bm =f:. 0 has 
CA =0. 
Case 2: bm = O. In this case, the only contribution is from (4.35) with k = m, 
i.e. (b1oo!m) = (b1oo!m). Hence CA = 1. Furthermore, b must be a vee so we 

ZI ZI 

have bl > b2 > 0 • 0 > bm = O. 0 

Pro%/Theorem 3A. Formulae (4.6) and (4.7) are equivalent by (3.6) and (4.5). 
To prove they give the Schubert polynomials, we take them for the moment as 
the definition of Itw and show that Itw satisfies the recurrence 

(4.36) 
I(WG) < l(w), 

l(wG) > l(w), 

for all i 2: O. For i > 0 we already have the recurrence by Lemma 4.3. Clearly, 
the constant term of Itw is 0 if w =f:. 1 and Itl = 1 . 

It remains to prove (4.36) for i = O. By Lemma 4.8, 

(4.37) 80ltw =: t 2i (a) (:a) [bl b2 [ZY2 0 0 oJ . 
I abcER(w) ZI I 2 3 

bk=O 

The admissibility of the monomial 0 o' implies each letter ci > I , hence 
GOGe 000 Ge = Ge 0.0 Ge Go' Hence, (4.37) is equal to 

I m I m 

(4.38) 
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If l(wao) > l(w), the summation is empty, while if l(wao) < l(w), it becomes 

(4.39) 

which is (two:. D 
o 

The Schubert polynomials of type B are defined by = rS(W)(tw. Since 
every reduced word for w E Boo contains s(w) O's, it is easy to see that the 
polynomials satisfy (4.36) with 0: in place of 00 . 

We tum now to type D Schubert polynomials. Reduced words for elements 
of D 00 use the alphabet {I, 1, 2, ... }. Our notation [:y] does not allow 
ci = 1. Let us introduce a second notation [:y]" which allows ci = 1 but 
not C i = 1 , and requires z"l E (c) where c is the word c with 1 's and i's 
interchanged. Note that [:y]" is a reduced word admissible monomial pair if 
and only if [:y] is. 

Lemma 4.9. Let flw denote the polynomial defined by (4.8) and (4.9). For all 
WE Doo ' 

(4.40) 

Proof We have 

(4.41 ) 

(4.42) 

by Lemma 4.4. Expanding Eu(ZI + X) in monomials by Proposition 3.10 we 
get 

( 4.43) 

aoflw = t (_1)"11 i(a)-o(a)+Xk-o(b) (:a) (:k) [:"1] 
abcER(w) 1 

L (-1 )"11 2i(a)-o(a)+Xk -o(bl"""bk) 

abc'ER(w) 

. (:a) e1 bk ) [bk+lZ";:" bm] ... J ' 

where m = Y1 + k and Xk = 1 if k > 0 and 0 otherwise. 
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We need to determine the coefficient C A of the general term of (4.43) 

(4.44) A = 2i(<»-o(a) (:<> ) (b l bm ) Z13 .. J 
There is a contribution of 2Xk - O(b\ ... bk )(_1)m-k to CA for each k such that 

( bl ... bm) = (b l ... bk) [bk+1 ... bm] 
zm zk zk+I' 

I I I 

(4.45) 

i.e., such that bl ... bk is a vee, bk+1 > ... > bm , and bm =1= i unless k = m. 
Case 1: bm =1= 1 or i. First, assume there exists an index i such that bi < 
bi+1 and choose i to be as large as possible. Then there are two possi-
bilities for k in equality (4.45), namely k = i and k = i + 1. Therefore, 
CA = 21- o(b\ . ..b;) [(_l)m-i + (_l)m-i-l] = o. 

Otherwise, bl > b2 > ... > bm > 1. For each 0 S k S m, there is a 
contribution to CA ; k = 0 contributes (_l)m and each 0 < k S m contributes 
2(_1)m-k. Thus, CA = (_l)m + E;=1 2(-1)m-k = 1. 

Case 2: bm_1 bm = i 1 or 1 i. These terms come in pairs since 0"1 and O"j 

commute. For bm_ 1 bm = ii, there are two possibilities, k = m - 1 and k = 
m, giving CA = -i. For bm_lbm = 1 i we must have k = m, giving CA = i. 
Both terms have the same underlying monomial so their net contribution to 
O"o:!> w is zero. 
Case 3: bm = 1 and bm_1 =1= i. If bl ... bm_1 has an ascent, say bi < bi+1 ' 
then CA = 0 as in Case 1. Otherwise, if bl > b2 > ... > bm_1 > 1, then for 
k = 0, k = m, and 0 < k < m there are contributions of (_l)m, 1 , and 
2(_1)m-k respectively. Hence, CA = (_l)m + 1 + E;:/ 2(_1)m-k = o. 
Case 4: bm = i and bm _ 1 =1= 1. For this case, we must have k = m. We must 
also have bl > b2 > ... > bm_1 since b = bl ... bm must be a vee and bm = i 
is its least element. Therefore o(b) = 1 and CA = 1. 

Summarizing, there is a coefficient CA = 1 for each A with b l > ... > bm 
and bm =1= 1 , and there is a net contribution of zero from all other terms. The 
terms with CA = 1 are precisely those of the form 

(4.46) 

proving (4.40). 0 

Corollary 4.10. For all W E Doo ' 

(4.47) 

where iiJ is the image of w under the involution of D 00 given by interchanging 
0"1 and O"j. 
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Proof. By Lemma 4.9, 

( 4.48) ao:Dw = t 2i(a)-o(a) (:a) [Zbkr [ZY2 ... J 
abcER(w) 1 2 Y3 

t i(a)-o\a) ) [;k J [ZY2 ... J 
abcER(w) , 2 Y3 

(4.49) 

(4.50) = 0 w 

Proof of Theorem 4A. Formulas (4.8) and (4.9) are equivalent by Proposi-
tion 3.10 and Proposition 4.1. To prove they give Schubert polynomials of 
type D, we take them for the moment as the definition of :Dw and show that 
:D w then satisfies the recurrence 

(4.51 ) 0.:D = {:DW(Ji' 
I W 0, 

l(wa) < l(w), 

l(wa) > l(w), 

for all i E {i, 1, 2, ... }. For i -=f. i we already have the recurrence by 
Lemma 4.3. The constant term of :Dw is ° if w -=f. 1 and :D, = 1. 

It remains to prove (4.51) for i = i. We shall take advantage of the symme-
try between the generators a, and aj. A simple computation shows 

f-a-f 
(4.52) aoo, aof = oJ = '. -z, - z2 

Therefore, by repeated use of Corollary 4.10 and Lemma 4.3, 

OJ:Dw = aoo,ao:Dw 

= aoo,:Dw 

( 4.53) { :Dw(J , 
= ao I 

0, 

= {:DWl1J' 
0, 

l(wa,) < l(w), 
l(wa,) > l(w), 

Theorem 3B. Given a partition f1 with distinct parts. let w = f1, f12 ... f1[12· ... 
Then we have 

(4.54) 

Proof. Given w = 7T; f12'" f1[12· .. , the only element v E Soo such that 
uv = wand l(u) + l(v) = l(w) is v = 1. Therefore <tw = Fw ' and by 
Proposition 3.14 Fw = QJI.' By definition = 2-S (W)<tw where s(w) is the 
number of signs changed by w. Hence, = 2-[ QJI. = PJI.' 0 
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Theorem 4B. Given a partition Ji with distinct parts, let vi = 1 + Jii ' taking Ji, = 
o if necessary to make the number of parts even. Then for w = ZI\ V2 •.. v,12 ... , 
we have 

(4.55) 

Proof As in the previous theorem, :Dw = Ew and Ew = Pfl by Proposi-
tion 3.13. 0 

Next we show that the polynomials lBw' <!:w' and :Dw are integral bases of 
the rings in which they lie. We do this by identifying their leading terms with 
respect to an appropriate ordering. 

Definition. Given two shifted shapes A. and Ji and two compositions a = 
(ai' a2 , ••• ) and P = (PI' P2 ' ••. ) with m = E a i and n = E Pj , we say 
ZO Q;. < zP Qfl if any of the following hold: 

(1) m < n. 
(2) m = n and a <, P in reverse lexicographic order. 
(3) a = P and A. < Ji in an arbitrarily chosen total ordering. 

Reverse lexicographic order means a <, P if a i < Pi for some i and a, = P, 
for all I> i. 

Definition [13]. Given w E Sn' for each i 2: I let ci(w) = IU I 
j > i and w (j) < w (i) } I. The composition 

(4.56) 

is the code of w . 

Lemma 4.11. Under the ordering <, the leading term of 6 w is distinct for each 
w E Soo and is given by zc(w) . 
Proof The lemma follows by induction from the transition equation for Schu-
bert polynomials of type A, formula (4.16) of [13]. 0 

Lemma 4.12. For every monomial zUQfl there is a unique w E Bx such that 
zUQfl is the leading term of <!:w under the ordering < defined above. For this 
same w, ZU Pfl is the leading term of 23w . 
Proof Let w = w(l)w(2)··· w(n) in one line notation. Let Uw be the increas-
ing arrangement of the numerals w(I), w(2), ... ,w(n), and let Vw = u:lw. 
Then I(uw) + I(vw) = I(w) and I(vw) > I(v) for any other v E Soo such that 
uv = wand I(u) + I(v) = I(w). Therefore, the leading term of <!:w comes 
from the expansion of Fu 6 v ,by Theorem 3A. 

Let Ji be the shape that <!: = F = Q . This shape Jiw exists by w Uw Uw J.lw 

Theorem 3B. By Lemma 4.11, zc(vw ) is the leading term of 6 v . Therefore, 
w 

ZC(vw) Qflw is the leading term of <!:w . 
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Given any zo.QIJ.' let v E Soo be the unique permutation such that c(v) = a. 
Define u E Boo by u = P,I P,2··· p,/12 ... . Then for w = uv E Bn , Uw = u 
and Vw = V, so <tw has zo.QIJ. as its leading term. This w is unique since P, 
determines Uw and a determines vw • 

From the description of u we see that sew) = l(p,) , so the leading term of 
<n 2-s(w)".. o.p 
:.ow = "'It! IS Z IJ.. 0 

Lemma 4.13. For every monomial zo. QIJ. there is a unique WED 00 such that 
zo.QIJ. is the leading term of i)w under the ordering> defined above. 
Proof The only difference between this proof and the previous one is the com-
putation of the leading term. Given w = w (I) ... w (n) E D n ' again let Uw be 
the increasing rearrangement of the w(i), so Uw = VI v2 ··· v/12··· for some 
partition v. Let Vw = The leading term of i)w is zc(vw ) PIJ. where 
p, = (VI - 1, v2 - I, ... ,v/- I). 0 

Lemma 4.14. The Schubert polynomials IBw lie in the ring Z[ZI ' Z2' ... ; PIJ.1. 
Proof Consider a general term (:0) [:y] occurring in <tw ' where ab E R( w) . 
There are s( w) O's in a, with at least one peak between each consecutive 
pair of them. This forces xo. to contain at least s( w) distinct variables with 
non-zero exponent. 

Every term zo. QIJ. occurring in <tw has positive coefficient, so no monomials 
cancel among terms. In particular, QIJ.(X) cannot contain any monomial in-
volving fewer than s( w) distinct variables. This forces I (p,) 2: s( w) , and hence 
the corresponding term in IBw = 2-S(W)<tw is an integral multiple of zo. PIJ.. 0 

Theorem 3C. The Schubert polynomials <tw of type C are a Z-basis for the 
ring Z[ZI' Z2' ... ; QIJ.1. The polynomials IBw are a Z-basis for the ring 
Z[zi' z2' ... ; PIJ.1. 
Proof By Proposition 3.1, the sets {zoQIJ.} and {zo.P/L} are Z-bases for the 
rings Z[ZI' z2' ... ; QIJ.1 and Z[ZI' z2' ... : PIJ.1, respectively. 

Since the <tw have distinct leading terms, they are linearly independent. They 
span the ring Z[ZI' z2' ... ; QIJ.1 since every monomial zo.QIJ. occurs as the 
leading term of some <tw. Analogous remarks apply to the IBw. 0 

Theorem 4C. The Schubert polynomials of type D are a Z-basis for the ring 
Z[ZI' z2' ... ; PIJ.1. 
Proof Same as the preceding proof. 0 

The formulas we have given for Schubert polynomials of types B, C, and 
D , though fully explicit, are ill-suited to practical computation because of the 
difficulty of using the Edelman-Greene correspondences to evaluate Ft,,,Xi and 
Eu(X). An alternative method is to apply iterated diVided difference operators 
to the 'top' polynomials <t Band i) D. Tables 1-3 were computed by this wo wo 
method, using Corollary 4.5, together with convenient expressions for <twB and 

o 
i) D which we now derive. wo 
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TABLE 1. Type B Schubert polynomials for W E B3 

w 
123-1 
123=110 
213=111 
213=111110 
213=110 111 
213=110111110 
123=111110111 
123=111110111110 
132=112 
132=112110 
312=112111 
312=112111110 
312=112110111 
312=112110111110 
132=112111110111 
132=112111110111110 
231=111112 
231=111112110 
321=111112111 
321=111112111110 
321=111112110 111 
321=111112110 11 1110 

231 =111 112111 110111 

231=111112111110111110 
231=110 111112 
23 1=110111112110 

321=110111112111 

32 1=110111112111110 

321 =110111112110111 
321 =110111112110111110 

231=110111112111110111 
231=11011 1112111110111110 
1 32=111110 111112 
132=111110111112110 

3 12=111 (10(11 (12(11 

3 1 2=(11110111 (12(11110 

3 I 2=111110111112110(1 I 
312=(11 (10111 112110(11 110 

132=(11110(11112111110111 

132=111 (10111 (12111 110111110 
1 23=112111110(11112 
123=112(11 110(11 (12(10 

213=(12(11 110111 (12111 

2 1 3=112(11 (10(11 (12111110 

213=(12(11 (10(11 (12(10(11 

213=(12(11 110(11 (12(10(11 (10 

123=(12111(10111112(11(10 111 

123=11211 110 (1 112 (1 110 (1 110 

1 
PI 
2PI + zi 
P2 
P2 + PI zi 
P21 
P3 + P2 zi 
P 31 + P 21 zi 
2 PI + ZI + z2 

2 P2 + PI Z I + PI Z 1 
2 P2 + 2 PI Z I + Z I 
P3 
P3 + 2 P 21 + 2 P2 z I + PI Z / 
P31 
P4 + P3 zi 

P 41 + P 31 zi 

2 P2 + 2 PI Z I + 2 PI z2 + Z I z2 
P3+2P21 +P2 z 1 +P2 z2 
2 P3 + 4 P 21 + 4 P2 Z I + 2 PI z I 2 + 2 P2 Z 2 + 2 PI Z I Z 2 + Z I 2 Z 2 
P4 +2P31 +P3 Z 1 +P3 z2 
2 P 31 + P3 Z I + 2 P 21 Z I + P2 Z I 2 
P32 
2P41 +P4 Z 1 +2P31 ZI +P3 z 12 

P42 + P32 ZI 

P3 + P2 Z I + P2 Z 2 + PI Z I Z 2 
P 31 + P 21 ZI + P 21 Z2 

P4 + 2 P 31 + 2 P3 Z I + 2 P 21 Z I + P2 Z I 2 

+P3 Z2 + 2P21 Z2 + 2P2 ZI Z2 + PI ZI 2 Z2 

P32 + P41 + P 31 ZI + P 31 Z2 

P32 + P 31 ZI + P 21 ZI 2 

P 321 

P42 + P32 ZI + P 41 ZI + P 31 Z/ 

P421 + P 321 Z I 
P4 + P3 Z I + P3 Z2 + P2 Z I Z2 

P41 + P 31 ZI + P 31 Z2 + P 21 ZI 

2P41 + P4 Z 1 + 2P31 ZI +P3 Z I" + 2P31 Z2 

+ P3 Z I Z2 + 2 P21 Z I z2 + P2 z 12 Z2 

P42 + P32 ZI + P32 Z2 

P42 + P32 z I + P 41 Z I + P31 z 12 + P32 Z2 + P31 Z I Z2 + P2I z 1222 

P421 + P321 Z I + P 321 Z2 

P43 + P42 z I + P32 z I 2 

P431 + P421 ZI + P 321 ZI 2 

P5 + P4 Z I + P4 Z 2 + P3 Z I Z 2 
P51 + P41 ZI + P41 Z2 + P31 ZI Z} 

2P51 +PSZ I +2P41 ZI +P4 Z 1 +2P41 22 +P4 Z 1 Z2 

+ 2 P31 zi z2 + P3 ZI 2 z2 
P52 + P42 zi + P42 z2 + P32 zi z2 

PS2 + P42 Z I + PSI Z I + P41 z I 2 + P42 Z 2 + P32 z I Z 2 

+ P41 Z I Z 2 + P31 Z 12 Z 2 

P521 + P421 Z I + P421 Z 2 + P32 Z I Z 2 2 

PH + P43 ZI + PS2 ZI + P42 ZI + P43 Z2 + P42 ZI Z2 + P32 ZI Z2 

P\3 + PH Z + PS2 Z + Pill Z 2 + P z, + P", Z Z? + P U1 Z 2 Z? 
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TABLE 2. Type C Schubert polynomials for W E B3 

123=1 
123=ao 
213=al 
213=al ao 
213=aoa l 

w 

21 3=aoa l ao 
1 23=al aOa l 
12 3=al aoal ao 
1 32=a2 
132=a2aO 
312=a2al 
312=a2a l aO 
312=a2aOal 
31 2=a2aOa l ao 
13 2=a2a l aoal 
13 2=a2a l aoa l ao 
231=al a2 
231=al a2aO 
321=al a 2a l 
321=al a2a l aO 
321 =al a2aOai 
321=ala2aOalaO 
231 =al a2a l aoal 
231=ala2alaOalaO 
231=aOa la 2 
23 I=aoal a2aO 

321 =aoal a2al 

321 =aoal a2a l ao 
321=aOala2aOal 
321=aoa l a2aOai ao 
2 31=aoa l a2a l aoa l 
231 =aoal a2a l aoal ao 
13 2=al aoal a2 
13 2=al aoal alaO 
31 2=al aoal alai 

31 2=al aoal alai ao 
3 12=al aoal a2aOa i 
312=al aoal a2aOa i ao 
1 32=alaOala2alaOal 
132=al aOa l a2a l aoa l ao 
1 2 3=a2a l aoal a2 
12 3=a2a l aoal alaO 
21 3=a2a l aoal a2a l 

213=a2alaOalalalaO 
2 13=a2a l aoal a2aOa i 

213=a2a l aoal a2aOa i ao 
1 23=a2a l aoal alai aoa l 
123=a2a l aoal a2a l aoa l ao 

1 
QI 
Q I + ZI 
Q2 

Q2+ Q I ZI 
Q21 
Q3 + Q2 ZI 
Q31 + Q 21 ZI 
Q I +ZI +Z2 
2Q2 + Q I ZI + Q I Z2 

Q2+ Q I ZI+ Z/ 
Q3 
Q3 + Q21 + 2 Q2 Z I + Q I Z I 2 
Q31 
Q4 +Q3 21 
Q41 + Q31 21 
Q2 + Q I 21 + Q I 22 + ZI Z2 
Q3 +Q21 +Q2 Z1 +Q2 Z 2 

Q3 + Q21 + 2 Q2 Z I + Q I 2 12 + Q2 22 + Q I 2 I Z2 + Z 12 Z2 
Q4 + Q 31 + Q3 2 I + Q3 Z2 
Q31 + Q3 ZI +Q21 21 + Q2 zl2 
Q32 
Q41 + Q4 ZI + Q31 ZI + Q3 212 
Q42 + Q32 ZI 
Q3 +Q2 21 +Q2 22+QI 2IZ2 
Q 31 + Q21 ZI + Q21 22 
Q4 + Q 31 + 2Q3 21 + Q21 21 + Q2 ZI 2 

2 
+Q3Z2+Q2122+2Q22122+QI21 Z2 

Q32 + Q41 + Q 31 ZI + Q 31 22 
Q32 + Q 31 ZI + Q 21 212 
Q 321 
Q42 + Q32 ZI + Q41 21 + Q 31 ZI 2 

Q 421 + Q 321 Z I 
Q4 + Q3 ZI + Q3 22 + Q2 21 Z2 
Q41 + Q31 21 + Q31 22 + Q 21 ZI Z2 

Q41 + Q4 ZI + Q31 ZI + Q3 ZI 2 + Q 31 22 + Q3 ZI 22 
+ Q21 ZI 22 + Q2 212 22 

Q 42 + Q 32 21 + Q 32 22 
2 2 

Q 42 + Q 32 21 + Q41 21 + Q 31 ZI + Q 32 Z2 + Q 31 21 22 + Q21 ZI Z2 
Q421 + Q 321 ZI + Q 321 Z2 
Q43+Q42ZI +Q32 Z12 

Q431 + Q421 21 + Q 321 212 
Qs + Q4 21 + Q4 22 + Q3 ZI Z2 
QSI + Q41 ZI + Q41 22 + Q31 21 22 
QSI + Qs 21 + Q41 21 + Q4 Z12 + Q41 Z2 +Q4 ZI 22 

+ Q31 21 Z2 + Q3 z 12 Z2 
QS2 + Q 42 21 + Q 42 Z2 + Q 32 ZI Z2 
QS2 + Q 42 ZI + QSI ZI + Q41 ZI 2 + Q 42 Z2 + Q 32 2122 

+ Q41 ZI Z2 + Q 31 212 Z2 

QS21 + Q421 ZI + Q421 Z2 + ZI 22 2 
QS3 + Q43 ZI + QS2 21 + Q 42 21 + Q43 Z2 + Q 42 21 Z2 + Q 32 ZI Z2 
Q S31 + Q431 ZI + Q S21 ZI + Q421 212 + Q431 22 

+ Q421 Z Z2 + Qn Z 2 z 1 

479 
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TABLE 3. Type D Schubert polynomials for W E D3 

w 
123=1 
213=/11 
2l3=/1j 
123=/1I/1j 
132=/12 
312=/12/11 
312=/12/1j 
132=/12/1I /1j 
231=/11/12 
321=/11/12/11 
321=/11/12/1j 
231=/11/12/1I/1j 
231=/1j/12 
321=/1j/12/11 
321=/1j/12/1j 
231=/1j/12/1I /1j 
I 32=/1I/1j/12 
312=/1I/1j/12/11 
312=/11 /1j /12/1j 
132=/1I/1j/12/1I /1j 
I 23=/12/1I/1j/12 
213=/12/1I/1j/12/11 
213=/12/1I/1j/12/1j 
123=/1,/1 /1-/1,/1 /1-

1 
PI +zl 
PI 
P2 + PI zi 
2PI +ZI +Z2 

2 
P2 + 2 PI Z I + Z I 
P2 
P 3 +P2 ZI 

P2 + PI ZI + PI Z2 + ZI Z2 
2 2 

P3+P21+2P2ZI+PIZI +P2Z2+2PIZIZ2+Z1 Z2 
P21 
P 31 + P21 ZI 

P2 + PI ZI + PI Z2 
2 

P 21 + P2 ZI + PI ZI 
P 3 +P21 +P2 Z 1 +P2 Z2 

2 
P 31 + P3 ZI + P21 ZI + P2 ZI 

P 3 + P2 ZI + P2 Z2 + PI ZI 2 

P 31 + P 3 ZI + P21 ZI + P2 ZI + P21 Z2 + P2 ZI Z2 + PI ZI Z2 

P 31 + P21 ZI + P21 Z2 
2 

P 32 + P31 ZI + P 21 ZI 

2 

P41 + P4 ZI + P 31 ZI + P 3 ZI + P 31 Z2 + P 3 ZI Z2 + P21 ZI Z2 + P2 ZI Z2 

P41 + P31 ZI + P31 Z2 + P21 ZI Z2 

p .. ? + P" Z + P Z + P, Z 2 + PI? Z? + P Z z, + P? Z 2 Z? 

Definition. Let A. J..l be partitions of length at most k. The corresponding 
skew multi-Schur junction is defined by 

(4.57) 

( 4.58) 

SJ1p.(Z" Z, +z2' ... , z, +Z2+",+ zk) 

= det [hp.,-Aj+i-i(z" z2'" , Zi)]k . 
I,J=' 

T 

where hm denotes the complete homogeneous symmetric function of degree 
m, and T ranges over column-strict tableaux of shape J..l/ A. in which entries in 
row i do not exceed i. 

The equivalence of formulas (4.57) and (4.58) is due to Gessel [8]-see also 
[19], since [8] is unpublished. 

Proposition 4.15. Let wg and denote the longest elements in Bn and Dn 
respectively. Let f5k = (k , k - 1 , . .. , 1). Then 

(4.59) 
ctwg = L Q,sn+A(X)S,sn_I!A'(z" z, + z2' ... , z, + z2 + ... + Zn_')' 

A 
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( 4.60) 

'1J wg = L P"n_l+A(X)S"n_l/A'(zl' Zt + z2' ... , Zt + Z2 + ... + Zn_t)· 
A 

Here A.' denotes the partition conjugate to A. 
Proof For every v E Sn' we have l(wgv- t ) + l(v) = l(wg) and + 
l(v) = Hence by Proposition 3.16, 

(4.61) 

(4.62) 

It remains to prove, for each A, 

(4.63) " v-1('\(Z) = S" /A'(Z\, Zt + z2' ... , Zt + z2 + ... + Zn-t)· 
0 n-1 

vESn 

Equations (4.9) and (7.14) of [13] show that 

(4.64) 

(4.65) 

( 4.66) 

= L L 
VESn ;. 

where Y = Yt + Y2 + ... + Ym . Using the identity of [5] a:ld 
replacing A by its conjugate in the summation, the last expression becomes 

(4.67) L L 
vESn A 

We also have by a general identity for skew multi-Schur functions 

S"n_l (Y + Zt' Y + Zt + z2' ... , Y + Zt + z2 + ... + Zn_t) 
( 4.68) 

= LS;,(Y)S"n_l/A.(Zt' Zt + z2' ... , Zt + z2 + ... + Zn_t)· 
;. 

Equating coefficients of s",(Y) in (4.67) and (4.68) gives (4.63). 0 
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